2,749
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Omics in traditional vegetable fermented foods and beverages

, , , , ORCID Icon, & show all

References

  • Abee, T., W. Van Schaik, and R. Siezen. 2004. Impact of genomics on microbial food safety. Trends in Biotechnology 22 (12):653–660. doi:10.1016/j.tibtech.2004.10.007.
  • Abriouel, H., N. Omar, R. López, M. Martínez-Cañamero, S. Keleke, and A. Gálvez. 2006. Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods. International Journal of Food Microbiology 111 (3):228–233. doi:10.1016/j.ijfoodmicro.2006.06.006.
  • Achi, O. K. 2005. The potential for upgrading traditional fermented foods through biotechnology. African Journal of Biotechnology 4:375–380.
  • Ampe, F., N. Ben Omar, and J. P. Guyot. 1999. Culture-independent quantification of physiologically-active microbial groups in fermented foods using rRNA-targeted oligonucleotide probes: Application to pozol, a Mexican lactic acid fermented maize dough. Journal of Applied Microbiology 87 (1):131–140. doi:10.1046/j.1365-2672.1999.00803.x.
  • Ampe, F., N. Ben Omar, C. Moizan, C. Wacher, and J. P. Guyot. 1999. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Applied and Environmental Microbiology 65 (12):5464–5473.
  • Ananingsih, V. K., A. Sharma, and W. Zhou. 2013. Green tea catechins during food processing and storage: A review on stability and detection. Food Research International 50 (2):469–479. doi:10.1016/j.foodres.2011.03.004.
  • Anaukwu, C. G., F. C. Nwagwu, O. I. Akafor, C. C. Ezemba, C. C. Orji, K. C. Agu, and E. J. Archibong. 2015. Microbiological analysis of Burukutu beverage produced in Southern part of Nigeria. European Journal of Experimental Biology 5 (8):18–22.
  • Baek, J., S. Shim, D. Kwon, H. Choi, C. Lee, and Y. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Bioscience, Biotechnology, and Biochemistry 74 (9):1860–1868. doi:10.1271/bbb.100269.
  • Bal, J., S.-H. Yun, H.-Y. Song, S.-H. Yeo, J. H. Kim, J.-M. Kim, and D.-H. Kim. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. Journal of Microbiology 52 (12):1025–1029. doi:10.1007/s12275-014-4620-0.
  • Bal, J., S. H. Yun, S. H. Yeo, J. M. Kim, and D. H. Kim. 2016. Metagenomic analysis of fungal diversity in Korean traditional wheat-based fermentation starter nuruk. Food Microbiology 60:73–83. doi:10.1016/j.fm.2016.07.002.
  • Balestra, F., L. Laghi, D. Taneyo Saa, A. Gianotti, P. Rocculi, and G. Pinnavaia. 2015. Physico-chemical and metabolomic characterization of KAMUT® Khorasan and durum wheat fermented dough. Food Chemistry 15:451–459. doi:10.1016/j.foodchem.2015.04.041.
  • Battcock, M., and S. Azam-Ali. 1998. Fermented fruits and vegetables. A global perspective. FAO, Rome, Italy.
  • Blandino, A., M. Al-Aseeri, S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented foods and beverages. Food Research International 36 (6):527–543. doi:10.1016/S0963-9969(03)00009-7.
  • Botes, A., D. T. Svetoslav, J. W. von Mollendorff, A. Botha, and L. Dicks. 2007. Identification of lactic acid bacteria and yeast from boza. Process Biochemistry 42 (2):267–270. doi:10.1016/j.procbio.2006.07.015.
  • Cao, L., X. Guo, G. Liu, Y. Song, C. H. Ho, R. Huo, L. Zhang, and X. Wan. 2017. A comparative analysis for the volatile compounds of various Chinese dark teas using combinatory metabolomics and fungal solid-state fermentation. Journal of Food and Drug Analysis 1:112–123. doi:10.1016/j.jfda.2016.11.020.
  • Caplice, E., and G. Fitzgerald. 1999. Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology 50 (1–2):131–149. doi:10.1016/S0168-1605(99)00082-3.
