1,958
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Molecular techniques reveal more secrets of fermented foods

ORCID Icon &
Pages 11-32 | Received 23 May 2018, Accepted 28 Jul 2018, Published online: 08 Oct 2018

References

  • Abriouel, H., N. Ben Omar, R. L. López, M. M. Cañamero, E. Ortega, and A. Gálvez. 2007. Differentiation and characterization by molecular techniques of Bacillus cereus group isolates from poto poto and dégué, two traditional cereal-based fermented foods of Burkina Faso and Republic of Congo. Journal of Food Protection 70: 1165–1173.
  • Abriouel, H., Ben Omar, N., López, R. L., Martínez-Cañamero, M., Keleke, S., and Gálvez, A. 2006. Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods. International Journal of Food Microbiology 111: 228–233.
  • Abriouel, H., N. Ben Omar, R. P. Pulido, R. L. López, E. Ortega, M. M. Cañamero, et al. 2008. Vegetable fermentations. In: Molecular techniques in the microbial ecology of fermented foods, eds. L. Cocolin, and D. Ercolini, 146–161. New York, NY: Springer Science Business Media, LLC.
  • Abriouel, H., N. Benomar, R. Lucas, and A. Gálvez. 2011. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. International Journal of Food Microbiology 144: 487–496.
  • Adeyemo, S. M. and A. A. Onilude. 2014. Molecular identification of Lactobacillus plantarum isolated from fermenting cereals. International Journal of Biotechnology and Molecular Biology Research 5:59–67.
  • Ahrné, S. and G. Molin. 1997. Restriction endonuclease analysis of total chromosomal DNA of Lactobacillus. Microecology and Therapy 26: 27–30.
  • Aidoo, K. E. and M. J. R. Nout. 2010. Functional yeasts and molds in fermented foods and beverages. In: Fermented foods and beverages of the world, eds. J. P. Tamang, and K. Kailasapathy, 127–148. New York, NY: CRC Press, Taylor and Francis Group.
  • Albano, H., C. A. van Reenen, S. D. Todorov, D. Cruz, L. Fraga, T. Hogg, L.M. Dicks, and P. Teixeira. 2009. Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal. Meat Science 82: 389–398.
  • Alegrìa, A., P. Alvarez-Martìn, N. Sacristàn, E. Fernàndez, S. Delgado, and B. Mayo. 2009. Diversity and evolution of the microbial populations during manufacture and ripening of Casìn, a traditional Spanish, starter-free cheese made from cow's milk. International Journal of Food Microbiology 136: 44–51.
  • Alegría, A., P. Szczesny, B. Mayo, J. Bardowski, and M. Kowalczyk. 2012. Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and - independent approaches. Applied and Environmental Microbiology 78: 1890–1898.
  • Altay, F., F. Karbancıoglu-Guler, C. Daskaya-Dikmen, and D. Heperkan. 2013. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics. International Journal of Food Microbiology 167: 44–56.
  • Anderson, J. W. 2003. Whole grains protect against atherosclerotic cardiovascular disease. Proceedings of the Nutrition Society 62:135–142.
  • Ansorena, D., and I. Astiasarán. 2016. Fermented foods: Composition and health effects encyclopedia of food and health. In: Encyclopedia of food and health, eds. B. Caballero, P. Finglas, and F. Toldra, 1st ed. Oxford, UK: Academic Press, pp. 649–655.
  • Antony, U. and T. S. Chandra. 1997. Microbial population and biochemical changes in fermenting finger millet (Eleusine coracana). World Journal of Microbiology and Biotechnology 13: 533–537.
  • Arcuri, E. F., A. F. El Sheikha, T. Rychlik, I. Métayer, and D. Montet. 2013. Determination of cheese origin by using 16S rDNA fingerprinting of bacteria communities by PCR-DGGE: Preliminary application to traditional Minas cheese. Food Control 30: 1–6.
  • Ardhana, M. M. and G. H. Fleet. 1989. The microbial ecology of tape ketan fermentation. International Journal of Food Microbiology 9: 157–165.
  • Argyri, A. A., A. A. Nisiotou, A. Mallouchos, E. Z. Panagou, and C. C. Tassou. 2014. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. International Journal of Food Microbiology 171: 68–76.
  • Arteau, M., S. Labrie, and D. Roy. 2010. Terminal-restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis profiling of fungal communities in Camembert cheese. Int. Dairy J. 20: 545–554.
  • Astuti, M. 2015. Health benefits of tempe. In: Health benefits of fermented foods, ed. J. P. Tamang, 371–394. New York, NY: CRC Press.
  • Axelsson, L., I. Rud, K. Naterstad, H. Blom, B. Renckens, J. Boekhorst, M. Kleerebezem, S. van Hijum, and R.J. Siezen. 2012. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). Journal of Bacteriology 194: 2391–2392.
  • Baschali, A., E. Tsakalidou, A. Kyriacou, N. Karavasiloglou, and A. L. Matalas. 2017. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: A neglected food group. Nutrition Research Reviews 30: 1–24.
  • Belén Flòrez, A. and Mayo, B. (2006). Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. International Journal of Food Microbiology 110: 165–171.
  • Berthier, F. and S.D. Ehrlich. (1999). Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA. International Journal of Systematic and Evolutionary Microbiology 49: 997–1007.
  • Bevilacqua, A., F. P. Casanova, L. Petruzzi, M. Sinigaglia, and M. R. Corbo. 2016. Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage. Food Microbiology 53: 1–8.
  • BISRESEARCH (2017). Global Fermented Food & Ingredients Market, Analysis and Forecast (2017-2023) (Focus on Food Type: Confectionary & Bakery, Dairy, Vegetables, Non-Alcoholic Beverages, Ingredient Type: Amino Acid, Organic Acid, Vitamins, Enzymes, and Distribution Channels). Available online at: https://bisresearch.com/industry-report/global-fermented-food-and-ingredients-market-2023.html
  • Blandino, A., M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented foods and beverages. Food Research International 36: 527–543.
  • Bokulich, N. A., M. Ohta, P. M. Richardson, and D. A. Mills. 2013. Monitoring seasonal changes in winery-resident microbiota. PLoS One 8: e66437.
  • Bonetta, S., S. Bonetta, E. Carraro, K. Rantsiou, and L. Cocolin. 2008. Microbiological characterisation of Robiola di Roccaverano cheese using PCR-DGGE. Food Microbiology 25: 786–792.
  • Borresen, E. C., A. J. Henderson, A. Kumar, T. L. Weir, and E. P. Ryan. 2012. Fermented foods: patented approaches and formulations for nutritional supplementation and health promotion. Recent Patents on Food, Nutrition & Agriculture 4: 134–140.
  • Botangen, K. A., S. Vodanovich, and J. Yu. 2017. Preservation of indigenous culture among indigenous migrants through social media: The Igorot peoples. Proceedings of the 50th Hawaii International Conference on System Sciences, USA, pp. 2303–2312.
  • Botta, C. and L. Cocolin. 2012. Microbial dynamics and biodiversity in table olive fermentation: Culture-dependent and-independent approaches. Frontiers in Microbiology 3: Article ID 245.
