2,624
Views
73
CrossRef citations to date
0
Altmetric
Reviews

Enhancing production of microalgal biopigments through metabolic and genetic engineering

, , &
Pages 391-405 | Received 14 Aug 2018, Accepted 04 Oct 2018, Published online: 01 Feb 2019

References

  • Ambati, R. R., D. Gogisetty, R. G. Aswathanarayana, S. Ravi, P. N. Bikkina, L. Bo, and S. Yuepeng. 2018. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition :1–22.
  • Ambati, R. R., S. M. Phang, S. Ravi, and R. G. Aswathanarayana. 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-A review. Marine Drugs 12 (1):128–52. doi:10.3390/md12010128
  • Anand, V., P. K. Singh, C. Banerjee, and P. Shukla. 2017. Proteomic approaches in microalgae: perspectives and applications. 3 Biotech 7 (3):197.
  • Anila, N., D. P. Simon, A. Chandrashekar, G. A. Ravishankar, and R. Sarada. 2016. Metabolic engineering of dunaliella salina for production of ketocarotenoids. Photosynthesis Research 127 (3):321–33. doi:10.1007/s11120-015-0188-8
  • Baek, K., J. Yu, J. Jeong, S. J. Sim, S. Bae, and E. Jin. 2018. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnology and Bioengineering 115 (3):719–28. doi:10.1002/bit.26499
  • Balskus, E. P., R. J. Case, and C. T. Walsh. 2011. The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities. FEMS Microbiology Ecology 77 (2):322–32. doi:10.1111/j.1574-6941.2011.01113.x
  • Banerjee, A., C. Banerjee, S. Negi, J. S. Chang, and P. Shukla. 2018. Improvements in algal lipid production: A systems biology and gene editing approach. Critical Reviews in Biotechnology 38 (3):369–85.
  • Banerjee, C., K. K. Dubey, and P. Shukla. 2016. Metabolic engineering of microalgal based biofuel production: Prospects and challenges. Frontiers in microbiology 7 :432.
  • Barka, A., and C. Blecker. 2016. Microalgae as a potential source of single-cell proteins. A review. Base 20 (2016):427–36. https://popups.uliege.be:443/1780-4507/index.php?id=13132
  • Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25 (2):207–10.
  • Bentley, F. K., A. Zurbriggen, and A. Melis. 2014. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Molecular Plant 7 (1):71–86. doi:10.1093/mp/sst134
  • Bhalamurugan, G. L., O. Valerie, and L. Mark. 2018. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research 23 (3):229–41. doi:10.1007/s10811-017-1284-2
  • Blanco, A. M., J. Moreno, J. A. Del Campo, J. Rivas, and M. G. Guerrero. 2007. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied microbiology and biotechnology 73 (6):1259–66.
  • Borowitzka, M. A. 2018. Microalgae in medicine and human health: A historical perspective. In Microalgae in health and disease prevention. 195–210. Cambridge, MA: Academic Press.
  • Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiologia Plantarum 108 (2):111–7.
  • Cha, K. H., H. J. Lee, S. Y. Koo, D. G. Song, D. U. Lee, and C. H. Pan. 2010. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. Journal of Agricultural and Food Chemistry 58 (2):793–7.
  • Chakdar, H., and S. Pabbi. 2012. Extraction and purification of phycoerythrin from Anabaena variabilis (CCC421. Phykos 42 (1):25–31.
  • Chakdar, H., and S. Pabbi. 2016. Cyanobacterial phycobilins: Production, purification, and regulation. In Frontier discoveries and innovations in interdisciplinary microbiology. ed, P. Shukla, pp. 45–69. New Delhi: Springer.