  • Cárdenas, C.,. B. Barkla, C. Wacher, L. Delgado-Olivares, and R. Rodríguez-Sanoja. 2014. Protein extraction method for the proteomic study of a Mexican traditional fermented starchy food. Journal of Proteomics 111:139–147. doi:10.1016/j.jprot.2014.06.028.
  • Cevallos-Cevallos, J. M., and J. I. Reyes-de-Corcuera. 2012. Metabolomics in food science. Advances in Food and Nutrition Research 67:1–24. doi:10.1016/B978-0-12-394598-3.00001-0.
  • Chandramouli, K., and P. Y. Qian. 2009. Proteomics: Challenges, techniques and possibilities to overcome biological sample complexity. Human Genomics and Proteomics 1:1–22. doi:10.4061/2009/239204.
  • Chukeatirote, E. 2015. Thua nao: Thai fermented soybean. Journal of Ethnic Foods 2 (3):115–118. doi:10.1016/j.jef.2015.08.004.
  • Correa-Ascencio, M., I. Robertson, O. Cabrera-Córtez, R. Cabrera-Castro, and R. Evershed. 2014. Pulque production from fermented agave sap as a dietary supplement in Prehispanic Mesoamerica. Proceedings of the National Academy of Sciences 11 (39):14223–14228. doi:10.1073/pnas.1408339111.
  • Díaz-Ruiz, G., J. P. Guyot, F. Ruiz-Teran, J. Morlon-Guyot, and C. Wacher. 2003. Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: A functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Applied and Environmental Microbiology 69 (2):4367–4374. doi:10.1128/AEM.69.8.4367-4374.2003.
  • Díaz-Ruiz, G., and C. Wacher. 2003. Métodos para el estudio de comunidades microbianas en alimentos fermentados. Revista Latinoamericana de Microbiología 45:1–12.
  • Difo, V. H., E. Onyike, D. A. Ameh, G. C. Njoku, and U. S. Ndidi. 2015. Changes in nutrient and antinutrient composition of Vigna racemosa flour in open and controlled fermentation. Journal of Food Science and Technology 52 (9):6043–6048. doi:10.1007/s13197-014-1637-7.
  • Elizaquível, P., A. Pérez-Cataluña, A. Yépez, C. Aristimuño, E. Jiménez, P. S. Cocconcelli, G. Vignolo, and R. Aznar. 2015. Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. International Journal of Food Microbiology 198:9–18. doi:10.1016/j.ijfoodmicro.2014.12.027.
  • Elviri, L., and M. Mattarozzi. 2012. Chapter 16: Food proteomics. In Chemical analysis of food: Techniques and applications, ed. Y. Picó, 519–537. Cambridge, MA: Academic Press.
  • Escalante, A., M. E. Rodriguez, A. Martinez, A. Lopez-Munguia, F. Bolivar, and G. Gosset. 2004. Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiology Letters 235 (2):273–279. doi:10.1016/j.femsle.2004.04.045.
  • Escalante, A., M. Giles Gómez, G. Hernández, M. Córdova Aguilar, A. López-Munguía, G. Gosset, and F. Bolívar. 2008. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. International Journal of Food Microbiology 124 (2):126–134. doi:10.1016/j.ijfoodmicro.2008.03.003.
  • Escobar-Zepeda, A., L. Vera-Ponce, and A. Sanchez-Flores. 2015. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Frontiers in Genetics 6:1–15. doi:10.3389/fgene.2015.00348.
  • Ezgi, Ü. A., B. Prasad, K. Anavekar, P. Bubenheim, and A. Liese. 2017. Investigation of a green process for the polymerization of catechin. Preparative Biochemistry and Biotechnology 47 (9):918–924. doi:10.1080/10826068.2017.1365241.
  • Fleet, G. 1999. Microorganisms in food ecosystems. International Journal of Food Microbiology 50:101–117. doi:10.1016/S0168-1605(99)00080-X.