  • Bouton, Y., P. Guyot, E. Beuvier, P. Tailliez, and R. Grappin. 2002. Use of PCR-based methods and PFGE for typing and monitoring homofermentative lactobacilli during Comté cheese ripening. International Journal of Food Microbiology 76: 27–38.
  • Brandt, M. J. 2007. Sourdough products for convenient use in baking. Food Microbiology 24: 161–164.
  • Breidt, F. and H. P. Fleming. 1996. Identification of lactic acid bacteria by ribotyping. Journal of Rapid Methods & Automation in Microbiology 4: 219–233.
  • Campbell-Platt, G. 1994. Fermented foods – A world perspective. Food Research International 27: 253–257.
  • Caplice, E. and G. F. Fitzgerald. 1999. Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology 50: 131–149.
  • Carraro, L., M. Maifreni, I. Bartolomeoli, M. E. Martino, E. Novelli, F. Frigo, et al. 2011. Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing. Research in Microbiology 162: 231–239.
  • Casalta, E., J. M. Sorba, M. Aigle, and J. C. Ogier. 2009. Diversity and dynamics of the microbial community during the manufacture of Calenzana, an artisanal Corsican cheese. International Journal of Food Microbiology 133: 243–251.
  • Catzeddu, P., E. Mura, E. Parente, M. Sanna, and G. A. Farris. 2006. Molecular characterization of lactic acid bacteria from sourdough breads produced in Sardinia (Italy) and multivariate statistical analyses of results. Systematic and Applied Microbiology 29: 138–144.
  • Chaiyasut, C., B. S. Sivamaruthi, N. Makhamrueang, S. Peerajan, and P. Kesika. 2017. A survey of consumer’ opinion about consumption and health benefits of fermented plant beverages in Thailand. Food Science and Technology (Campinas) 38: 299–309.
  • Chandan, R. C., and A. Kilara. 2013. Manufacturing yogurt and fermented milks, 2nd ed. Chichester, UK: John Wiley & Sons Ltd.
  • Chandan, R. C., C. H. White, A. Kilara, and Y. H. Hui. 2006. Manufacturing yogurt and fermented milks. Oxford, UK: Blackwell Publishing.
  • Chelule, P. K., H. P. Mbongwa, S. Carries, and N. Gqaleni. 2010. Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chemistry 122: 656–661.
  • Chen, B., Q. Wu, and Y. Xu. 2014. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor. International Journal of Food Microbiology 179: 80–84.
  • Chilton, S. N., J. P. Burton, and G. Reid. 2015. Inclusion of fermented foods in food guides around the world. Nutrients 7: 390–404.
  • Chiu, H. H., C. C. Tsai, H. Y. Hsih, and H. Y. Tsen. 2008. Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice. Journal of Applied Microbiology 104: 605–612.
  • Cho, K. M., R. K. Math, S. M. Islam, W. J. Lim, S. Y. Hong, J. M. Kim, M.G. Yun, J.J. Cho, and H.D. Yun. (2009). Novel multiplex PCR for the detection of lactic acid bacteria during kimchi fermentation. Molecular and Cellular Probes 23: 90–94.
  • Chokesajjawatee, N., S. Pornaem, Y. -G. Zo, S. Kamdee, P. Luxananil, S. Wanasen, and R. Valyasevi. 2009. Incidence of Staphylococcus aureus and associated risk factors in Nham, a Thai fermented pork product. Food Microbiology 26: 547–551.
  • Ciani, M., F. Comitini, I. Mannazzu, and P. Domizio. 2010. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research 10: 123–133.
  • Cocolin, L., A. Diez, R. Urso, K. Rantsiou, G. Comi, I. Bermaier, and C. Beimfohr. 2007. Optimization of conditions for profiling bacterial populations in food by culture-independent methods. International Journal of Food Microbiology 120: 100–109.
  • Cocolin, L., M. Gobbetti, E. Neviani, and D. Daffonchio. 2016. Ensuring safety in artisanal food microbiology. Nature Microbiology 1: Article number (6171). DOI: 10.1038/NMICROBIOL.2016.171
  • Coda, R., C. G. Rizzello, A. Trani, and M. Gobbetti. 2011. Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria. Food Microbiology 28: 526–536.
  • Coppola, R., G. Blaiotta, and D. Ercolini. 2008. Dairy products. In: Molecular techniques in the microbial ecology of fermented foods, eds. L. Cocolin, and D. Ercolini, 31–90. New York, NY: Springer.
  • Coppola, S., G. Blaiotta, D. Ercolini, and G. Moschetti. 2001. Molecular evaluation of microbial diversity occurring in different types of mozzarella cheese. Journal of Applied Microbiology 90: 414–420.
  • Costa, M. G. M., T. V. Fonteles, A. L. de Jesus, and S. Rodrigues. 2013. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry 139: 261–266.
  • Darby, W. J. 1979. The nutrient contributions of fermented beverages. In: Fermented Food Beverage in Nutrition, eds. C. F. Gastineau, W. J. Darby and T. B. Turner, 61–74. New York, NY: Academic Press.
  • Davey, H. M. (2011). Life, death, and in-between: Meanings and methods in microbiology. Applied and Environmental Microbiology 77: 5571–5576.
  • Davis, R. and L. J. Mauer. 2010. Fourier tansform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, ed. M. Méndez-Vilas, 1582–1594. Badajoz, Spain: Formatex Research Center.
  • De Angelis, M., R. Di Cagno, G. Gallo, M. Curci, S. Siragusa, C. Crecchio, E. Parente, and M. Gobbetti. 2007. Molecular and functional characterization of Lactobacillus sanfranciscensisstrains isolated from sourdoughs. International Journal of Food Microbiology 114: 69–82.
  • De Bellis, P., F.Valerio, A. Sisto, S. L. Lonigro, and P. Lavermicocca. 2010. Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. International Journal of Food Microbiology 140: 6–13.
  • de LeBlanc, A. M., C. Matar, and G. Perdigón, 2007. The application of probiotics in cancer. British Journal of Nutrition 98: S105–S110. doi: 10.1017/S0007114507839602.
  • de Vos, W. M. 2011. Systems solutions by lactic acid bacteria: From paradigms to practice. Microbial Cell Factories 10 Suppl 1: S2.
  • de Vuyst, L., G. Vrancken, F. Ravyts, T. Rimaux, and S. Weckx. 2009. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiology 26: 666–675.
  • Demirci, A., G. Izmirlioglu, and D. Ercan. 2014. Fermentation and enzyme technologies in food processing. In: Food processing: Principles and applications, eds. S. Clark, S. Jung, and B. Lamsal, 2nd ed., 107–136. Oxford, UK: John Wiley & Sons, Ltd.
  • di Cagno, R., R. F. Surico, S. Siragusa, M. de Angelis, A. Paradiso, F. Minervini, L. De Gara, and M. Gobbetti. 2008. Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. International Journal of Food Microbiology 127: 220–228.
  • Díaz, C., A. M. Molina, J. Nähring, and R. Fischer. 2013. Characterization and dynamic behavior of wild yeast during spontaneous wine fermentation in steel tanks and amphorae. BioMed Research International 2013: 540465.
  • Dolci, P., V. Alessandria, K. Rantsiou, L. Rolle, G. Zeppa, and L. Cocolin. 2008. Microbial dynamics of Castelmagno PDO, a traditional Italian cheese, with a focus on lactic acid bacteria ecology. International Journal of Food Microbiology. 122: 302–311.
