2,788
Views
67
CrossRef citations to date
0
Altmetric
Reviews

Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments

, , , &

References

  • Acar-Soykut, E., E. K. Tayyarcan, and I. H. Boyaci. 2017. A simple and fast method for discrimination of phage and antibiotic contaminants in raw milk by using raman spectroscopy. Journal of Food Science & Technology 55(2):1–8.
  • Alexandre, D. L., Melo, A. M. A., Furtado, R. F., Borges, M. F., Figueiredo, E. A. T., Biswas, A., Cheng, H. N., and Alves, C. R. 2018. A rapid and specific biosensor for Salmonella typhimurium detection in milk. Food and Bioprocess Technology 11(4): 748–56.
  • Álvarez, J. G., Alonso, J. J. M., Llorente, D. D., Velasco, C. B., Álvarez, M. D. G., Abrodo, P. A., and Gomis, D. B. 2013. Multivariate characterization of milk fat fractions by gas chromatography. Food and Bioprocess Technology 6(10): 2651–8.
  • de Almeida, M. R., K. de Sá Oliveira, R. Stephani, and L. F. Cappa de Oliveira. 2012. Application of FT-Raman Spectroscopy and chemometric analysis for determination of adulteration in milk powder. Analytical Letters 45(17):2589–602.
  • Alves, R., Paiva, I. M., V. Anjos, M. A. Furtado, and M. J. Bell. 2015. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network. Journal of Dairy Science 98(6):3559–67.
  • Andreou, C., R. Mirsafavi, M. Moskovits, and C. D. Meinhart. 2015. Detection of low concentrations of ampicillin in milk. The Analyst 140(15):5003–5.
  • Anna, P., V. Antonio, S. Andrea, M. Vincenzo Manuel, S. Maria, and D. A. Sabato. 2016. A novel fluorescence polarization assay for determination of penicillin G in milk. Food Chemistry 190(16):381–5.
  • Asao, T., Y. Kumeda, T. Kawai, T. Shibata, H. Oda, K. Haruki, H. Nakazawa, and S. Kozaki. 2003. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin a in the incriminated milk and powdered skim milk. Epidemiology and Infection 130(1):33–40.
  • Avci, E., and M. Culha. 2013. Influence of droplet drying configuration on surface-enhanced Raman scattering performance. RSC Advances 3(39):17829–36.
  • Balaban, N., and A. Rasooly. 2000. Review: Staphylococcal enterotoxins. International Journal of Food Microbiology 61(1):1–10.
  • Bauchart, D., A. Roy, S. Lorenz, J. M. Chardigny, A. Ferlay, D. Gruffat, J. L. Sébédio, Y. Chilliard, and D. Durand. 2007. Butters varying in -9,trans-11 conjugated linoleic acid modify plasma lipoproteins in the hypercholesterolemic rabbit. Lipids 42(2):123–33.
  • Becker, M., C. Budich, V. Deckert, and D. Janasek. 2009. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device. The Analyst 134(1):38–40.
  • Bell, S. E., and N. M. Sirimuthu. 2008. Quantitative surface-enhanced Raman spectroscopy. Chemical Society Reviews 37(5):1012–24.
  • Bernuy, B., M. Meurens, E. Mignolet, and Y. Larondelle. 2008. Performance comparison of UV and FT-Raman Spectroscopy in the determination of conjugated linoleic acids in cow milk fat. Journal of Agricultural and Food Chemistry 56(4):1159–63.
  • Boubellouta, T., and Dufour, É. 2012. Cheese-matrix characteristics during heating and cheese melting temperature prediction by synchronous fluorescence and mid-infrared spectroscopies. Food and Bioprocess Technology 5(1): 273–84.
  • Boyaci, I. H., H. T. Temiz, H. E. Geniş, E. Acar Soykut, N. N. Yazgan, B. Güven, R. S. Uysal, A. G. Bozkurt, K. İlaslan, O. Torun, and F. C. Dudak Şeker. 2015. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Advances 5(70):56606–24.
  • Buyser, M. L. D., Dufour, B. Maire, M. Lafarge. V. 2001. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. International Journal of Food Microbiology 67(1–2):1–17.
  • Chen, L., N. Mungroo, L. Daikuara, and S. Neethirajan. 2015. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. Journal of Nanobiotechnology 13(1):1–9.