  • Gibbs, B. F., A. Zougman, R. Masse, and C. Mulligan. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International 37 (2):123–131. doi:10.1016/j.foodres.2003.09.010.
  • Gilani, G. S., K. A. Cockell, and E. Sepehr. 2005. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International 88 (3):967–987.
  • Gilani, G. S., C. W. Xiao, and K. A. Cockell. 2012. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. British Journal of Nutrition 108:315–332. doi:10.1017/S0007114512002371.
  • Greppi, A., K. Rantsiou, W. Padonou, J. Hounhouigan, L. Jespersen, M. Jakobsen, and L. Cocolin. 2013. Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and -independent methods. International Journal of Food Microbiology 165 (2):84–88. doi:10.1016/j.ijfoodmicro.2013.05.005.
  • Hai-Peng, Lv, Z. Ying-Jun, L. Zhi, and L. Yue-Rong. 2013. Processing and chemical constituents of Pu-erh tea: A review. Food Research International 53:608–618. doi:10.1016/j.foodres.2013.02.043.
  • Han, F., and Y. Xu. 2011. Identification of low molecular weight peptides in Chinese rice wine (Huang Jiu) by UPLC-ESI-MS/MS. Journal of the Institute of Brewing 117 (2):238–250. doi:10.1002/j.2050-0416.2011.tb00467.x.
  • Hartmann, R., and H. Meisel. 2007. Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology 18 (2):163–169. doi:10.1016/j.copbio.2007.01.013.
  • Hefle, S., Lambrecht, D. Nordlee. J. 2005. Soy sauce retains allergenicity through the fermentation/production process. The Journal of Allergy and Clinical Immunology 115 (2):S32. doi:10.1016/j.jaci.2004.12.143.
  • Horgan, R., and L. Kenny. 2011. Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist 13:189–195. doi:10.1576/toag.13.3.189.27672.
  • Hu, X. L., H. Du, D. Ren, and Y. Xu. 2016. Illuminating anaerobic microbial community and co-occurrence patterns across a quality gradient in Chinese liquor fermentation pit muds. Applied and Environmental Microbiology 82 (8):2506–2515. doi:10.1128/AEM.03409-15.
  • Humer, E., and K. Schedle. 2016. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics. Journal of Trace Elements in Medicine and Biology 37:69–77. doi:10.1016/j.jtemb.2016.03.007.
  • Illeghems, K., S. Weckx, and L. Vuyst. 2015. Applying Meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiology 50:54–63. doi:10.1016/j.fm.2015.03.005.
  • Ito, Y., T. Ichikawa, T. Iwai, Y. Saegusa, T. Ikezawa, Y. Goso, and K. Ishihara. 2008. Effects of tea catechins on the gastrointestinal mucosa in rats. Journal of Agricultural and Food Chemistry 56:1222–12126. doi:10.1021/jf802142n.
  • Jedrychowski, L. 1999. Reduction of the antigenicity of whey proteins by lactic acid fermentation. Food and Agricultural Immunology 11 (1):91–99. doi:10.1080/09540109999951.
  • Jeong, S. H., S. H. Lee, J. Y. Jung, E. J. Choi, and C. O. Jeon. 2013. Microbial succession and metabolite changes during long-term storage of Kimchi. Journal of Food Science 78 (5):763–769. doi:10.1111/1750-3841.12095.
  • Jiménez-Martínez, C., and G. Gutiérrez-López. 2012. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews 4:224–243. doi:10.1007/s12393-012-9058-8.
  • Jung, J. Y., S. H. Lee, J. M. Kim, M. S. Park, J. W. Bae, Y. Hahn, E. L. Madsen, and C. O. Jeon. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Applied and Environmental Microbiology 77 (7):2264–2274. doi:10.1128/AEM.02157-10.
  • Jung, J. Y., S. H. Lee, J. M. Kim, M. S. Park, J. W. Bae, Y. Hahn, E. L. Madsen, and C. O. Jeon. 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. International Journal of Food Microbiology 163 (2–3):171–179. doi:10.1016/j.ijfoodmicro.2013.02.022.