  • Chakdar, H., and S. Pabbi. 2017. Algal Pigments for Human Health and Cosmeceuticals.In Algal green chemistry. ed. R.P. Rastogi, D. Madamwar and A. Pandey, 171–188. Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-444-63784-0.00009-6
  • Chan, M. C., S. H. Ho, D. J. Lee, C. Y. Chen, C. C. Huang, and J. S. Chang. 2013. Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal 78 :24–31. doi:10.1016/j.bej.2012.11.017
  • Chew, K. W., J. Y. Yap, P. L. Show, N. H. Suan, J. C. Juan, T. C. Ling, D. J. Lee, and J. S. Chang. 2017. Microalgae biorefinery: High value products perspectives. Bioresource Technology 229 :53–62. doi:10.1016/j.biortech.2017.01.006
  • Choi, J. I., M. Yoon, M. Joe, H. Park, S. G. Lee, S. J. Han, and P. C. Lee. 2014. Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioprocess and Biosystems Engineering 37 (12):2437–44.
  • Christaki, E., Bonos, E. Giannenas, I. Florou‐Paneri. and P. 2013. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture 93 (1):5–11. doi:10.1002/jsfa.5902
  • Cordero, B. F., I. Couso, R. León, H. Rodríguez, and M. Á. Vargas. 2011. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Applied Microbiology and Biotechnology 91 (2):341–51.
  • Couso, I., M. Vila, H. Rodriguez, M. A. Vargas, and R. Leon. 2011. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnology Progress 27 (1):54–60. doi: 10.1002/btpr.527
  • Couso, I., M. Vila, J. Vigara, B. F. Cordero, M. Á. Vargas, H. Rodríguez, and R. León. 2012. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. European Journal of Phycology 47 (3):223–32. doi:10.1080/09670262.2012.692816
  • Cuellar‐Bermudez, S. P., I. Aguilar‐Hernandez, D. L. Cardenas‐Chavez, N. Ornelas‐Soto, M. A. Romero‐Ogawa, and R. Parra‐Saldivar. 2015. Extraction and purification of high‐value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microbial Biotechnology 8 (2):190–209.
  • Dasgupta, C. N. 2015. Algae as a source of phycocyanin and other industrially important pigments. In Algal biorefinery: An integrated approach. ed. D. Das, 253–276. Cham: Springer. doi:10.1002/ejlt.201300456
  • de Morais, M. G., D. da Fontoura Prates, J. B. Moreira, J. H. Duarte, and J. A. V. Costa. 2018. Phycocyanin from microalgae: Properties, extraction and purification, with some recent applications. Industrial Biotechnology 14 (1):30–7. doi:10.1089/ind.2017.0009
  • del Pilar Sánchez-Saavedra, M., F. Y. Castro-Ochoa, V. M. Nava-Ruiz, D. A. Ruiz-Güereca, A. L. Villagómez-Aranda, F. Siqueiros-Vargas, and C. A. Molina-Cárdenas. 2018. Effects of nitrogen source and irradiance on Porphyridium cruentum. Journal of Applied Phycology 30 (2):783–92. doi:10.1007/s10811-017-1284-2
  • Depauw, F. A., A. Rogato, M. Ribera d'Alcala, and A. Falciatore. 2012. Exploring the molecular basis of responses to light in marine diatoms. Journal of Experimental Botany 63 (4):1575–91. doi:10.1093/jxb/ers005
  • Ejike, C. E., S. A. Collins, N. Balasuriya, A. K. Swanson, B. Mason, and C. C. Udenigwe. 2017. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology 59 :30–6.
  • Fu, W., A. Chaiboonchoe, B. Khraiwesh, D. R. Nelson, D. Al-Khairy, A. Mystikou, A. Alzahmi, and K. Salehi-Ashtiani. 2016. Algal cell factories: Approaches, applications, and potentials. Marine Drugs 14 (12):225. doi:10.3390/md14120225
  • Galarza, J. I., J. A. Gimpel, V. Rojas, B. O. Arredondo-Vega, and V. Henríquez. 2018. Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Research 31 :291–7. doi:10.1016/j.algal.2018.02.024
  • Gao, Y., C. Gregor, Y. Liang, D. Tang, and C. Tweed. 2012. Algae biodiesel-a feasibility report. Chemistry Central Journal 6 l 1:S1. doi:10.1186/1752-153X-6-S1-S1
  • Gao, Y., R. B. Honzatko, and R. J. Peters. 2012. Terpenoid synthase structures: A so far incomplete view of complex catalysis. Natural Product Reports 29 (10):1153–75.