  • Chen, L. M., and Y. N. Liu. 2012. Ag‐nanoparticle‐modified single Ag nanowire for detection of melamine by surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 43(8):986–91.
  • Chen, Y., X. Li, Y. Ming, L. Yang, X. Han, J. Xin, and Z. Bing. 2017. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering. Talanta 167:236.
  • Cheng, J.-H., B. Nicolai, and D.-W. Sun. 2017. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Science 123:182–191.
  • Cheng, J.-H., and D.-W. Sun. 2017. Partial Least Squares Regression (PLSR) Applied to NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish Muscle. Food Engineering Reviews 9:36–49.
  • Cheng, W., D.-W. Sun, H. Pu, and Q. Wei. 2017. Chemical spoilage extent traceability of two kinds of processed pork meats using one multispectral system developed by hyperspectral imaging combined with effective variable selection methods. Food Chemistry 221:1989–96.
  • Cheng, W., D.-W. Sun, H. Pu, and Y. Liu. 2016. Integration of spectral and textural data for enhancing hyperspectral prediction of K value in pork meat. LWT-Food Science and Technology 72:322–29.
  • Cheng, W., D.-W. Sun, H. Pu, and Q. Wei. 2018. Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm. Food Chemistry 239:1001–08.
  • Cheng, W., D.-W. Sun, H. Pu, and Q. Wei. 2018. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chemistry 248:119–27.
  • Cheng, J.-H., D.-W. Sun, J.-H. Qu, H.-B. Pu, X.-C. Zhang, Z. Song, X. Chen, and H. Zhang. 2016. Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. Journal of Food Engineering 182:9–17.
  • Chisanga, M., H. Muhamadali, R. Kimber, and R. Goodacre. 2017. Quantitative detection of isotopically enriched E. coli cells by SERS. Faraday Discussions 205:331–43.
  • Clarke, S. J., R. E. Littleford, W. E. Smith, and R. Goodacre. 2005. Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. The Analyst 130(7):1019.
  • Lord, R. C. 1990. Introduction to infrared and Raman spectroscopy. Journal of the American Chemical Society 87(5): 1155–56.
  • Coppa, M., A. Revello-Chion, D. Giaccone, A. Ferlay, E. Tabacco, and G. Borreani. 2014. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Food Chemistry 150(5):49.
  • Czaja, T., M. Baranowska, S. Mazurek, and R. Szostak. 2018. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 196:413–7.
  • Dai, Q., J.-H. Cheng, D.-W. Sun, Z. Zhu, and H. Pu. 2016. Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis). Food Chemistry 197:257–65.
  • Dhakal, S., K. Chao, J. Qin, M. Kim, and D. Chan. 2016. Raman spectral imaging for quantitative contaminant evaluation in skim milk powder. Journal of Food Measurement and Characterization 10(2):374–86.
  • Dhakal, S., K. Chao, Q. Huang, M. Kim, W. Schmidt, J. Qin, and C. L. Broadhurst. 2018. A simple surface-enhanced Raman spectroscopic method for on-site screening of tetracycline residue in whole milk. Sensors 18(2):424.
  • Dijkstra, R. J., F. Ariese, C. Gooijer, and U. A. Brinkman. 2005. Raman spectroscopy as a detection method for liquid-separation techniques. Trends in Analytical Chemistry 24(4):304–23.
  • Dong, A., S. J. Lan, Huang, T. Wang, T. Zhao, L. Xiao, W. Wang, X. Zheng, F. Liu, G. Gao, and Y. Chen. 2011. Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties. Acs Applied Materials & Interfaces 3(11):4228–35.
  • Drevets, D. A., and M. S. Bronze. 2008. Listeria monocytogenes: Epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunology & Medical Microbiology 53(2):151–65.
  • Durso, L. M., and K. L. Cook. 2014. Impacts of antibiotic use in agriculture: What are the benefits and risks? ⋆. Current Opinion in Microbiology 19(1):37–44.
  • El-Abassy, R. M., P. J. Eravuchira, P. Donfack, B. V. Kammer, and A. Materny. 2011. Fast determination of milk fat content using Raman spectroscopy. Vibrational Spectroscopy 56(1):3–8.
  • Finley, D. A. 1995. Handbook of milk composition. Food Science & Technology International 6(11):1223–4.