  • Kabak, B., and A. Dobson. 2011. An introduction to the traditional fermented foods and beverages of Turkey. Critical Reviews in Food Science and Nutrition 51 (3):248–260. doi:10.1080/10408390903569640.
  • Kalb, S., J. Baudys, D. Wang, and J. Barr. 2015. Recommended mass spectrometry-based strategies to identify botulinum neurotoxin-containing samples. Toxins 7 (5):1765–1778. doi:10.3390/toxins7051765.
  • Kang, H., H. Yang, M. Kim, E. Han, H. Kim, and D. Kwon. 2011. Metabolomics analysis of meju during fermentation by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS). Food Chemistry 127 (3):1056–1064. doi:10.1016/j.foodchem.2011.01.080.
  • Kim, H. J., S. H. Park, T. H. Lee, B. H. Nahm, Y. R. Kim, and H. Y. Kim. 2008. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosensors and Bioelectronics 24 (2):238–246. doi:10.1016/j.bios.2008.03.019.
  • Kim, M., K. Lee, S. Yoo, B. Kim, J. Chun, and H. Yi. 2013. Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics & Informatics 11 (3):102–113. doi:10.5808/GI.2013.11.3.102.
  • Kim, M. J., H. S. Kwak, H. Y. Jung, and S. S. Kim. 2016. Microbial communities related to sensory attributes in Korean fermented soy bean paste (doenjang). Food Research International 89:724–732. doi:10.1016/j.foodres.2016.09.032.
  • Kum, S. J., S. O. Yang, S. M. Lee, P. S. Chang, Y. H. Choi, J. J. Lee, B. S. Hurh, and Y. S. Kim. 2015. Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang). Journal of Agricultural and Food Chemistry 63 (5):1401–1418. doi:10.1021/jf5056002.
  • Lay, J., S. Borgmann, R. Liyanage, and C. Wilkins. 2006. Problems with the “omics.” Trends in Analytical Chemistry 25 (11):1046–1056. doi:10.1016/j.trac.2006.10.007.
  • Lee, D., S. Lee, E. Jang, H. Shin, B. Moon, and C. Lee. 2016. Metabolomic profiles of Aspergillus oryzae and Bacillus amyloliquefaciens during rice koji fermentation. Molecules 21 (6):773. doi:10.3390/molecules21060773.
  • Lee, J.-E., B.-J. Lee, J.-O. Chung, H.-J. Shin, S.-J. Lee, C.-H. Lee, and Y.-S. Hong. 2011. 1H NMR-based metabolomic characterization during green tea (Camellia sinensis) fermentation. Food Research International 44 (2):597–604. doi:10.1016/j.foodres.2010.12.004.
  • Lee, S. Y., S. Lee, S. Lee, J. Oh, E. Jeon, H. Ryu, and C. H. Lee. 2014. Primary and secondary metabolite profiling of doenjang, a fermented soybean paste during industrial processing. Food Chemistry 165:157–166. doi:10.1016/j.foodchem.2014.05.089.
  • Lee, S. H., J. Y. Jung, and C. O. Jeon. 2015. Source tracking and succession of kimchi lactic acid bacteria during fermentation. Journal of Food Science 80 (8):1871–1877. doi:10.1111/1750-3841.12948.
  • Lim, J. K. 2008. Development of methods for protein extraction from three major Korean fermented soy foods for 2-dimensional gel and mass spectrometric analyses. Journal of Applied Biological Chemistry 51 (3):88–94. doi:10.3839/jabc.2008.022.
  • Li, Z., J. Rui, X. Li, J. Li, L. Dong, Q. Huang, C. Huang, Z. Wang, L. Li, P. Xuan, et al. 2017. Bacterial community succession and metabolite changes during doubanjiang-meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L.) paste. Food Chemistry 218:534–5432. doi:10.1016/j.foodchem.2016.09.104.
  • McGovern, P., J. Zhang, J. Tang, Z. Zhang, G. Hall, R. Moreau, A. Nunez, E. Butrym, M. Richards, C. Wang., et al. 2004. Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences of the United States of America 101 (51):17593–17598. doi:10.1073/pnas.0407921102.