  • Dolci, P., V. Alessandria, K. Rantsiou, and L. Cocolin. 2015. Advanced methods for the identification, enumeration, and characterization of microorganisms in fermented foods. In: Advances in Fermented Foods and Beverages: Improving Quality, Technologies and Health Benefits, ed. W. Holzapfel, 157–176. Kidlington, UK: Woodhead Publishing, Elsevier.
  • Doulgeraki, A. I., O. Hondrodimou, V. Eliopoulos, and E. Panagou. 2012. Lactic acid bacteria and yeast heterogeneity during aerobic and modified atmosphere packaging storage of natural black Conservolea olives in polyethylene pouches. Food Control 26: 49–57.
  • Duffner, F. and M. O’Connell. 1995. Comparative evaluation of plasmid profiling and ribotyping in the analysis of Lactobacillus plantarum strain heterogeneity in silage. Journal of Applied Microbiology 78: 20–27.
  • Ehrmann, M. A. and R. F. Vogel. 2001. Characterization of IS153, an IS3-family insertion sequence isolated from Lactobacillus sanfranciscensis and its use for strain differentiation. Systematic and Applied Microbiology 24: 443–450.
  • El Sheikha, A. F. 2010. Determination of geographical origin of Shea tree and Physalis fruits by using the genetic fingerprints of the microbial community by PCR/DGGE. Analysis of biological properties of some fruit extracts. PhD Thesis. University of Montpellier 2, Montpellier, France.
  • El Sheikha, A. F. 2015. Bread: Between the heritage of past and the technology of present. In: Bread and its fortification: Nutrition and health benefits, food biology series, eds. C. M. Rosell, J. Bajerska, and A. F. El Sheikha, 1–25. Boca Raton; FL: Science Publishers Inc., CRC Press.
  • El Sheikha, A. F. 2018a. Molecular techniques and lactic acid-fermented fruits and vegetables: why and how? In: Molecular techniques in food biology: Safety, biotechnology, authenticity & traceability, eds. A. F. El Sheikha, R. E. Levin, and J. Xu, 1st ed., 285–308. Chichester, UK: John Wiley & Sons, Ltd.
  • El Sheikha, A. F. 2018b. Revolution in fermented foods: From artisan household technology to the era of biotechnology. In: Molecular techniques in food biology: Safety, biotechnology, authenticity & traceability, eds. A. F. El Sheikha, R. E. Levin, and J. Xu, 1st ed., 241–260. Chichester, UK: John Wiley & Sons, Ltd.
  • El Sheikha, A. F. and Bakar, J. 2014. Fermented meat products. In: Microorganisms and fermentation of traditional foods, Food Biology Series, eds. R. C. Ray, and D. Montet, 223–247. Boca Raton, FL: Science Publishers Inc., CRC Press.
  • El Sheikha, A. F. and D. Montet. 2014a. African fermented foods: historical roots and real benefits. In: Microorganisms and Fermentation of Traditional Foods, Food Biology Series, eds. R. C. Ray, and D. Montet, 248–282. Boca Raton, FL: Science Publishers Inc., CRC Press.
  • El Sheikha, A. F. and D. Montet. 2014b. Fermented fish and fish products: snapshots on culture and health. In: Microorganisms and Fermentation of Traditional Foods, Food Biology Series, eds. R. C. Ray, and D. Montet, 188–222. Boca Raton, FL: Science Publishers Inc., CRC Press.
  • El Sheikha, A. F. and J. Xu. 2018. Molecular techniques and foodstuffs: Innovative fingerprinting, then what?! In: Molecular techniques in food biology: Safety, biotechnology, authenticity & traceability, eds. A. F. El Sheikha, R. E. Levin, and J. Xu, 1st ed., 423–434. Chichester, UK: John Wiley & Sons, Ltd.
  • El Sheikha, A. F., R. C. Ray, D. Montet, S. H. Panda, and W. Worawattanamateekul. 2014. African fermented fish products in scope of risks: A review. International Food Research Journal 21: 425–432.
  • Elegado, F. B, M. A. Guerra, R. A. Macayan, H. A. Mendoza, and M. B. Lirazan. 2004. Spectrum of bacteriocin activity of Lactobacillus plantarum BS and fingerprinting by RAPD-PCR. International Journal of Food Microbiology. 95: 11–18.
  • El-Nezami, H., N. Polychronaki, S. Salminen, and H. Mykkänen. 2002. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative a-zearalenol. Applied and Environmental Microbiology 68: 3545–3549.
  • Ercolini, D., F. De Filippis, A. La Storia, and M. Iacono. 2012. “Remake” by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese. Applied and Environmental Microbiology 78: 8142–8145.
  • Ercolini, D., P. J. Hill, and C. E. R. Dodd. 2003. Bacterial community structure and location in Stilton cheese. Applied and Environmental Microbiology 74: 3540–3548.
  • Ergül, A., K. Kazan, S. Aras, V. Çevik, H. Çelik, and G. Söylemezoğlu. 2006. AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome 49: 467–495.
  • Ergül, A., G. Perez-Rivera, G. Söylemezoğlu, K. Kazan, and R. Arroyo-Garcia. 2011. Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genetic Resources: Characterization and Utilization 9: 375–383.
  • Fierer, N. 2008. Microbial biogeography: Patterns in microbial diversity across space and time. In: Accessing uncultivated microorganisms: From the environment to organisms and genomes and back, ed. K. Zengler, 95–115. Washington DC: ASM Press.
  • Filannino, P., L. Azzi, I. Cavoski, O. Vincentini, C. G. Rizzello, M. Gobbetti, and R. Di Cagno. 2013. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology. 163: 184–192.
  • Fontana, C., P. S. Cocconcelli, and G. Vignolo. 2005. Monitoring the bacterial population dynamics during fermentation of artisanal Argentinean sausages. International Journal of Food Microbiology. 103: 131–142.
  • Fontana, C., G. Vignolo, and P. S. Cocconcelli. 2005. PCR-DGGE analysis for the identification of microbial populations from Argentinean dry fermented sausages. Journal of Microbiological Methods 63: 254–263.
  • Food and Agriculture Organization of the United Nations (FAO). 2013. Agro-industrial utilization of cactus pear. Rural Infrastructure and Agro-Industries Division, in collaboration with the International Technical Cooperation Network on Cactus (FAO–CACTUSNET), Rome, 1–168. http://www.fao.org/docrep/019/a0534e/a0534e.pdf
  • Franz, C. M., M. Huch, J. M. Mathara, H. Abriouel, N. Benomar, G. Reid, A. Galvez, and W.H. Holzapfel. 2014. African fermented foods and probiotics. International Journal of Food Microbiology 190: 84–96.
  • Fujii, T., Y.C. Wu, T. Suzuki, and B. Kimura. 1999. Production of organic acids by bacteria during the fermentation of squid Shiokara. Fisheries Science 65: 671–672.
  • Gala, E., S. Landi, L. Solieri, M. Nocetti, A. Pulvirenti, and P. Giudici. 2008. Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. International Journal of Food Microbiology. 125: 347–351.