  • Feng, C-H., L. Drummond, Z.-H. Zhang, and D.-W. Sun. 2014. Evaluation of innovative immersion vacuum cooling with different pressure reduction rates and agitation for cooked sausages stuffed in natural or artificial casing. LWT-Food Science and Technology 59:L77–L85.
  • Li, M., J. Chen, J. Xu, S. Fu, and H. Gong. 2015. Determination of lactose in milk by Raman spectroscopy. Analytical Letters 48(8):1333–40.
  • Gilmour, A., and J. Harvey. 1990. Staphylococci in milk and milk products. Society for Applied Bacteriology Symposium Series 19(S19):147S.
  • Hadizadeh, F., M. M. Hassanpour, and S. A. Mohajeri. 2013. Application of molecularly imprinted hydrogel for the preparation of lactose-free milk. Journal of the Science of Food and Agriculture 93(2):304–9.
  • Halasa, T., K. Huijps, O. Østerås, and H. Hogeveen. 2007. Economic effects of bovine mastitis and mastitis management: A review. Veterinary Quarterly 29(1):18–31.
  • Han, C., Y. Li, Q. Jia, L. H. Bradley, Y. Gan, Y. Yao, L. Qu, H. Li, and Y. Zhao. 2017. On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk. Microchimica Acta 184(8):2909–17.
  • Han, X. X., B. Zhao, and Y. Ozaki. 2009. Surface-enhanced Raman scattering for protein detection. Analytical and Bioanalytical Chemistry 394(7):1719–27.
  • He, L., J. Zheng, T. P. Labuza, and H. Xiao. 2013. A surface enhanced Raman spectroscopic study of interactions between casein and polymethoxyflavones. Journal of Raman Spectroscopy 44(4):531–5.
  • He, L., T. Rodda, C. L. Haynes, T. Deschaines, T. Strother, F. Diez-Gonzalez, and T. P. Labuza. 2011. Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Analytical Chemistry 83(5):1510–3.
  • Huang, M., M. S. Kim, K. Chao, J. Qin, C. Mo, C. Esquerre, S. Delwiche, and Q. Zhu. 2016. Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder. Sensors (Basel, Switzerland) 16(4):441.
  • Huang, Y., J. Gu, G. Xiang, J. Xu, S. Fu, and H. Gong. 2016. Detection of total protein in milk using phosphomolybdic acid‐mediated surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 47(3):277–82.
  • Jaiswal, P., S. N. Jha, A. Borah, A. Gautam, M. K. Grewal, and G. Jindal. 2015. Detection and quantification of soymilk in cow-buffalo milk using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Food Chemistry 168(1):41–7.
  • Jarvis, R. M., and R. Goodacre. 2008. Characterisation and identification of bacteria using SERS. Chemical Society Reviews 37(5):931–6.
  • Jarvis, R. M., and R. Goodacre. 2004. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiology Letters 232(2):127–32.
  • Jarvis, R. M., A. Brooker, and R. Goodacre. 2006. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discussions 132:281.
  • Jha, S. N., Jaiswal, P., Borah, A., Gautam, A. K., and Srivastava, N. 2015. Detection and quantification of urea in milk using attenuated total reflectance-fourier transform infrared spectroscopy. Food and Bioprocess Technology 8(4): 926–33.
  • Jiang, Y., D.-W. Sun, H. Pu, and Q. Wei. 2018. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends in Food Science & Technology 75:10–22.
  • Silveira, L., E. D. C. M. Motta, R. A. Zângaro, M. T. T. Pacheco, C. J. de Lima, and L. H. Moreira. 2016. Characterization of nutritional parameters in bovine milk by Raman spectroscopy with least squares modeling. Instrumentation Science & Technology 44(1):85–97.
  • Kang, Y., M. Si, Y. Zhu, L. Miao, and G. Xu. 2013. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 108(5):177–80.
  • Kaufmann, T. B., S. Westermann, M. Drillich, J. Plöntzke, and W. Heuwieser. 2010. Systemic antibiotic treatment of clinical endometritis in dairy cows with ceftiofur or two doses of cloprostenol in a 14-d interval. Animal Reproduction Science 121(1–2):55.
  • Khan, K. M., H. Krishna, S. K. Majumder, and P. K. Gupta. 2015. Detection of urea adulteration in milk using near-infrared Raman spectroscopy. Food Analytical Methods 8(1):93–102.
  • Kiani, H., D.-W. Sun, and Z. Zhang. 2012. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere. Ultrasonics Sonochemistry 19:1238–45.