  • Meinlschmidt, P., U. Schweiggert-Weisz, and P. Eisner. 2016. Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. Journal of Food Science and Technology 71:202–212. doi:10.1016/j.lwt.2016.03.026.
  • Menschaert, G., T. T. M. Vandekerckhove, G. Baggerman, L. Schoofs, W. Luyten, and W. V. Criekinge. 2010. Peptidomics coming of age: A review of contributions from a bioinformatics angle. Journal of Proteome Research 9 (5):2051–2061. doi:10.1021/pr900929m.
  • Merril, S., and A. M. Mazza. 2006. Reaping the benefits of genomic and proteomic research. Washington DC: National Academies Press.
  • Moayedi, A., L. Mora, M. Aristoy, M. Hashemi, M. Safari, and F. Toldrá. 2017. ACE-Inhibitory and antioxidant activities of peptide fragments obtained from tomato processing by-products fermented using Bacillus subtilis: Effect of amino acid composition and peptides molecular mass distribution. Applied Biochemistry and Biotechnology 181 (1):48–64. doi:10.1007/s12010-016-2198-1.
  • Mozzi, F., M. Ortiz, J. Bleckwedel, L. De Vuyst, and M. Pescuma. 2013. Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International 54 (1):1152–1161. doi:10.1016/j.foodres.2012.11.010.
  • Nam, Y., S. Yi, and S. Lim. 2012. Bacterial diversity of cheonggukjang, a traditional Korean fermented food, analyzed by barcoded pyrosequencing. Food Control 28 (1):135–142. doi:10.1016/j.foodcont.2012.04.028.
  • Namgung, H., H. Park, I. Cho, H. Choi, D. Kwon, S. Shim, and Y. Kim. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. Journal of the Science of Food and Agriculture 90 (11):1926–1935. doi:10.1002/jsfa.4036.
  • Patti, G. J., O. Yanes, and G. Siuzdak. 2012. Innovation: Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology 13 (4):263–269. doi:10.1038/nrm3314.
  • Pérez-Cataluña, A., P. Elizaquível, P. Carrasco, J. Espinosa, D. Reyes, C. Wacher, and R. Aznar. 2018. Diversity and dynamics of lactic acid bacteria in Atole agrio, a traditional maize-based fermented beverage from South-Eastern Mexico, analysed by high throughput sequencing and culturing. Antonie Van Leeuwenhoek 111 (3):358–399. doi:10.1007/s10482-017-0960-1.
  • Pinu, F. 2016. Early detection of food pathogens and food spoilage microorganisms: Application of metabolomics. Trends in Food Science and Technology 54:213–215. doi:10.1016/j.tifs.2016.05.018.
  • Pischetsrieder, M., and R. Baeuerlein. 2009. Proteome research in food science. Chemical Society Reviews 38 (9):2600–2608. doi:10.1039/b817898b.
  • Plumb, G. W., S. De Pascual-Teresa, C. Santos-Buelga, V. Cheynier, and G. Williamson. 1998. Antioxidant properties of catechins and proanthocyanidins: Effect of polymerisation, galloylation and glycosylation. Free Radical Research 29 (4):351–358. doi:10.1080/10715769800300391.
  • Prakash, J., and K. Kailasapathy. 2010. Fermented foods and beverages of the world. Boca Raton, FL: CRC Press.
  • Quiblier, C., K. Seidl, B. Roschitzki, A. Zinkernagel, B. Berger-Bächi, and M. Senn. 2013. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence. PLoS One 8 (5):e63513. doi:10.1371/journal.pone.0063513.
  • Roger, T., T. N. Léopold, and C. M. Funtong. 2015. Nutritional properties and antinutritional factors of corn paste (Kutukutu) fermented by different strains of lactic acid bacteria. International Journal of Food Sciences and Nutrition 2015:1–13. doi:10.1155/2015/502910.
  • Sabree, Z.L., M.R. Rondon, and J. Handelsman. 2009. Encyclopedia of microbiology. 3rd ed. Cambridge, MA: Academic Press.