  • García Fontán, M. C., J. M. Lorenzo, A. Parada, I. Franco, and J. Carballo. 2007. Microbiological characteristics of "androlla", a Spanish traditional pork sausage. Food Microbiology 24: 52–58.
  • García-Ruiz, A., E. M. González-Rompinelli, B. Bartolomé, and M. V. Moreno-Arribas. 2011. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. International Journal of Food Microbiology. 148: 115–120.
  • Gatti, M., J. De Dea Lindner, A. De Lorentiis, B. Bottari, M. Santarelli, V. Bernini, and E. Neviani. 2008. Dynamics of whole and lysed bacterial cells during Parmigiano-Reggiano cheese production and ripening. Applied and Environmental Microbiology 74: 6161–6167.
  • Gilbert, J. A., D. van der Lelie, and I. Zarraonaindia. 2014. Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences of the United States of America11: 5–6.
  • Giraffa, G. 2004. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews 28: 251–260.
  • Giraffa, G. and D. Carminati. 2008. Molecular techniques in food fermentation: Principles and applications. In: Molecular techniques in the microbial ecology of fermented foods. Food Microbiology and Food Safety, eds. L. Cocolin, and D. Ercolini, 1–30. New York, NY: Springer.
  • Giusto, C., L. Iacumin, G. Comi, S. Buiatti, and M. Manzano. 2006. PCR-TTGE and RAPD-PCR Techniques to analyze Saccharomyces cerevisiae and Saccharomyces carlsbergensis isolated from Craft Beers. Journal of the Institute of Brewing 112: 340–345.
  • Giusto, C., Manzano, M., Bartolomeoli, I., Buiatti, S., and Comi, G. (2005). Identificazione mediante PCRDGGE dei Batteri Lattici alteranti la birra artigianale. Industria delle bevande. XXXIV: 207–210.
  • Gobbetti, M. 1998. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends in Food Science and Technology 9: 267–274.
  • Guan, L., K. H. Cho and J. H. Lee. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiology 28: 101–113.
  • Guyot, J. P. 2010. Fermented cereal products. In: Fermented foods and beverages of the world, eds. J. P. Tamang, and K. Kailasapathy, 247–261. New York, NY: CRC Press, Taylor and Francis Group.
  • Halász, A., A. Baráth, L. Simon-Sarkadi, and W. H. Holzapfel. 1994. Biogenic amines and their production by microorganisms in food. Trends in Food Science and Technology 5: 42–49.
  • Haskard, C. A., H. S. El-Nezami, P. E. Kankaanpää, S. Salminen, and J. T. Ahokas. 2001. Surface binding of aflatoxin B1 by lactic acid bacteria. Applied and Environmental Microbiology 67: 3086–3091.
  • Holzapfel W. H. and B. J. B. Wood. 2014. Lactic acid bacteria: Biodiversity and taxonomy. New York, NY: Wiley-Blackwell.
  • Holzapfel, W. 2002. Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology. 75: 197–212.
  • Holzapfel, W. H., R. Geisen, and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. International Journal of Food Microbiology. 24: 343–362.
  • Hong, Y, H. –S. Yang, J. Li, S. –K. Han, H. –C. Chang, and H. –Y. Kim. 2014. Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. Journal of the Science of Food and Agriculture 94: 296–300.
  • Hong, Y., H. –S. Yang, H. –C. Chang, and H. –Y. Kim. 2013. Comparison of bacterial community changes in fermenting Kimchi at two different temperatures using a denaturing gradient gel electrophoresis analysis. Journal of Microbiology and Biotechnology 23: 76–84.
  • Hoobin, P., I. Burgar, S. C. Zhu, D. Y. Ying, L. Sanguansri, and M. A. Augustin. 2013. Water sorption properties, molecular mobility and probiotic survival in freeze dried protein-carbohydrate matrices. Food & Function 4: 1376–1386.
  • Huch, M., A. Hanak, I. Specht, C. Dortu, P. Thonart, S. Mbugua, W.H. Holzapfel, C. Hertel, and C. M. Franz. (2008). Use of Lactobacillus strains to start cassava fermentation for Gari production. International Journal of Food Microbiology 128: 258–267.
  • Humblot, C. and J. P. Guyot. 2009. Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Applied and Environmental Microbiology 75: 4354–4361.
  • Hwang, J., J-c. Kim, H. Moon, J-y. Yang, and M. Kim. 2017. Determination of sodium contents in traditional fermented foods in Korea. Journal of Food Composition and Analysis 56: 110–114.
  • Ivey, M. L. and T. G. Phister. 2011. Detection and identification of microorganisms in wine: A review of molecular techniques. Journal of Industrial Microbiology and Biotechnology 38: 1619–1634.
  • Josephsen J., and L. Jespersen. 2004. Starter cultures and fermented products. In: Handbook of food and beverage fermentation technology, eds. Y. H. Hui, L. Å. Meunier-Goddik, S. Hansen, J. Josephsen, W. K. Nip, P. S. Stanfield, and F. Toldrá, 23–49. New York, NY: Marcel Dekker, Inc.
  • Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J. W., Hahn, Y., E.L. Madsen, and C.O. Jeon. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Applied and Environmental Microbiology 77: 2264–2274.
  • Jung, J. Y., S. H. Lee, H. J. Lee, and C. O. Jeon. 2013. Microbial succession and metabolite changes during fermentation of saeu-jeot: Traditional Korean salted seafood. Food Microbiology 34: 360–368.
  • Juvonen, R. and R. Satokari. 1999. Detection of spoilage bacteria in beer by Polymerase Chain Reaction. Journal of the American Society of Brewing Chemists 7: 99–103.
  • Kantachote, D., A. Ratanaburee, W. Hayisama-ae, A. Sukhoom, and T. Nunkaew. 2017. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. Journal of Functional Foods 32: 401–408.
  • Kanwar, S. S., and Keshani. 2016. Fermentation of apple juice with a selected yeast strain isolated from the fermented foods of himalayan regions and its organoleptic properties. Frontiers in Microbiology 7: Article ID 1012, p. 6. doi:10.3389/fmicb.2016.01012.
  • Katongole, J. N. 2008. The microbial succession in indigenous fermented maize products. MSc Thesis. University of the Free State, Bloemfontein, South Africa.
  • Kell D. B., M. Brown, H. M. Davey, W. B. Dunn, I. Spasic, and S. G. Oliver. 2005. Metabolic footprinting and systems biology: The medium is the message. Nature Reviews Microbiology 3: 557–565.
  • Khanh, T. M., B. K. May, P. M. Smooker, T. T. H. Van, and P. J. Coloe. 2011. Distribution and genetic diversity of lactic acid bacteria from traditional fermented sausage. Food Research International 44: 338–344.
  • Kim, K. Y., and Y. T. Hahm. 2002. Recent studies about physiological functions of Chungkkokjang and functional enhancement with genetic engineering. The Institute of Molecular Biology and Genetics 16: 1–18.
  • Kim, M., and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. International Journal of Food Microbiology. 103: 91–96.
  • Kiyohara, M., T. Koyanagi, H. Matsui, K. Yamamoto, H. Take, Y. Katsuyama, A. Tsuji, H. Miyamae, T. Kondo, S. Nakamura, et al. (2012). Changes in microbiota population during fermentation of Narezushi as revealed by pyrosequencing analysis. Bioscience, Biotechnology, and Biochemistry 76: 48–52.