  • Garcia-Pichel, F., and R. W. Castenholz. 1993. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology 59 :163–9.
  • Gimpel, J. A., V. Henríquez, and S. P. Mayfield. 2015. In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity. Frontiers in Microbiology 6 :1376. doi:10.3389/fmicb.2015.01376
  • Granado-Lorencio, F., C. Herrero-Barbudo, G. Acién-Fernández, E. Molina-Grima, J. M. Fernández-Sevilla, B. Pérez-Sacristán, and I. Blanco-Navarro. 2009. In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chemistry 114 (2):747–52. doi:10.1016/j.foodchem.2008.10.058
  • Grossman, A. R., M. Lohr, and C. S. Im. 2004. Chlamydomonas reinhardtii in the landscape of pigments. Annual Review Of Genetics 38 :119–73.
  • Guedes, A. C., H. M. Amaro, and F. X. Malcata. 2011. Microalgae as sources of high added-value compounds—A brief review of recent work. Biotechnology Progress 27 (3):597–613. doi:10.1002/btpr.575
  • Han, D., Y. Li, and Q. Hu. 2013. Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae 28 (2):131–47. doi: 10.4490/algae.2013.28.2.131
  • Hlavova, M., Z. Turoczy, and K. Bisova. 2015. Improving microalgae for biotechnology—From genetics to synthetic biology. Biotechnology Advances 33 (6):1194–203. doi:10.1016/j.biotechadv.2015.01.009
  • Huang, J. C., Y. Wang, G. Sandmann, and F. Chen. 2006. Isolation and characterization of a carotenoid oxygenase gene from chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology 71 (4):473–9.
  • Huang, W., J. Ye, J. Zhang, Y. Lin, M. He, and J. Huang. 2016. Transcriptome analysis of chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. Algal Research 17 :236–43. doi:10.1016/j.algal.2016.05.015
  • Jagadevan, S., A. Banerjee, C. Banerjee, C. Guria, R. Tiwari, M. Baweja, and P. Shukla. 2018. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnology for Biofuels 11 (1):185. doi:10.1186/s13068-018-1181-1
  • Jain, S., G. Prajapat, M. Abrar, L. Ledwani, A. Singh, and A. Agrawal. 2017. Cyanobacteria as efficient producers of mycosporine-like amino acids. Journal Of Basic Microbiology 9999 :1–13. doi:10.1002/jobm.201700044
  • Jayappriyan, K. R., R. Rajkumar, V. Venkatakrishnan, S. Nagaraj, and R. Rengasamy. 2013. In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomedicine & Preventive Nutrition 3 (2):99–105. doi: 10.1016/j.bionut.2012.08.003
  • Kajiwara, S., T. Kakizono, T. Saito, K. Kondo, T. Ohtani, N. Nishio, S. Nagai, and N. Misawa. 1995. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Molecular Biology 29 (2):343–52.
  • Kamath, B. S., R. Vidhyavathi, R. Sarada, and G. A. Ravishankar. 2008. Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresource Technology 99 (18):8667–73.
  • Kapoor, D., R. Sharma, N. Handa, H. Kaur, A. Rattan, P. Yadav, V. Gautam, R. Kaur, and R. Bhardwaj. 2015. Redox homeostasis in plants under abiotic stress: Role of electron carriers, energy metabolism mediators and proteinaceousthiols. Frontiers in Environmental Science 3 :13. doi:10.3389/fenvs.2015.00013
  • Karsten, U., and L. F. Garcia-Pichel. 1996. Carotenoids and mycosporine-like amino acid compounds in members of the genus microcoleus (Cyanobacteria): A chemosystematic study. Systematic and Applied Microbiology 19 (3):285–94.