  • Sagdic, O., I. Ozturk, N. Yapar, and H. Yetim. 2014. Diversity and probiotic potentials of lactic acid bacteria isolated from gilaburu, a traditional Turkish fermented European cranberrybush (Viburnum opulus L.) fruit drink. Food Research International 64:537–545. doi:10.1016/j.foodres.2014.07.045.
  • Sánchez, B., L. Ruiz, M. Gueimonde, and A. Margolles. 2013. Omics for the study of probiotic microorganisms. Food Research International 54 (1):1061–1071. doi:10.1016/j.foodres.2013.01.029.
  • Sancho, A. I., and E. N. Mills. 2010. Proteomic approaches for qualitative and quantitative characterisation of food allergens. Regulatory Toxicology and Pharmacology 58 (3):42–46. doi:10.1016/j.yrtph.2010.08.026.
  • Sanjukta, S., and A. Rai. 2016. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology 50:1–10. doi:10.1016/j.tifs.2016.01.010.
  • Shevchenko, A., Y. Yang, A. Knaust, H. Thomas, H. Jiang, E. Lu, C. Wang, and A. Shevchenko. 2014. Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. Journal of Proteomics 105:363–371. doi:10.1016/j.jprot.2013.11.016.
  • Shin, D., and D. Jeong. 2015. Korean traditional fermented soybean products: Jang. Journal of Ethnic Foods 2 (1):2–7. doi:10.1016/j.jef.2015.02.002.
  • Srajer, M., D. Gaso-Sokac, H. Pavlovic, J. Clifton, L. Breen, L. Cao, J. Giacometti, and D. Josic. 2013. Sample preparation and further proteomic investigation of the inhibitory activity of pyridinium oximes to gram-positive and gram-negative food pathogens. Food Research International 51:46–52. doi:10.1016/j.foodres.2012.11.018.
  • Stackebrandt, E., and T. Embley. 2000. Diversity of uncultured microorganisms in the environment. In Nonculturable microorganism in the environment, eds. R. R. Colwell and D. J. Grimes, 57–58. Boston, MA: Springer. doi:10.1007/978-1-4757-0271-2.
  • Stanton, C., R. Ross, G. Fitzgerald, and D. Van Sinderen. 2005. Fermented functional foods based on probiotics and their biogenic metabolites. Current Opinion in Biotechnology 16 (2):198–203. doi:10.1016/j.copbio.2005.02.008.
  • Tamang, J. 2015. Naturally fermented ethnic soybean foods of India. Journal of Ethnic Foods 2 (1):8–17. doi:10.1016/j.jef.2015.02.003.
  • Todorov, S., and W. Holzapfel. 2015. Traditional cereal fermented foods as sources of functional microorganisms. Advances in Fermented Foods and Beverages 6:123–153. doi:10.1016/B978-1-78242-015-6.00006-2.
  • Torsvik, V., and L. Øvreås. 2002. Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology 5 (3):240–245. doi:10.1016/S1369-5274(02)00324-7.
  • Ulloa, M., T. Herrera, and P. Lappe. 1987. Fermentaciones tradicionales indígenas de Mexico. México, DF: Instituto Nacional Indigenista.
  • Vallejo, J. A., P. Miranda, J. D. Flores-Félix, F. Sánchez-Juanes, J. M. Ageitos, J. M. González-Buitrago, E. Velázquez, and T. G. Villa. 2013. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Systematic and Applied Microbiology 36 (8):560–564. doi:10.1016/j.syapm.2013.09.002.
  • Vogelmann, S. A., M. Seitter, U. Singer, M. J. Brandt, and C. Hertel. 2009. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. International Journal of Food Microbiology 130 (3):205–212. doi:10.1016/j.ijfoodmicro.2009.01.020.
  • Wacher, C. 2004. Alimentos y bebidas fermentados tradicionales. In Biotecnología Alimentaria, ed. G. Garibay, Q. Ramírez, L. Munguía. 313-343. México: Limusa.