  • Kobayashi, T., B. Kimura, and T. Fujii. 2000. Strictly anaerobic halophiles isolated from canned Swedish fermented herrings (Suströmming). International Journal of Food Microbiology. 54: 81–89.
  • Kogno, E., K. Soncy, E. Taale, K. Anani, S. D. Karou, and Y. Ameyapoh. 2017. Molecular characterization of lactic acid bacteria involved in Togolese traditional fermented cereal foods. International Journal of Recent Advances in Multidisciplinary Research 4: 2308–2312.
  • Kouakou, A. C., K. F. Nguessan, D. A. Thomas, M. K. Dje, and D. Montet. 2012. Application of culture dependent methods and culture-independent methods (DGGE analysis) to study Lactic acid bacteria ecology of Ivorian fermented fish Adjuevan. Challenges of Modern Technology 3: 51–56.
  • Kuda, T., Y. Izawa, S. Yoshida, T. Koyanagi, H. Takahashi, and B. Kimura. 2014. Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 35: 419–425.
  • Kunene, N. F., I. Geornarsi, A. von Holy, and J. W. Hastings. 2000. Characterization of lactic acid bacteria from sorghum-based fermented weaning food by analysis of soluble proteins and AFLP fingerprinting. Applied and Environmental Microbiology 66: 1084–1092.
  • Kwak, S. H., Y. M. Cho, G. M. Noh, and A. S. Om. 2014. Cancer preventive potential of Kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). Journal of Cancer Prevention 19: 253–258.
  • LeBlanc, J. G., G. Vignolo, S. D. Todorov, and G. S. de Giori. 2013. Indigenous fermented foods and beverages produced in Latin America. In: Food intake: Regulation, assessing and controlling, ed. J. L. Morrison, 35–58. New York, NY: Nova Science Publisher.
  • Lee, G. - I., H. - M. Lee, and C.- H. Lee. 2012. Food safety issues in industrialization of traditional Korean foods. Food Control 24: 1–5.
  • Leroy, S., P. Giammarinaro, J. P. Chacornac, I. Lebert, and R. Talon. 2010. Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units. Food Microbiology 27: 294–301.
  • Ligor, M., R. Jarmalaviciene, M. Szumski, A. Maruška, and B. Nuszewski. 2008. Determination of volatile and non-volatile products of milk fermentation processes using CZE and SPME-GC. Journal of Separation Science 31: 2707–2713.
  • Lv, X. -C., X. -L. Huang, W. Zhang, P. -F. Rao, and L. Ni. 2013. Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control 34: 183–190.
  • Manzano, M., C. Giusto, I. Bartolomeoli, S. Buiatti, and G. Comi. 2005. Microbiological analyses of dry and slurry yeasts for brewing. Journal of the Institute of Brewing 111: 203–208.
  • Mapelli, V., L. Olsson, and J. Nielsen. 2008. Metabolic footprinting in microbiology: Methods and applications in functional genomics and biotechnology. Trends in Biotechnology 26: 490–497.
  • Marco, M. L., D. Heeney, S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligné, M. Gänzle, R. Kort, G. Pasin, A. Pihlanto, et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44: 94–102.
  • Marcobal, A., B. De Las Rivas, J. M. Landete, L. Tabera, and R. Muñoz. 2012. Tyramine and phenylethylamine biosynthesis by food bacteria. Critical Reviews in Food Science and Nutrition 52: 448–467.
  • Marshall, E. and D. Mejia. 2011. Traditional fermented food and beverages for improved livelihoods. Rome, Italy: Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations.
  • Marty, E., C. Bodenmann, J. Buchs, R. Hadorn, E. Eugster-Meier, C. Lacroix, and L. Meile. 2012. Prevalence of antibiotic resistance in coagulase-negative staphylococci from spontaneously fermented meat products and safety assessment for new starters. International Journal of Food Microbiology 159: 74–83.
  • Masoud, W., M. Takamiya, F. K. Vogensen, S. Lillevang, W.A. Al-Soud, S.J. Sørensen, and M. Jakobsen. 2011. Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. International Dairy Journal 21: 142–148.
  • Masoud, W., F. K. Vogensen, S. Lillevang, W. Abu Al-Soud, S. J. Sørensen, and M. Jakobsen. 2012. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. International Journal of Food Microbiology 153: 192–202.
  • Meroth, C. B., W. P. Hammes, and C. Hertel. (2003). Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 69: 7453–7461.
  • Meroth, C. B., J. Walter, C. Hertel, M. Brandt, and W. P. Hammes. 2003. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 69: 475–482.
  • Min, M., C. R. Bunt, S. L. Mason, and M. A. Hussain. 2018. Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2018.1462760.
  • Miyamoto, M., Y. Seto, D. H. Hao, T. Teshima, Y. B. Sun, T. Kabuki, L.B. Yao, and H. Nakajima. 2005. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables ‘Suan cai’ in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Systematic and Applied Microbiology 28: 688–694.
  • Mohania, D., V. K. Kansal, R. Sagwal, and D. Shah. 2013. Anticarcinogenic effect of probiotic dahi and piroxicam on DMH-induced colorectal carcinogenesis in Wister rats. American Journal of Cancer Therapy and Pharmacology 1: 8–24.
  • Mokoena, M. P., Chelule, P. K., and Gqaleni, N. (2005). Reduction of fumonisin BI and zearalenone by lactic acid bacteria in fermented maize meal. Journal of Food Protection 68: 2095–2099.
  • Monteagudo-Mera, A., L. Rodríguez-Aparicio, J. Rúa, H. Martínez-Blanco, N. Navasa, M. R. García-Armesto, and M. Ángel Ferrero. 2012. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. Journal of Functional Foods 4: 531–541.
  • Montel, M. C., S. Buchin, A. Mallet, C. Delbes-Paus, D. A. Vuitton, N. Desmasures, and F. Berthier. 2014. Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology. 177: 136–154.
  • Motarjemi, Y. 2002. Impact of small scale fermentation technology on food safety in developing countries. International Journal of Food Microbiology 75: 213–229.
  • Mounier, J., C. Monnet, N. Jacques, A. Antoinette, and F. Irlinger. 2009. Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. International Journal of Food Microbiology 133: 31–37.
  • Mozzi, F., M. Eugenia Ortiz, J. Bleckwedel, L. de Vuyst, and P. Micaela. 2013. Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International 54: 1152–1161.
  • Muthukumarasamy, P., and R. A. Holley. 2006. Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology 111: 164–169.
  • Nagai, T. 2015. Health benefits of Natto. In: Health benefits of fermented foods, ed. J. P. Tamang, 433–453. New York, NY: CRC Press.
  • Nagai, T., and J. P. Tamang. 2010. Fermented soybeans and non-soybeans legume foods. In: Fermented foods and beverages of the world, eds. J. P. Tamang and K. Kailasapathy, 191–224. New York, NY: CRC Press.
  • Narzary, Y., J. Brahma, C. Brahma, and S. Das. 2016. A study on indigenous fermented foods and beverages of Kokrajhar, Assam, India. Journal of Ethnic Foods 3: 284–291.