  • Kim, A., S. J. Barcelo, R. S. Williams, Z. Li, and A. Chem. 2012. Melamine sensing in milk products by using surface enhanced Raman scattering. Analytical Chemistry 84(21):9303–9.
  • Kukusamude, C., A. Santalad, S. Boonchiangma, R. Burakham, S. Srijaranai, and O. Chailapakul. 2010. Mixed micelle-cloud point extraction for the analysis of penicillin residues in bovine milk by high performance liquid chromatography. Talanta 81(1–2):486–92.
  • Lechevalier, H. A. 1975. The 25 years of neomycin. CRC Critical Reviews in Microbiology 3(4):359.
  • Li, D., Z. Zhu, and D.-W. Sun. 2018. Effects of freezing on cell structure of fresh cellular food materials: A review. Trends in Food Science & Technology 75:46–55.
  • Li-Guo, Z., Z. Xin, N. Li-Jun, X. Zhi-Bin, G. Xin, and H. Shi-Xin. 2014. Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy. Food Chemistry 145(4):342–8.
  • Li, H., Q. Chen, H. M. Mehedi, X. Chen, Q. Ouyang, Z. Guo, and J. Zhao. 2017. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification. Biosensors & Bioelectronics 92:192–9.
  • Li, J.-L., D.-W. Sun, H. Pu, and D. S. Jayas. 2017. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chemistry 218:543-52.
  • Li, R., H. Zhang, Q. W. Chen, N. Yan, and H. Wang. 2011. Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline. The Analyst 136(12):2527.
  • Li, R., G. Yang, J. Yang, J. Han, J. Liu, and M. Huang. 2016. Determination of melamine in milk using surface plasma effect of aggregated Au@SiO2 nanoparticles by SERS technique. Food Control 68:14–9.
  • Lin, X., W. L. Hasi, J. Lou, X. T. Han, S. Q. G. W. Lin, D. Y. Z. W. Lu. 2015. Direct and quantitative detection of dicyandiamide (DCD) in milk using surface-enhanced Raman spectroscopy. Analytical Methods 7(9):3869–75.
  • Lin, X., W. L. Hasi, X. T. Lou, S. Lin, F. Yang, B. S. Jia, D. Y. Lin, and Z. W. Lu 2014. Droplet detection: Simplification and optimization of detecting conditions towards high sensitivity quantitative determination of melamine in milk without any pretreatment. RSC Advances 4(93):51315–20.
  • Lirio, S., W. L. Liu, C. L. Lin, C. H. Lin, and H. Y. Huang. 2016. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. Journal of Chromatography A 1428:236–45.
  • Liu, Y., H. Pu, and D.-W. Sun. 2017. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends in Food Science & Technology 69:25–35.
  • Liu, Y., D.-W. Sun, J.-H. Cheng, and Z. Han. 2018. Hyperspectral Imaging Sensing of Changes in Moisture Content and Color of Beef During Microwave Heating Process. Food Analytical Methods 11:2472–84.
  • Lohumi, S., M. S. Kim, J. Qin, and B. K. Cho. 2017. Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials. Trends in Analytical Chemistry 93:183–98.
  • López-Díez, E. C., and R. Goodacre. 2004. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry 76(3):585–91.
  • Lu, X., H. M. Alqadiri, M. Lin, B. A. Rasco, X. Lu, H. M. Alqadiri, M. Lin, and B. A. Rasco. 2011. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology 4(6):919–35.
  • Luca, A. C. D., K. Dholakia, and M. Mazilu. 2015. Modulated Raman spectroscopy for enhanced cancer diagnosis at the cellular level. Sensors 15(6):13680–704.
  • Luo, W., D.-W. Sun, Z. Zhu, and Q.-J. Wang. 2018. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality - A review of effective methods. Trends in Food Science & Technology 72:25–33.
  • Ma, J., D.-W. Sun, and H. Pu. 2017. Model improvement for predicting moisture content (MC) in pork longissimus dorsi muscles under diverse processing conditions. by hyperspectral imaging. Journal of Food Engineering 196:65–72.
  • Ma, Ji, D.-W. Sun, J.-H. Qu, and H. Pu. 2017. Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT-Food Science and Technology 82:377–385.
  • Ma, Ji, D.-W. Sun, J.-H. Qu, and H. Pu. 2017. Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT-Food Science and Technology 82:377–385.