  • Wacher, C., A. Cañas, E. Bárzana, P. Lappe, M. Ulloa, and J. D. Owens. 2000. Microbiology of Indian and Mestizo pozol fermentations. Food Microbiology 17 (3):251–256. doi:10.1006/fmic.1999.0310.
  • Wang, X., H. Du, and Y. Xu. 2017. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor. International Journal of Food Microbiology 244:27–35. doi:10.1016/j.ijfoodmicro.2016.12.018.
  • Wang, Y., Y. Li, J. Yang, J. Ruan, and C. Sun. 2016. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. Trends in Analytical Chemistry 78:1–16. doi:10.1016/j.trac.2015.08.010.
  • Xu-Cong, L., J. Rui-Bo, L. Yan, C. Fang, C. Zhi-Chao, L. Bin, C. Shao-Jun, R. Ping-Fan, and N. Li. 2016. Characterization of the dominant bacterial communities of traditional fermentation starters for Hong Qu glutinous rice wine by means of MALDI-TOF mass spectrometry fingerprinting, 16S rRNA gene sequencing and species-specific PCRs. Food Control 67:292–302. doi:10.1016/j.foodcont.2016.03.005.
  • Xu, J., F. L. Hu, W. Wang, X. C. Wan, and G. H. Bao. 2015. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics. Food Chemistry 186:176–184. doi:10.1016/j.foodchem.2014.12.045.
  • Yang, F., J. D. Jemsem, B. Svensson, H. J. Jorgensen, D. B. Collinge, and C. Finnie. 2012. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Molecular Plant Pathology 15 (5):451–459. doi:10.1111/j.1364-3703.2011.00759.x.
  • Yang, S.-O., S.-H. Kim, S. Cho, J. Lee, Y.-S. Kim, S.-S. Yun, and H.-K. Choi. 2009. Classification of fermented soymilk during fermentation by H NMR couple with principal component analysis and elucidation of free-radical scavenging activities. Bioscience, Biotechnology, and Biochemistry 73 (5):1184–1188. doi:10.1271/bbb.80743.
  • Ye, Y.,. H. Li, N. Ling, Y. Han, Q. Wu, X. Xu, and R. Jiao. 2016. Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. International Journal of Food Microbiology 18:182–188. doi:10.1016/j.ijfoodmicro.2015.08.025.
  • Zhang, J., H. Zhang, L. Wang, X. Guo, X. Wang, and H. Yao. 2010. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chemistry 119 (1):226–234. doi:10.1016/j.foodchem.2009.06.015.
  • Zhao, M., D. Zhang, X. Su, S. Duan, J. Wan, W. Yuan, B. Liu, Y. Ma, and Y. Pan. 2015. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Scientific Reports 5, Article number: 10117. doi:10.1038/srep10117.
  • Zhao, N., C. Zhang, Q. Yang, Z. Guo, B. Yang, W. Lu, D. Li, F. Tian, X. Liu, H. Zhang, and W. Chen. 2016. Selection of taste markers related to lactic acid bacteria microflora metabolism for Chinese traditional Paocai: A gas chromatography-mass spectrometry-based metabolomics approach. Journal of Agricultural and Food Chemistry 64 (11):2415–2422. doi:10.1021/acs.jafc.5b05332.
  • Zheng, Q., B. Lin, Y. Wang, Q. Zhang, X. He, P. Yang, J. Zhou, X. Guan, and X. Huang. 2015. Proteomic and high-throughput analysis of protein expression and microbial diversity of microbes from 30- and 300-year pit muds of Chinese. Food Research International 75:305–314. doi:10.1016/j.foodres.2015.06.029.
  • Zizumbo-Villarreal, D., F. González-Zozaya, A. Olay-Barrientos, R. Platas-Ruíz, M. Cuevas-Sagardí, L. Almendros-López, and P. Colunga-GarcíaMarín. 2009. Archaeological evidence of the cultural importance of agave spp. in Pre-Hispanic Colima, Mexico. Economic Botany 63 (3):288–302. doi:10.1007/s12231-009-9092-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.