911
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Prevention of breast cancer by dietary polyphenols—role of cancer stem cells

, &

References

  • Adisetiyo, H., M. M. Liang, C. P. Liao, J. H. Jeong, M. B. Cohen, P. Roy-Burman, and B. Frenkel. 2014. Dependence of Castration-Resistant prostate cancer (CRPC) Stem cells on CRPC-Associated fibroblasts. Journal of Cellular Physiology 229 (9):1170–1176. doi: 10.1002/jcp.24546.
  • Alaynick, W. A. 2008. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 8 (4):329–337. doi: 10.1016/j.mito.2008.02.001.
  • Anastas, J. N., and R. T. Moon. 2013. WNT signalling pathways as therapeutic targets in cancer. Nature Reviews Cancer 13 (1):11–26. doi: 10.1038/nrc3419.
  • Anwar, M. S., J. Q. Yu, P. Beale, and F. Huq. 2016. 6-Shogaol and mycophenolic acid are seen to act synergistically in combination with platinum drug in killing ovarian cancer cells. European Journal of Cancer 69 (Suppl 1):S18–S18. doi: 10.1016/S0959-8049(16)32634-X.
  • Auguste, P., S. Lemiere, F. Larrieu-Lahargue, and A. Bikfalvi. 2005. Molecular mechanisms of tumor vascularization. Critical Reviews in Oncology/Hematology 54 (1):53–61. doi: 10.1016/j.critrevonc.2004.11.006.
  • Banerjee, S., Y. W. Li, Z. W. Wang, and F. H. Sarkar. 2008. Multi-targeted therapy of cancer by genistein. Cancer Letters 269 (2):226–242. doi: 10.1016/j.canlet.2008.03.052.
  • Bartel, D. P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116 (2):281–297. doi: 10.1016/S0092-8674(04)00045-5.
  • Bernstein, B. E., T. S. Mikkelsen, X. H. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 (2):315–326. doi: 10.1016/j.cell.2006.02.041.
  • Boman, B. M., and M. S. Wicha. 2008. Cancer stem cells: A step toward the cure. Journal of Clinical Oncology 26 (17):2795–2799. doi: 10.1200/JCO.2008.17.7436.
  • Bonuccelli, G., F. Sotgia, and M. P. Lisanti. 2018. Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways. Aging 10 (8):1867–1883. doi: 10.18632/aging.101483.
  • Boyer, L. A., K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros, T. I. Lee, S. S. Levine, M. Wernig, A. Tajonar, M. K. Ray, et al. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441 (7091):349–353. doi: 10.1038/nature04733.
  • Bu, P., K.-Y. Chen, J. H. Chen, L. Wang, J. Walters, Y. J. Shin, J. P. Goerger, J. Sun, M. Witherspoon, N. Rakhilin, et al. 2013. A microRNA miR-34a-Regulated bimodal switch targets notch in Colon cancer stem cells. Cell Stem Cell 12 (5):602–615. doi: 10.1016/j.stem.2013.03.002.
  • Burnett, J. P., G. Lim, Y. Li, R. B. Shah, R. Lim, H. J. Paholak, S. P. McDermott, L. Sun, Y. Tsume, S. Bai, et al. 2017. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Letters 394:52–64. doi: 10.1016/j.canlet.2017.02.023.
  • Cantile, M., F. Collina, M. D'Aiuto, M. Rinaldo, G. Pirozzi, C. Borsellino, R. Franco, G. Botti, and M. Di Bonito. 2013. Nuclear localization of cancer stem cell marker CD133 in triple-negative breast cancer: a case report. Tumori 99 (5):245–250. doi: 10.1700/1377.15325.
  • Chen, D., S. Pamu, Q. Cui, T. H. Chan, and Q. P. Dou. 2012. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorganic & Medicinal Chemistry 20 (9):3031–3037. doi: 10.1016/j.bmc.2012.03.002.
  • Chen, W., L. Li, X. Zhang, Y. Liang, Z. Pu, L. Wang, and J. Mo. 2017. Curcumin: A calixarene derivative micelle potentiates anti-breast cancer stem cells effects in xenografted, triple-negative breast cancer mouse models. Drug Delivery 24 (1):1470–1481. doi: 10.1080/10717544.2017.1381198.
  • Chen, Y. A., H. M. Lien, M. C. Kao, U. G. Lo, L. C. Lin, C. J. Lin, S. J. Chang, C. C. Chen, J. T. Hsieh, H. Lin., et al. 2017. Sensitization of radioresistant prostate cancer cells by resveratrol isolated from Arachis hypogaea stems. PLoS One 12 (1):e0169204. doi: 10.1371/journal.pone.0169204.