  • Ma, Ji., H. Pu, and D.-W. Sun. 2018. Predicting intramuscular fat content variations in boiled pork muscles by hyperspectral imaging using a novel spectral pre-processing technique. LWT-Food Science And Technology 94:119–128.
  • Ma, P., F. Liang, Y. Sun, Y. Jin, Y. Chen, X. Wang, H. Zhang, D. Gao, and D. Song. 2013. Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchimica Acta 180(11–12):1173–80.
  • Manzi, P., and Pizzoferrato, L. 2013. HPLC determination of lactulose in heat treated milk. Food and Bioprocess Technology 6(3): 851–7.
  • El-Abassy, R. M., P. J. Eravuchira, P. Donfack, B. Von Der Kammer, and A. Materny. 2012. Direct determination of unsaturation level of milk fat using Raman spectroscopy. Applied Spectroscopy 66(5):538.
  • Mazurek, S., R. Szostak, T. Czaja, and A. Zachwieja. 2015. Analysis of milk by FT-Raman spectroscopy. Talanta 138:285–9.
  • Mcgoverin, C. M., A. S. Clark, S. E. Holroyd, and K. C. Gordon. 2010. Raman spectroscopic quantification of milk powder constituents. Analytica Chimica Acta 673(1):26–32.
  • Mecker, L. C., K. M. Tyner, J. F. Kauffman, S. Arzhantsev, D. J. Mans, and C. M. Gryniewicz-Ruzicka. 2012. Selective melamine detection in multiple sample matrices with a portable Raman instrument using surface enhanced Raman spectroscopy-active gold nanoparticles. Analytica Chimica Acta 733(13):48–55.
  • Meisel, S., S. Stöckel, M. Elschner, F. Melzer, P. Rösch, and J. Popp. 2012. Raman spectroscopy as a potential tool for detection of brucella spp. in milk. Applied and Environmental Microbiology 78(16):5575.
  • Meurens, M., V. Baeten, S. H. Yan, E. Mignolet, and Y. Larondelle. 2005. Determination of the conjugated linoleic acids in cow's milk fat by Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry 53(15):5831–5.
  • Moros, J., S. Garrigues, and M. D. L. Guardia. 2007. Evaluation of nutritional parameters in infant formulas and powdered milk by Raman spectroscopy. Analytica Chimica Acta 593(1):30–8.
  • Morris, M. D. 2006. Review - modern Raman spectroscopy: A practical approach. Analytical Chemistry 78(1):33.
  • Nicolaou, N., Y. Xu, and R. Goodacre. 2011. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Analytical Chemistry 83(14):5681.
  • Nieuwoudt, M. K., S. E. Holroyd, C. M. Mcgoverin, M. C. Simpson, and D. E. Williams. 2016. Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well. Journal of Dairy Science 99(10):7821–7831.
  • Nieuwoudt, M. K., S. E. Holroyd, C. M. Mcgoverin, M. C. Simpson, and D. E. Williams. 2016. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. Journal of Dairy Science 99(4):2520–2536.
  • Nieuwoudt, M. K., S. E. Holroyd, C. M. Mcgoverin, M. C. Simpson, and D. E. Williams. 2016c. Screening for adulterants in liquid milk using a portable Raman miniature spectrometer with immersion probe. Applied Spectroscopy 71(2):308–12.
  • Oliveira, K. S., L. S. Callegaro, R. Stephani, M. R. Almeida, and L. F. de Oliveira. 2016. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools. Food Chemistry 194:441–446.
  • Ortelli, D., E. Cognard, P. Jan, and P. Edder. 2009. Comprehensive fast multiresidue screening of 150 veterinary drugs in milk by ultra-performance liquid chromatography coupled to time of flight mass spectrometry. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences 877(23):2363–2374.
  • Pan, T.-T., H. Pu, and D.-W. Sun. 2017. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biology and Technology 132:119–29.
  • Pan, T., D.-W. Sun, H. Pu, and Q. Wei. 2018. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles. Journal of Agricultural and Food Chemistry 66:2180–87.
  • Pan, T., D.-W. Sun, H. Pu, Q. Wei, W. Xiao, and Q.-J. Wang. 2017. Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy based silver nanodots array. Journal of Food Engineering 215:147–55.