  • Kathiresan, S., A. Chandrashekar, G. A. Ravishankar, and R. Sarada. 2015. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. Journal of Biotechnology 196–197 :33–41. doi: 10.1016/j.jbiotec.2015.01.006
  • Katiyar, R., B. R. Gurjar, S. Biswas, V. Pruthi, N. Kumar, and P. Kumar. 2017. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews 72 :1083–93. doi:10.1016/j.rser.2016.10.028
  • Khan, M. I., J. H. Shin, and J. D. Kim. 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17 (1):36. doi:10.1186/s12934-018-0879-x
  • Kim, M., J. Ahn, H. Jeon, and E. Jin. 2017. Development of a Dunaliella tertiolecta strain with increased zeaxanthin content using random mutagenesis. Marine Drugs 15 (6):189. doi:10.3390/md15060189
  • Kiran, B., R. Kumar, and D. Deshmukh. 2014. Perspectives of microalgal biofuels as a renewable source of energy. Energy Conversion and Management 88 :1228–44. doi:10.1016/j.enconman.2014.06.022
  • Knoop, H., M. Gründel, Y. Zilliges, R. Lehmann, S. Hoffmann, W. Lockau, and R. Steuer. 2013. Flux balance analysis of cyanobacterial metabolism: the metabolic network of synechocystis sp. PCC 6803. PLoS Computational Biology 9 (6):e1003081. doi:/10.1371/journal.pcbi.1003081
  • Kodym, A., and R. Afza. 2003. Physical and Chemical Mutagenesis. In: Plant functional genomics. Methods in molecular biology, ed. E. Grotewold, vol 236. New York City, NY: Humana press, doi: 10.1385/1-59259-413-1:189
  • Kose, A., and S. S. Oncel. 2017. Algae as a promising resource for biofuel industry: Facts and challenges. International Journal of Energy Research 41 (7):924–51. doi: 10.1002/er.3699
  • Kumar, R., K. Biswas, P. K. Singh, P. K. Singh, S. Elumalai, P. Shukla, and S. Pabbi. 2017. Lipid production and molecular dynamics simulation for regulation of acc D gene in cyanobacteria under different N and P regimes. Biotechnology for Biofuels 10 (1):94.
  • Lan, E. I., and J. C. Liao. 2011. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering 13 (4):353–63. doi:10.1016/j.ymben.2011.04.004
  • Larkum, A. W., I. L. Ross, O. Kruse, and B. Hankamer. 2012. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology 30 (4):198–205. doi:10.1016/j.tibtech.2011.11.003
  • Lemoine, Y., and B. Schoefs. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynthesis Research 106 (1–2):155–77.
  • Lin, Y. J., J. J. Chang, H. Y. Lin, C. Thia, Y. Y. Kao, C. C. Huang, and W. H. Li. 2017. Metabolic engineering a yeast to produce astaxanthin. Bioresource Technology 245:899–905. doi:10.1016/j.biortech.2017.07.116
  • Liu, J., Z. Sun, H. Gerken, J. Huang, Y. Jiang, and F. Chen. 2014. Genetic engineering of the green alga Chlorella zofingiensis: A modified norflurazon-resistant phytoenedesaturase gene as a dominant selectable marker. Applied Microbiology and Biotechnology 98 (11):5069–79. doi:10.1007/s00253-014-5593-y
  • Liu, J., Z. Sun, H. Gerken, Z. Liu, Y. Jiang, and F. Chen. 2014. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs 12 (6):3487–515. doi:10.3390/md12063487
  • Liu, S., Y. Zhao, L. Liu, X. Ao, L. Ma, M. Wu, and F. Ma. 2015. Improving cell growth and lipid accumulation in green microalgae chlorella sp. via UV irradiation. Applied Biochemistry and Biotechnology 175 (7):3507–18.