  • Nguyen, D. T. L., K. Van Hoorde, M. Cnockaert, E. D. De Brandt, M. Aerts, L. Binh Thanh, and P. Vandamme. 2013. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. International Journal of Food Microbiology 163: 19–27.
  • Nguyen, H. T., F. B. Elegado, N. T. Librojo-Basilio, R. C. Mabesa, and E. I. Dozon. 2011. Isolation and characterisation of selected lactic acid bacteria for improved processing of Nem chua, a traditional fermented meat from Vietnam. Beneficial Microbes Journal 1: 67–74.
  • Nikolic, M., A. Terzic-Vidojevic, B. Jovcic, J. Begovic, N. Golic, and L. Topisirovic. 2008. Characterization of lactic acid bacteria isolated from Bukuljac, a homemade goat's milk cheese. International Journal of Food Microbiology 122: 162–170.
  • Nout, M. J. R. 1994. Fermented foods and food safety. Food Research International 27: 291–298.
  • Nout, M. J. R. and K. E. Aidoo. 2002. Asian fungal fermented food. In: The mycota, ed. H. D. Osiewacz, 23–47. New York, NY: Springer-Verlag.
  • Oguntoyinbo, F. A. and C. E. R. Dodd. 2010. Bacterial dynamics during the spontaneous fermentation of cassava dough in gari production. Food Control 21: 306–312.
  • Oki, K., A. K. Rai, S. Sato, K. Watanabe, and J. P. Tamang. 2011. Lactic acid bacteria isolated from ethnic preserved meat products of the Western Himalayas. Food Microbiology 28: 1308–1315.
  • Omemu, A. M., O. B. Oyewole, and M. O. Bankole. 2007. Significance of yeasts in the fermentation of maize for ogi production. Food Microbiology 246: 571–576.
  • Ong, Y. Y., W. S. Tan, M. Rosfarizan, E. S. Chan, and B. T. Tey. 2012. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices. Journal of Food Science 77: M560–M564.
  • Panagou, E. Z., U. Schillinger, C. M. A. P. Franz, and G. J. E. Nychas. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olive during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiology 25: 348–358.
  • Paramithiotis, S., O. L. Hondrodimou, and E. H. Drosinos. 2010. Development of the microbial community during spontaneous cauliflower fermentation. Food Research International 43: 1098–1103.
  • Park, E. J., J. Chun, C. J. Cha, W. S. Park, C. O. Jeon, and J. W. Bae. 2012. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiology 30: 197–204.
  • Pepe, O., G. Blaiotta, M. Anastasio, G. Moschetti, D. Ercolini, and F. Villani. 2004. Technological and molecular diversity of Lactobacillus plantarum strains isolated from naturally fermented sourdoughs. Systematic and Applied Microbiology 27: 443–453.
  • Pereira, A. L. F., W. S. C. Feitosa, V. K. G. Abreu, T. de O. Lemos, W. F. Gomes, N. Narain, and S. Rodrigues. 2017. Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Research International 100: 603–611.
  • Persistence Market Research (2017). Global Fermented Ingredients Market Worth US$40 Billion by 2022. Available online at: https://www.prnewswire.com/news-releases/global-fermented-ingredients-market-worth-us-40-billion-by-2022—persistence-market-research-643700373.html
  • Pulido, R. P., N. Ben Omar, H. Abriouel, R. L. Lopez, M. M. Canamero, and A. Galvez. 2005. Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods. Applied and Environmental Microbiology 71: 7872–7879.
  • Pulvirenti, A., C. Caggia, C. Restuccia, M. Gullo, and P. Giudici. 2001. DNA fingerprinting methods used for identification of yeasts isolated from Sicilian sourdoughs. Annals of Microbiology 51: 107–120.
  • Pulvirenti, A., L. Solieri, M. Gullo, L. De Vero, and P. Giudici. 2004. Occurrence and dominance of yeast species in sourdough. Letters in Applied Microbiology 38: 113–117.
  • Quevedo, F. 1997. Food safety and fermented foods in selected Latin American countries. Food Control 8: 299–302.
  • Quigley, L., O. O'Sullivan, T. P. Beresford, R. P. Ross, G. F. Fitzgerald, and P. D. Cotter. 2012. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Applied and Environmental Microbiology 78: 5717–5723.
  • Rademaker, J. L.W., M. Peinhopf, L. Rijnen, W. Bockelmann, and W. H. Noordman. 2005. The surface microflora dynamics of bacterial smear-ripened Tilsit cheese determined by T-RFLP DNA population fingerprint analysis. International Dairy Journal 15: 785–794.
  • Rai, A. K., U. Palni, and J. P. Tamang. 2009. Traditional knowledge of the Himalayan people on production of indigenous meat products. Indian Journal of Traditional Knowledge, 8: 104–109.
  • Rai, A. K., U. Palni, and J. P. Tamang. 2010. Microbiological studies of ethnic meat products of the Eastern Himalayas. Meat Science 85: 560–567.
  • Rainieri, S., Y. Kodama, Y. Kaneko, K. Mikata, Y. Nakao, and T. Ashìkari. 2006. Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Applied and Environmental Microbiology 72: 3968–3974.
  • Randazzo, C. L., E. E. Vaughan, and C. Caggia. 2006. Artisanal and experimental Pecorino Siciliano cheese: Microbial dynamics during manufacture assessed by culturing and PCR-DGGE analyses. International Journal of Food Microbiology 109: 1–8.
  • Randazzo, C. L., H. Heilig, C. Restuccia, P. Giudici, and C. Caggia. 2005. Bacterial population in traditional sourdough evaluated by molecular methods. Journal of Applied Microbiology 99: 251–258.
  • Ray, R. C. and V. K. Joshi. 2014. Fermented foods: past, present and future. In: Microorganisms and Fermentation of Traditional Foods, Food Biology Series, eds. Ray, R. C. and Montet, D., 1–36. Boca Raton, FL: Science Publishers Inc., CRC Press.
  • Ray, R. C. and P. S. Sivakumar. 2009. Traditional and novel fermented foods and beverages from tropical root and tuber crops: Review. International Journal of Food Science & Technology 44: 1073–1087.
  • Ray, R. C., A. F. El Sheikha, and S. Kumar. 2014. Oriental fermented functional (probiotic) foods. In: Microorganisms and fermentation of traditional foods. Food Biology Series, eds. R.C. Ray, and D. Montet, 283–311. Boca Raton, FL: Science Publishers Inc., CRC Press.
  • Reddy, N. R., and D. K. Salunkhe. 1980. Effect of fermentation on phytate phosphorus, and mineral content in black gram, rice, and black gram and rice blends. Journal of Food Science 45: 1708–1712.
  • Renouf, V., C. Miot-Sertier, P. Strehaiano, and A. Lonvaud. 2006. The wine microbial consortium: A real terroir characteristic. Journal International des Sciences de la Vigne et du Vin 40: 209–221.
  • Renouf, V., P. Strehaiano, and A. Lonvaud-Funel. 2007. Yeast and bacteria analysis of grape, wine and cellar equipments by PCR-DGGE. Journal International des Sciences de la Vigne et du Vin 41: 51–61.
  • Robert, H., V., Gabriel, and C. Fontagné-Faucher. 2009. Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. International Journal of Food Microbiology. 135: 53–59.