  • Pan, Y., D,-W. Sun, J.-H. Cheng, and Z. Han. 2018. Non-destructive Detection and Screening of Non-uniformity in Microwave Sterilization Using Hyperspectral Imaging Analysis. Food Analytical Methods 11:1568–80.
  • Pihlanto, A. 2006. Bioactive peptides: Functionality and production. Agro Food Industry Hi Tech 17(6):24–26.
  • Pu, H., A. Xie, D.-W. Sun, M. Kamruzzaman, and J. Ma. 2015. Application of Wavelet Analysis to Spectral Data for Categorization of Lamb Muscles. Food and Bioprocess Technology 8:1–16.
  • Pu, H., D. Liu, L. Wang, and D.-W. Sun. 2016. Soluble Solids Content and pH Prediction and Maturity Discrimination of Lychee Fruits Using Visible and Near Infrared Hyperspectral Imaging. Food Analytical Methods 9:235–44.
  • Pu, H., W. Xiao, and D.-W. Sun. 2017. SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends in Food Science & Technology70:114–26.
  • Pu, Y.-Y., and D.-W. Sun. 2015. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chemistry 188:271–78.
  • Qin, J., K. Chao, and M. S. Kim. 2013. Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging. Food Chemistry 138(2–3):998–1007.
  • Qin, J., K. Chao, M. S. Kim, and B. K. Cho. 2015. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients. Food & Bioprocess Technology 9(1):1–11.
  • Qin, J., K. Chao, M. S. Kim, H. Lee, and Y. Peng. 2014. Development of a Raman chemical imaging detection method for authenticating skim milk powder. Journal of Food Measurement and Characterization 8(2):122–31.
  • Qin, J., M. S. Kim, K. Chao, S. Dhakal, H. Lee, B. K. Cho, and C. Mo. 2017. Detection and quantification of adulterants in milk powder using high-throughput Raman chemical imaging technique. Food Additives & Contaminants 34(2):152–61.
  • Qu, J-H, D.-W. Sun, J.-H. Cheng, and H. Pu. 2017. Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT-Food Science and Technology 75:529–36.
  • Rajapandiyan, P., and J. Yang. 2012. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Analytical Chemistry 84(23):10277–82.
  • Rajapandiyan, P., W. L. Tang, and J. Yang. 2015. Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array. Food Control 56(3):155–60.
  • Raman, C. V., and K. S. Krishnan.1928. A new type of secondary radiation. Nature 121(3048):501–2.
  • Rodrigues Júnior, P. H., S. O. K. De, C. E. de Almeida, L. F. De Oliveira, R. Stephani, M. S. Pinto, A. F. de Carvalho, and Í. T. Perrone. 2016. FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin. Food Chemistry 196:584–8.
  • Safina, G., R. Ludwig, and L. Gorton. 2010. A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes. Electrochimica Acta 55(26):7690–5.
  • Schulze, G., A. Jirasek, M. M. Yu, A. Lim, R. F. Turner, and M. W. Blades. 2005. Investigation of selected baseline removal techniques as candidates for automated implementation. Applied Spectroscopy 59(5):545–74.
  • Shao, Y., and He, Y. 2009. Measurement of soluble solids content and pH of yogurt using visible/near infrared spectroscopy and chemometrics. Food and Bioprocess Technology 2(2): 229–33.
  • Shi, Q., J. Huang, Y. Sun, M. Yin, M. Hu, X. Hu, Z. Zhang, and G. Zhang. 2018. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 197:107–13.
  • Shingfield, K. J., Y. Chilliard, V. Toivonen, P. Kairenius, and D. I. Givens. 2008. Trans fatty acids and bioactive lipids in ruminant milk. Advances in Experimental Medicine & Biology 606(1):3.
  • Singer, R. S., and J. Williams-Nguyen. 2014. Human health impacts of antibiotic use in agriculture: A push for improved causal inference. Current Opinion in Microbiology 19(19):1–8.
  • Soukoulis, C., Biasioli, F., Aprea, E., Schuhfried, E., Cappellin, L., Märk, T. D., and Gasperi, F. 2012. PTR-TOF-MS analysis for influence of milk base supplementation on texture and headspace concentration of endogenous volatile compounds in yogurt. Food and Bioprocess Technology 5(6): 2085–97.