  • Liu, Z. W., X. A. Zeng, J. H. Cheng, D. B. Liu, and R. M. Aadil. 2018. The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. International Journal of Food Science & Technology 53:2012–19 doi:10.1111/ijfs.13810
  • Lohr, M., C. S. Im, and A. R. Grossman. 2005. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiology 138 (1):490–515.
  • Lu, Y., P. Jiang, S. Liu, Q. Gan, H. Cui, and S. Qin. 2010. Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresource Technology 101 (16):6468–74. doi:10.1016/j.biortech.2010.03.072
  • Mao, X., T. Wu, D. Sun, Z. Zhang, and F. Chen. 2018. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresource Technology 249 :791–8. doi:10.1016/j.biortech.2017.10.090
  • Maranas, C. D., G. L. Moore, A. P. Burgard, and A. Gupta. 2003. Systems engineering challenges and opportunities in computational biology. In proceedings of the FOCAPO, 13, pp. 2–6.
  • Markou, G., and E. Nerantzis. 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances 31 (8):1532–42. doi:10.1016/j.biotechadv.2013.07.011
  • Martelli, G., C. Folli, L. Visai, M. Daglia, and D. Ferrari. 2014. Thermal stability improvement of blue colorant C-Phycocyanin From Spirulina platensis for food industry applications. Process Biochemistry 49 (1):154–9. doi:10.1016/j.procbio.2013.10.008
  • Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14 (1):217–32. doi:10.1016/j.rser.2009.07.020
  • Matos, J., C. Cardoso, N. M. Bandarra, and C. Afonso. 2017. Microalgae as healthy ingredients for functional food: A review. Food & Function 8 (8):2672–85.
  • McClure, D. D., A. Luiz, B. Gerber, G. W. Barton, and J. M. Kavanagh. 2018. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Research 29 :41–8. doi: 10.1016/j.algal.2017.11.015
  • Mehta, P., D. Singh, R. Saxena, R. Rani, R. P. Gupta, S. K. Puri, and A. S. Mathur. 2018. High-value coproducts from algae—An innovational way to deal with advance algal industry. In Waste to wealth, 343–363. Singapore: Springer.
  • Merchant, S. S., S. E. Prochnik, O. Vallon, E. H. Harris, S. J. Karpowicz, G. B. Witman, A. Terry, A. Salamov, L. K. Fritz-Laylin, L. Marechal-Drouard, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318 (5848):245–50., doi: 10.1126/science.1143609
  • Mitschke, J., J. Georg, I. Scholz, C. M. Sharma, D. Dienst, J. Bantscheff, B. Voß, C. Steglich, A. Wilde, J. Vogel, and W. R. Hess. 2011. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proceedings of the National Academy of Sciences 108 (5):2124–9. doi:10.1073/pnas.1015154108
  • Mohsenpour, S. F., B. Richards, and N. Willoughby. 2012. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology 125 :75–81. doi:10.1016/j.biortech.2012.08.072
  • Mulders, K. J., P. P. Lamers, D. E. Martens, and R. H. Wijffels. 2014. Phototrophic pigment production with microalgae: biological constraints and opportunities. Journal of Phycology 50 (2):229–42. doi:10.1111/jpy.12173
  • O’Brien, E. J., J. M. Monk, and B. O. Palsson. 2015. Using genome-scale models to predict biological capabilities. Cell 161 (5):971–87. doi:10.1016/j.cell.2015.05.019
  • Paliwal, C., T. Ghosh, B. George, I. Pancha, R. Maurya, K. Chokshi, A. Ghosh, and S. Mishra. 2016. Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research 15 :24–31. doi:/10.1016/j.algal.2016.01.017
  • Paniagua-Michel, J., J. Olmos-Soto, and M. A. Ruiz. 2012. Pathways of carotenoid biosynthesis in bacteria and microalgae. In Microbial carotenoids from bacteria and microalgae. ed. Barredo JL, 1–12. Totowa, NJ: Humana Press. doi:10.1007/978-1-61779-879-5_1
  • Park, S. Y., R. M. Binkley, W. J. Kim, M. H. Lee, and S. Y. Lee. 2018. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metabolic Engineering 49 :105–15. doi:10.1016/j.ymben.2018.08.002
  • Pathak, J., P. K. Maurya, S. P. Singh, D. P. Häder, and R. P. Sinha. 2018. Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives. Frontiers in Environmental Science 6 :7. doi:10.3389/fenvs.2018.00007
  • Plaza, M., M. Herrero, A. Cifuentes, and E. Ibáñez. 2009. Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry 57 (16):7159–70. doi: 10.1021/jf901070g
  • Priyadarshani, I., and B. Rath. 2012. Commercial and industrial applications of micro algae–a review. Journal of Algal Biomass Utilization, Phycospectrum 3 (4):89–100.