  • Roy, B., C. Prakash Kala, N. A. Farooquee, and B. S. Majila. 2004. Indigenous fermented food and beverages: A potential for economic development of the high altitude societies in Uttaranchal. Journal of Human Ecology 15: 45–49.
  • Rychlik, T., A. Szwengiel, M. Bednarek, E. Arcuri, D. Montet, B. Mayo, J. Nowaka and Z. Czarnecki. (2017). Application of the PCR-DGGE technique to the fungal community of traditional Wielkopolska fried ripened curd cheese to determine its PGI authenticity. Food Control 73: 1074–1081.
  • Sahu, L., S. K. Panda, and S. Paramithiotis. 2016. Biogenic amines in fermented foods: Overview. In: Fermented foods, Part I: Biochemistry and biotechnology, Food Biology Series, eds. D. Montet and R.C. Ray, 318–332. Boca Raton, FL: Science Publishers Inc., CRC Press.
  • Saithong, P., W. Panthavee, M. Boonyaratanakornkit, and C. Sikkhamondhol. 2010. Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. Journal of Bioscience and Bioengineering 110: 553–557.
  • Sakamoto, N., S. Tanaka, K. Sonomoto, and J. Nakayama. 2011. 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. International Journal of Food Microbiology 144: 352–359.
  • Salmerón, I., T. Keith, and S. S. Pandiella, 2015. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. Journal of Functional Foods 15: 106–115.
  • Salminen, S., A. V. Wright, and A. Ouwehand. 2004. Lactic acid bacteria microbiology and functional aspects, 3rd ed. New York: Marcel Dekker.
  • Sankaran, R. 1998. Fermented foods of Indian subcontinent. In: Microbiology of fermented foods, Vol. 2, ed. B. J. B. Wood, 753–789. London, UK: Blackie academic and Professional.
  • Şanlier, N., B. B. Gökcen, and A. C. Sezgin, 2017. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition doi:10.1080/10408398.2017.1383355.
  • Saravanos, E., D. Kagli, G. Zoumpopoulou, E. Z. Panagou, and C. C. Tassou. 2008. Use of probiotic lactic acid bacteria as starter cultures in Spanish style green olive fermentation and determination of their survival using PFGE. Proceedings of the 21st International ICFMH Symposium, 1–4 September, Aberdeen, UK, pp. 188.
  • Sarkar, P. K., E. Morrison, U. Tingii, S. M. Somerset, and G. S. Craven. 1998. B-group vitamin and mineral contents of soybeans during kinema production. Journal of the Science of Food and Agriculture 78: 498–502.
  • Savadogo, A., A. Tapi, M. Chollet, B. Wathelet, A. S. Traoré, and P. Jacques. 2011. Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using Polymerase Chain Reaction and Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry methods. International Journal of Food Microbiology. 151: 299–306.
  • Shah, N. P., A. G. da Cruz, and J. D. A. F. Faria. 2013. Probiotics and probiotic foods: Technology, stability and benefits to human health. New York: Nova Science Publishers.
  • Shin, D. H., and D. Jeong. 2015. Korean traditional fermented soybean products: Jang. Journal of Ethnic Food 2: 2–7.
  • Shin, S. K., J. H. Kwon, M. Jeon, J. Choi, and M. S. Choi. 2011. Supplementation of Cheonggukjang and Red Ginseng Cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. Journal of Medicinal Food 14: 108–113.
  • Sieuwerts, S., F. A. De Bok, J. Hugenholtz, and J. E. Van Hylckama Vlieg. 2008. Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Applied and Environmental Microbiology 74: 4997–5007.
  • Spano, G., P. Russo, A. Lonvaud-Funel, P. Lucas, H. Alexandre, C. Grandvalet, E. Coton, M. Coton, L. Barnavon, B. Bach, et al. 2010. Biogenic amine in fermented foods. European Journal of Clinical Nutrition 64: 95–100.
  • Sripriya, G., U. Antony, and T. S. Chandra. 1997. Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chemistry 58: 345–350.
  • Stahl, M. and G. Molin. 1994. Classification of Lactobacillus reuteri by restriction endonuclease analysis of chromosomal DNA. International Journal of Systematic and Evolutionary Microbiology 44: 9–14.
  • Steinkraus K. H. 1998. Bio-enrichment: production of vitamins in fermented foods. In: Microbiology of fermented foods, ed. B. J. B. Wood, 603–621. Boston, MA: Springer.
  • Steinkraus, K. H. 1996. Handbook of indigenous fermented food, 2nd ed. New York, NY: Marcel Dekker, Inc.
  • Stiles, M. E. and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology 36: 1–29.
  • Sue, T., V. Obolonkin, H. Griffiths, and S. G. Villas-Bôas. 2011. An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Applied and Environmental Microbiology 77: 7605–7610.
  • Sulistiani, A., E. Sukara, A. Salamah, A. Dinoto, and W. Mangunwardoyo. 2014. Identification of lactic acid bacteria in Sayur asin from Central Java (Indonesia) based on 16S rDNA sequence. International Food Research Journal 21: 527–532.
  • Suzzi, G., and F. Gardini. 2003. Biogenic amines in dry fermented sausages: A review. International Journal of Food Microbiology 88: 41–54.
  • Tamang J. P. 2010a. Benefits of traditional fermented foods. Our World, United Nations University, Development & Society: Food Security, Traditional Knowledge, Health. Available online at: https://ourworld.unu.edu/en/benefits-of-traditional-fermented-foods
  • Tamang, J. P. 2010b. Diversity of fermented beverages. In: Fermented foods and beverages of the world, eds. J. P. Tamang, and K. Kailasapathy, 85–125. New York, NY: CRC Press, Taylor and Francis Group.
  • Tamang J. P. 2010c. Diversity of fermented foods. In: Fermented foods and beverages of the world, eds. J. P. Tamang, and K. Kailasapathy, 41–84. New York, NY: CRC Press, Taylor and Francis Group.
  • Tamang J. P. 2010d. Himalayan fermented foods: Microbiology, nutrition, and ethnic values. CRC Press, Taylor and Francis Group, New York, USA.
  • Tamang, B., J. P. Tamang, U. Schillinger, C. M. A. P. Franz, M. Gores, and W. H. Holzapfel. 2008. Phenotypic and genotypic identification of lactic acid bacteria isolated from ethnic fermented tender bamboo shoots of North East India. International Journal of Food Microbiology 121: 35–40.
  • Tamang, J. P. 2015. Naturally fermented ethnic soybean foods of India. Journal of Ethnic Foods 2: 8–17.
  • Tamang, J. P. and G. H. Fleet. 2009. Yeasts diversity in fermented foods and beverages. In: Yeasts biotechnology: Diversity and applications, eds. T. Satyanarayana, and G. Kunze, 169–198. New York, NY: Springer.
  • Tamang, J. P., and K. Kailasapathy. 2010. Fermented foods and beverages of the world. FL, USA: CRC press.
  • Tamang, J. P., D. -H. Shin, S. -J. Jung, and S. -W. Chae. 2016. Functional properties of microorganisms in fermented foods. Frontiers in Microbiology 7: Article ID 578, p. 13. doi:10.3389/fmicb.2016.00578.