  • Stefanov, I., V. Baeten, O. Abbas, E. Colman, B. Vlaeminck, B. B. De, and V. Fievez. 2010. Analysis of milk odd- and branched-chain fatty acids using fourier transform (FT)-raman spectroscopy. Journal of Agricultural and Food Chemistry 58(20):10804–11.
  • Stefanov, I., V. Baeten, O. Abbas, E. Colman, B. Vlaeminck, B. D. Baets, and V. Fievez. 2011. Determining milk isolated and conjugated trans-unsaturated fatty acids using Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry 59(24):12771–83.
  • Stephani, R., K. D. S. Oliveira, C. E. R. D. Almeida, Í. T. Perrone, A. F. D. Carvalho, L. F. C. D. Oliveira, and M. R. Almeida. 2017. Raman spectroscopy as a tool to identify modification of whey protein concentrate (WPC) during shelf life. Food Packaging & Shelf Life 11:1–9.
  • Suhren, G., and H. G. Walte.2000. First experiences with automatic flow cytometric determination of total bacterial count in raw milk. Bulletin of the International Dairy Federation 50(3):249–73.
  • Szymborski, T., E. Witkowska, W. Adamkiewicz, J. Waluk, and A. Kamińska. 2014. Electrospun polymer mat as a SERS platform for the immobilization and detection of bacteria from fluids. The Analyst 139(20):5061–4.
  • Thavarungkul, P., S. Dawan, P. Kanatharana, and P. Asawatreratanakul. 2007. Detecting penicillin G in milk with impedimetric label-free immunosensor. Biosensors & Bioelectronics 23(5):688.
  • Torres, J., R. Stephani, G. M. Tavares, A. C. De, R. Costa, C. A. De, M. R. Almeida, L. O. De, P. Schuck, and Í. Perrone. 2017. Technological aspects of lactose-hydrolyzed milk powder. Food Research International 101:45–53.
  • Trivedi, U. B., D. Lakshminarayana, I. L. Kothari, N. G. Patel, H. N. Kapse, K. K. Makhija, P. B. Patel, and C. J. Panchal. 2009. Potentiometric biosensor for urea determination in milk. Sensors & Actuators B Chemical 140(1):260–6.
  • Ullah, R., S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed. 2017. Infant gender‐based differentiation in concentration of milk fats using near infrared Raman spectroscopy. Journal of Raman Spectroscopy 48(3):363–7.
  • Varnam, A. H., and J. P. Sutherland. 1994. Milk and milk products: Technology, chemistry and microbiology. International Dairy Journal 5(7):721–7.
  • Vaskova, H., and M. Buckova. 2016. Measuring the lactose content in milk. MATEC Web of Conferences 76:4.
  • Vinogradova, E., A. Tlahuice‐Flores, J. J. Velazquez‐Salazar, E. Larios‐Rodriguez, and M. Jose‐Yacaman. 2014. Surface‐enhanced Raman scattering of N‐acetylneuraminic acid on silver nanoparticle surface. Journal of Raman Spectroscopy 45(9):730–5.
  • Wang, C., J. Wang, M. Li, X. Qu, K. Zhang, Z. Rong, R. Xiao, and S. Wang. 2016. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. The Analyst 141(22):6226.
  • Wang, J., X. Xie, J. Feng, J. C. Chen, X. Du, J. Luo, J. Lu, X., S. Wang. 2015. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. International Journal of Food Microbiology 204:66–74.
  • Wang, K., D.-W. Sun, Q. Wei, and H. Pu. 2018. Quantification and visualization of alpha-tocopherol in oil-in-water emulsion based delivery systems by Raman microspectroscopy. LWT-Food Science and Technology 96:66–74.
  • Wang, P., S. Pang, B. Pearson, Y. Chujo, L. Mclandsborough, M. Fan, and L. He. 2017. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites. Analytical and Bioanalytical Chemistry 409(8):2229–38.
  • Wilt, T. J., A. Shaukat, T. Shamliyan, B. C. Taylor, R. Macdonald, J. Tacklind, I. Rutks, S. J. Schwarzenberg, R. L. Kane, and M. Levitt. 2010. Lactose intolerance and health. Evidence Report/Technology Assessment 192(192):1–410.
  • Wood, B. R., M. Asghari-Khiavi, E. Bailo, D. McNaughton, and V. Deckert. 2012. Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering. Nano Letters 12(3):1555–60.