  • Pulz, O., and W. Gross. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65 (6):635–48.
  • Qian, X., M. K. Kim, G. K. Kumaraswamy, A. Agarwal, D. S. Lun, and G. C. Dismukes. 2017. Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochimica et Biophysica Cta (BBA)-Bioenergetics 1858 (4):276–87. doi:10.1016/j.bbabio.2016.12.007
  • Rabbani, S., P. Beyer, J. V. Lintig, P. Hugueney, and H. Kleinig. 1998. Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiology 116 (4):1239–48.
  • Raman, K., and N. Chandra. 2009. Flux balance analysis of biological systems: applications and challenges. Briefings in Bioinformatics 10 (4):435–49. doi:10.1093/bib/bbp011
  • Ramanna, L., I. Rawat, D. Zerrouki, and F. Bux. 2018. A novel organic dye-based approach to increase photon flux density for enhanced microalgal pigment production. Journal of Cleaner Production 198 :187–94. doi:10.1016/j.jclepro.2018.07.016
  • Ramos, A., S. Coesel, A. Marques, M. Rodrigues, A. Baumgartner, J. Noronha, A. Rauter, B. Brenig, and J. Varela. 2008. Isolation and characterization of a stress-inducible Dunaliella salina lcy-β gene encoding a functional lycopene β-cyclase. Applied Microbiology and Biotechnology 79 (5):819.
  • Reinsvold, R. E., R. E. Jinkerson, R. Radakovits, M. C. Posewitz, and C. Basu. 2011. The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. Journal of Plant Physiology 168 (8):848–52. doi:10.1016/j.jplph.2010.11.006
  • Rizwan, M., G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid. 2018. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews 92 :394–404. doi:10.1016/j.rser.2018.04.034
  • Romay, C., and R. Gonzalez. 2000. Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. Journal of Pharmacy and Pharmacology 52 (4):367–8.
  • Rüdiger, W., T. Brandlmeier, I. Bios, A. Gossauer, and J. P. Weller. 1980. Isolation of the phytochromechromophore. The cleavage reaction with hydrogen bromide. Zeitschrift Für Naturforschung C 35 (9–10):763–9. doi:10.1515/znc-1980-9-1018
  • Ruiz-Sola, M. A., and M. Rodríguez-Concepción. 2012. Carotenoid biosynthesis in arabidopsis: A colorful pathway. Arabidopsis Book 10 : e0158. doi: 10.1199/tab.0158
  • Saini, D. K., S. Pabbi, and P. Shukla. 2018. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food and Chemical Toxicology 120 :616–24. pp doi:10.1016/j.fct.2018.08.002
  • Sarada, R., K. G. Mallikarjuna, P. S. Daris, and S. Vidyashankar. 2017. Microalgae as a source of nutritional and therapeutic metabolites. In Plant secondary metabolites, three-volume set. ed. M.W. Siddiqui, K. Prasad, and Vl Bansa, 21–82. New York, Apple Academic Press.