  • Tamang, J. P., B. Tamang, U. Schillinger, C. M. A. P. Franz, M. Gores, and W. H. Holzapfel. 2005. Identification of predominant lactic acid bacteria isolated from traditional fermented vegetable products of the Eastern Himalayas. International Journal of Food Microbiology. 105: 347–356.
  • Tamang, J. P., N. Thapa, B. Tamang, A. Rai, and R. Chettri. 2015. Microorganisms in fermented foods and beverages. In: Health benefits of fermented foods, ed. J. P. Tamang, 1–110. New York, NY: CRC Press, Taylor and Francis Group.
  • Thapa N. 2016. Ethnic fermented and preserved fish products of India and Nepal. J. Ethnic Foods 3: 69–77.
  • Thapa, N., and J. P. Tamang. 2015. Functionality and therapeutic values of fermented foods. In: Health benefits of fermented foods, ed. J. P. Tamang, 111–168 New York, NY: CRC Press.
  • Thapa, N., Pal, J. and J. P. Tamang. 2004. Microbial diversity in ngari, hentak and tungtap, fermented fish products of North-East India. World Journal of Microbiology and Biotechnology 20: 599–607.
  • Thapa, N., J. Pal, and J. P. Tamang. 2007. Microbiological profile of dried fish products of Assam. Indian Journal of Fisheries 54:121–125.
  • Toldrá, F. 2007. Handbook of fermented meat and poultry. Oxford, UK: Blackwell Publishing.
  • Tolhurst, G., H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib, E. Diakogiannaki, J. Cameron, J. Grosse, F. Reimann, and F.M. Gribble. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein-coupled receptor FFAR2. Diabetes/Metabolism Research and Reviews 61: 364–371.
  • Torriani, S., G. E. Felis, and F. Dellaglio. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Applied and Environmental Microbiology 67: 3450–3454.
  • Tou, E. H., C. Mouquet-River, I. Rochette, A. S. Traoré, S. Treche, and J. P. Guyot. 2007. Effect of different process combinations on the fermentation kinetics, microflora and energy density of ben-saalga, a fermented gruel from Burkina Faso. Food Chemistry 100: 935–943.
  • Turbic, A., J. T. Ahokas, and C. A. Haskard. 2002. Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Additives & Contaminants 19: 144–152.
  • Urso, R., G. Comi, and L. Cocolin. 2006. Ecology of lactic acid bacteria in Italian fermented sausages: Isolation, identification and molecular characterization. Systematic and Applied Microbiology 29: 671–680.
  • Urso, R., K. Rantsiou, P. Dolci, L. Rolle, G. Comi, and L. Cocolin. 2008. Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods. FEMS Yeast Research 8: 1053–1062.
  • van Hijum, S. A., E. E. Vaughan, and R. F. Vogel. 2013. Application of state-of-art sequencing technologies to indigenous food fermentations. Current Opinion in Biotechnology 24: 178–186.
  • Varga, J., Z. Péteri, K. Tábori, J. Téren, and C. Vágvölgyi. 2005. Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates. International Journal of Food Microbiology. 99: 321–328.
  • Vieira, C. P., M. Pereira da Costa, V. L. M. Silva, B. S. Frasao, L. F. M. Campos de Aquino, Y. E. C. O. Nunes, and C. A. Conte-Junior. 2017. Development and validation of RP-HPLC-DAD method for biogenic amines determination in probiotic yogurts. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2017.12.010 (In press)
  • Viiard, E., M. Bessmeltseva, J. Simm, T. Talve, A. Aaspõllu, T. Toomas Paalme, and I. Sarand. 2016. Diversity and stability of lactic acid bacteria in rye sourdoughs of four bakeries with different propagation parameters. PLoS One 11: e0148325.
  • Villas-Bôas S. G., J. F. Moxley, M. Åkesson, G. Stephanopoulos, and J. Nielsen. 2005. High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochemical Journal 388: 669–677.
  • Villas-Bôas S. G., K. F. Smart, S. Sivakumaran, and G. A. Lane. 2011. Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1: 3–20.
  • Villas-Bôas, S. G., S. Noel, G. A. Lane, G. Attwood, and A. Cookson. 2006. Extracellular metabolomics: A metabolic footprinting approach to assess fiber degradation in complex media. Analytical Biochemistry 349: 297–305.
  • Visciano, P., N. Schirone, R. Tofalo, and G. Suzzi. 2014. Histamine poisoning and control measures in fish and fishery products. Frontiers in Microbiology5: 500. doi: 10.3389/fmicb.2014.00500.
  • Vogel, R. F. and M. A. Ehrmann. 2008. Sourdough fermentations. In: Molecular techniques in the microbial ecology of fermented foods, eds. L. Cocolin, and D. Ercolini, 119–144. Heidelberg, Germany: Springer.
  • Vogel, R. F., R. Knorr, M. R. A. Müller, U. Steudel, M. G. Gänzle, and M. A. Ehrmann. 1999. Non-dairy lactic fermentations: The cereal world. Antonie Van Leeuwenhoek 76: 403–411.
  • Vogel, R. F., M. Pavlovic, M. A. Ehrmann, A. Wiezer, H. Liesegang, S. Offschanka, S. Voget, A. Angelov, G. Böcker, and W. Liebl. 2011. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microbial Cell Factories 10 (Suppl. 1) S6.
  • Vogelmann, S. A. and C. Hertel. 2011. Impact of ecological factors on the stability of microbial associations in sourdough fermentation. Food Microbiology 28: 583–589.
  • Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in airag and tarag, traditional fermented milk products from Mongolia. World Journal of Microbiology and Biotechnology 24: 1313–1325.
  • Watanabe, K., J. Fujimoto, Y. Tomii, M. Sasamoto, H. Makino, Y. Kudo, and S. Okada. 2009. Lactobacillus kisonensis sp. nov., Lactobacillus otakiensis sp. nov., Lactobacillus rapi sp. nov. and Lactobacillus sunkii sp. nov., heterofermentative species isolated from sunki, a traditional Japanese pickle. International Journal of Systematic and Evolutionary Microbiology59: 754–60.
  • Wouters, J. T. M., E. H. E. Ayad, J. Hugenholtz, and G. Smit. 2002. Microbes from raw milk for fermented dairy products. International Dairy Journal 12: 91–109.
  • Yanagisawa, Y., and H. Sumi. 2005. Natto bacillus contains a large amount of water-soluble vitamin K (menaquinone-7). Journal of Food Biochemistry 29: 267–277.
  • Yigzaw, Y., L. Gorton, T. Solomon, and G. Akalu. 2004. Fermentation of seeds of Teff (Eragrostis teff), grasspea (Lathyrus sativus), and their mixtures: aspects of nutrition and food safety. Journal of Agricultural and Food Chemistry 52: 1163–1169.
  • Zakhia, N. and J. L. Cuq. 1993. General survey on the quality of dried and commercialized tilapia in Mali. Proc. FAO Expert Consultation on Fish Technology in Africa. ACCRA. Ghanna. No. 467(Suppl.), 86–92.
  • Zulu, R. M., V. M. Dillon, and J. D. Owens. 1997. Munkoyo beverage, a traditional Zambian fermented maize gruel using Rhynchosia root as amylase source. International Journal of Food Microbiology 34: 249–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.