  • Wu, D., Nie, P., He, Y., and Bao, Y. 2012. Determination of calcium content in powdered milk using near and mid-infrared spectroscopy with variable selection and chemometrics. Food and Bioprocess Technology 5(4): 1402–10.
  • Xie, A., D.-W. Sun, Z. Xu, and Z. Zhu. 2015. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta 139:208–15.
  • Xie, A., D.-W. Sun, Z. Zhu, and H. Pu. 2016. Nondestructive measurements of freezing parameters of frozen porcine meat by nir hyperspectral imaging. Food and Bioprocess Technology 9:1444–54.
  • Xu, J.-L., A. A. Gowen, and D.-W. Sun. 2018. Time series hyperspectral chemical imaging (HCI) for investigation of spectral variations associated with water and plasticizers in casein based biopolymers. Journal of Food Engineering 218:88–105.
  • Xu, J.-L., C. Esquerre, D.-W. Sun. 2018. Methods for performing dimensionality reduction in hyperspectral image classification. Journal of Near Infrared Spectroscopy 26:61–75.
  • Xu, J.-L., C. Riccioli, and D.-W. Sun. 2016. Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imaging. Journal of Food Engineering 190:185–94.
  • Xu, J., J. Du, C. Jing, Y. Zhang, and J. Cui. 2014. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced raman scattering sensor based on the Au coffee ring effect. Acs Applied Materials & Interfaces 6(9):6891–7.
  • Yang, D., and Y. Ying. 2011. Applications of Raman spectroscopy in agricultural products and food analysis: A review. Applied Spectroscopy Reviews 46(7):539–60.
  • Yang, J. L., Z. W. Yang, Y. J. Zhang, H. Ren, H. Zhang, Q. C. Xu, R. Panneerselvam, K. Sivashanmugan, J. F. Li, and Z. Q. Tian. 2017. Quantitative detection using two‐dimension shell‐isolated nanoparticle film. Journal of Raman Spectroscopy 48(7):919–24.
  • Yang, Q., F. Liang, D. Wang, P. Ma, D. Gao, J. Han, Y. Li, A. Yu, D. Song, and X. Wang. 2014. Simultaneous determination of thiocyanate ion and melamine in milk and milk powder using surface-enhanced Raman spectroscopy. Analytical Methods 6(20):8388–95.
  • Yao, Y., G. Zhao, Y. Yan, H. Mu, Q. Jin, X. Zou, and X. Wang. 2016. Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk. Food Research International 80:61–69.
  • Yaseen, T., D.-W. Sun, H. Pu, and T.-T Pan. 2018. Detection of Omethoate Residues in Peach with Surface-Enhanced Raman Spectroscopy. Food Analytical Methods 11:2518–27.
  • Yaseen, T., H. Pu, and D.-W. Sun. 2018. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends in Food Science & Technology 72:162–74.
  • Yaseen, T., D.-W. Sun, and J.-H. Cheng. 2017. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends in Food Science & Technology 62:177–89.
  • Zhang, L., and M. J. Henson. 2007. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Applied Spectroscopy 61(9):1015–20.
  • Zhao, M., R. J. Beattie, A. M. Fearon, C. P. O’Donnell, and G. Downey. 2015. Prediction of naturally-occurring, industrially-induced and total trans fatty acids in butter, dairy spreads and cheddar cheese using vibrational spectroscopy and multivariate data analysis. International Dairy Journal 51:41–51.
  • Zhou, H., D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch. 2014. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical Chemistry 86(3):1525–33.
  • Zhu, Z., D.-W. Sun, Z. Zhang, Y. Li, and L. Cheng. 2018. Effects of micro-nano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT-Food Science and Technology 92:404–411.
  • Zhu, Z., D.-W. Sun, Z. Zhang, Y. Li, and L. Cheng. 2018. Effects of micro-nano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT-Food Science and Technology 92:404–411.
  • Zhou, S., Z. Zhu, D.-W. Sun, Z. Xu, Z. Zhang, and Q.-J. Wang. 2017. Effects of different cooling methods on the carbon footprint of cooked rice. Journal of Food Engineering 215:44–50
  • Zhu, Z., X. Wu, Y. Geng, D.-W. Sun, H. Chen, Y. Zhao, W. Zhou, X. Li, and H. Pan. 2018. Effects of modified atmosphere vacuum cooling (MAVC) on the quality of three different leafy cabbages. LWT-Food Science and Technology 94:190–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.