  • Sathasivam, R., and J. S. Ki. 2018. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs 16 (1):26. doi:10.3390/md16010026
  • Sekar, S., and M. Chandramohan. 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology 20 (2):113–36.
  • Shanshan, W., Z. Lei, C. Shan, W. Guoltang, W. Xumin, L. Tao and T. Xuenxi. 2018. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae. Acta Oceanol Sin 37:89–101.
  • Shih, P. M., D. Wu, A. Latifi, S. D. Axen, D. P. Fewer, E. Talla, A. Calteau, F. Cai, N. Tandeau de Marsac, R. Rippka, et al. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences 110 (3):1053–8. doi:10.1073/pnas.1217107110
  • Shukla, M., and S. Kumar. 2018. Algal biorefineries for biofuels and other value-added products. In Biorefining of biomass to biofuels, pp. 305–341. Cham: Springer.
  • Sieiro, C., M. Poza, D. T. Miguel, and T. G. Villa. 2003. Genetic basis of microbial carotenogenesis. International Microbiology 6 (1):11–6.
  • Singh, B., A. Guldhe, P. Singh, A. Singh, I. Rawat, and F. Bux. 2015. Sustainable production of biofuels from microalgae using a biorefinary approach. In Applied environmental biotechnology: Present scenario and future trends. ed. G. Kaushik, 115–128. New Delhi: Springer. doi:10.1007/978-81-322-2123-4_8
  • Solovchenko, A., A. Lukyanov, O. Solovchenko, S. Didi-Cohen, S. Boussiba, and I. Khozin-Goldberg. 2014. Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804. European Journal of Lipid Science and Technology 116 (5):635–44. doi:10.1002/ejlt.201300456
  • Sonani, R. R., R. P. Rastogi, R. Patel, and D. Madamwar. 2016. Recent advances in production, purification and applications of phycobiliproteins. World Journal of Biological Chemistry 7 (1):100.
  • Soule, T., K. Palmer, Q. Gao, R. M. Potrafka, V. Stout, and F. Garcia-Pichel. 2009. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10 :336.
  • Sousa, I., L. Gouveia, A. P. Batista, A. Raymundo, and N. M. Bandarra. 2008. Microalgae in novel food products. In Food Chemistry Research Developments. ed. K. Papadoupoulos, 75–112. New York, USA: Nova Science Publishers. http://hdl.handle.net/10400.5/2434
  • Steinbrenner, J., and G. Sandmann. 2006. Transformation of the green alga haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Applied and Environmental Microbiology 72 (12):7477–84.
  • Stephens, E., J. Wolf, M. Oey, E. Zhang, B. Hankamer, and I. L. Ross. 2015. Genetic engineering for microalgae strain improvement in relation to biocrude production systems. In Biomass and biofuels from microalgae, 191–249. Cham: Springer.
  • Straka, L., and B. E. Rittmann. 2018. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803. Biotechnology and Bioengineering 115 (2):507–11. doi:10.1002/bit.26479
  • Sun, T. H., C. Q. Liu, Y. Y. Hui, W. K. Wu, Z. G. Zhou, and S. Lu. 2010. Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii. Journal of Integrative Plant Biology 52 (10):868–78. doi:10.1111/j.1744-7909.2010.00993.x
  • Takaichi, S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Marine Drugs 9 (6):1101–18. doi:http://dx.doi.org/10.3390/md9061101
  • Takaichi, S. 2013. Tetraterpenes: carotenoids. In Natural products, 3251–3283. Berlin, Heidelberg: Springer.
  • Thoisen, C., B. W. Hansen, and S. L. Nielsen. 2017. A simple and fast method for extraction and quantification of cryptophytes phycoerythrin. MethodsX 4 :209–13.
  • Varela, J. C., H. Pereira, M. Vila, and R. León. 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynthesis Research 125 (3):423–36.
  • Varshney, P., P. Mikulic, A. Vonshak, J. Beardall, and P. P. Wangikar. 2015. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology 184 :363–72. doi:10.1016/j.biortech.2014.11.040
  • Vickers, C. E., M. Bongers, Q. Liu, T. Delatte, and H. Bouwmeester. 2014. Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell & Environment 37 (8):1753–75. doi: 10.1111/pce.12316
  • Vidhyavathi, R., L. Venkatachalam, R. Sarada, and G. A. Ravishankar. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of Experimental Botany 59 (6):1409–18. doi:10.1093/jxb/ern048
  • Vigani, M., C. Parisi, E. Rodríguez-Cerezo, M. J. Barbosa, L. Sijtsma, M. Ploeg, and C. Enzing. 2015. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science & Technology 42 (1):81–92. doi:10.1016/j.tifs.2014.12.004
  • Wang, H. M. D., C. C. Chen, P. Huynh, and J. S. Chang. 2015. Exploring the potential of using algae in cosmetics. Bioresource Technology 184 :355–62.
  • Weber, T., P. Charusanti, E. M. Musiol-Kroll, X. Jiang, Y. Tong, H. U. Kim, and S. Y. Lee. 2015. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes. Trends in Biotechnology 33 (1):15–26.
  • Weller, J. P., and A. Gossauer. 1980. Synthesen von gallenfarbstoffen, X. Synthese und photoisomerisierung des racem. Phytochromobilin‐dimethylesters. Chemische Berichte 113 (4):1603–11.
  • Wells, M. L., P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, and S. H. Brawley. 2017. Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology 29 (2):949–82. doi: 10.1007/s10811-016-0974-5
  • Wichuk, K., S. Brynjolfsson, and W. Fu. 2014. Biotechnological production of value-added carotenoids from microalgae. Bioengineered 5 (3):204–8.
  • Wu, C., W. Xiong, J. Dai, and Q. Wu. 2015. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Plant Physiology 167 (2):586–99. doi:10.1104/pp.114.250688
  • Xu, Y., I. M. Ibrahim, C. I. Wosu, A. Ben-Amotz, and P. J. Harvey. 2018. Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology 7 (1):14. doi:http://dx.doi.org/10.3390/biology7010014
  • Yao, L., F. Qi, X. Tan, and X. Lu. 2014. Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnology for Biofuels 7 (1):94. doi:10.1186/1754-6834-7-94
  • Ye, Z. W., J. G. Jiang, and G. H. Wu. 2008. Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects. Biotechnology Advances 26 (4):352–60. doi:10.1016/j.biotechadv.2008.03.004
  • Yusuf, M., M. Shabbir, and F. Mohammad. 2017. Natural colorants: Historical, processing and sustainable prospects. Natural products and bioprospecting 7 (1):123–45. doi:https://doi.org/10.1007/s13659-017-0119-9
  • Zhang, J., Z. Sun, P. Sun, T. Chen, and F. Chen. 2014. Microalgal carotenoids: beneficial effects and potential in human health. Food & Function 5 (3):413–25.
  • Zhao, L., W. Chang, Y. Xiao, H. Liu, and P. Liu. 2013. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annual Reviews of Biochemistry 82 :497–530.
  • Zhekisheva, M., A. Zarka, I. Khozin-Goldberg, Z. Cohen, and S. Boussiba. 2005. Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcuspluvialis (chlorophyceae) 1. Journal of Phycology 41 (4):819–26. doi:10.1111/j.0022-3646.2005.05015.x
  • Zhou, J., G. E. Gasparich, V. L. Stirewalt, D R. Lorimier, and D. A. Bryant. 1992. The cpcE and cpcF genes of synechococcus sp. PCC 7002.Construction and phenotypic characterization of interposon mutants. Journal of Biological Chemistry 267:16138–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.