  • Choi, Y. J., K. Heo, H. S. Park, K. M. Yang, and M. H. Jeong. 2016. The resveratrol analog HS-1793 enhances radiosensitivity of mouse-derived breast cancer cells under hypoxic conditions. International Journal of Oncology 49 (4):1479–1488. doi: 10.3892/ijo.2016.3647.
  • Chung Seyung, V. J. V. 2015. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Research 35 (1):39–46.
  • de Oliveira, M. R., S. F. Nabavi, A. Manayi, M. Daglia, Z. Hajheydari, and S. M. Nabavi. 2016. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica et Biophysica Acta 1860 (4):727–745. doi: 10.1016/j.bbagen.2016.01.017.
  • Dean, M. 2009. ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia 14 (1):3–9. doi: 10.1007/s10911-009-9109-9.
  • Dean, M., T. Fojo, and S. Bates. 2005. Tumour stem cells and drug resistance. Nature Reviews Cancer 5 (4):275–284. doi: 10.1038/nrc1590.
  • Demark-Wahnefried, W., C. L. Rock, K. Patrick, and T. Byers. 2008. Lifestyle interventions to reduce cancer risk and improve outcomes. American Family Physician 77 (11):1573–1578.
  • Deng, H., X. T. Zhang, M. L. Wang, H. Y. Zheng, L. J. Liu, and Z. Y. Wang. 2014. ER-alpha36-mediated rapid estrogen signaling positively regulates ER-positive breast cancer stem/progenitor cells. PLoS One 9 (2):e88034. doi: 10.1371/journal.pone.0088034.
  • Deng, X. Y., S. Apple, H. Zhao, J. Song, M. Lee, W. Luo, X. C. Wu, D. Chung, R. J. Pietras, and H. R. Chang. 2017. CD24 expression and differential resistance to chemotherapy in triple-negative breast cancer. Oncotarget 8 (24):38294–38308. doi: 10.18632/oncotarget.16203.
  • Deng, X. Z., B. Wu, K. Xiao, J. Kang, J. Xie, X. P. Zhang, and Y. B. Fan. 2015. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cellular Physiology and Biochemistry 35 (1):71–82. doi: 10.1159/000369676.
  • Ding, Q., Y. Miyazaki, K. Tsukasa, S. Matsubara, M. Yoshimitsu, and S. Takao. 2014. CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Molecular Cancer 13 (1):15. doi: 10.1186/1476-4598-13-15.
  • Doherty, M. R., J. M. Smigiel, D. J. Junk, and M. W. Jackson. 2016. Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel) 8 (1):8–13. doi: 10.3390/cancers8010008.
  • Dontu, G., W. M. Abdallah, J. M. Foley, K. W. Jackson, M. F. Clarke, M. J. Kawamura, and M. S. Wicha. 2003. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development 17 (10):1253–1270. doi: 10.1101/gad.1061803.
  • Easwaran, H., S. E. Johnstone, L. Van Neste, J. Ohm, T. Mosbruger, Q. J. Wang, M. J. Aryee, P. Joyce, N. Ahuja, D. Weisenberger, et al. 2012. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Research 22 (5):837–849. doi: 10.1101/gr.131169.111.
  • Elizabeth Louie, S. N., J.-S. Chen, and M. Schmidt. 2010. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Research 12 (6):94–108. doi: 10.1186/bcr2773.
  • Engelmann, K., H. Shen, and O. J. Finn. 2008. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Research 68 (7):2419–2426. doi: 10.1158/0008-5472.CAN-07-2249.
  • Fan, P. H., S. J. Fan, H. Wang, J. Mao, Y. Shi, M. M. Ibrahim, W. Ma, X. T. Yu, Z. H. Hou, B. Wang, and L. H. Li. 2013. Genistein decreases the breast cancer stem-like cell population through hedgehog pathway. Stem Cell Research & Therapy 4 (6):146. doi: 10.1186/scrt357.
  • Fatima, M. T., A. Chanchal, P. S. Yavvari, S. D. Bhagat, M. Gujrati, R. K. Mishra, and A. Srivastava. 2016. Cell permeating nano-complexes of amphiphilic polyelectrolytes enhance solubility, stability, and anti-cancer efficacy of curcumin. Biomacromolecules 17 (7):2375–2383. doi: 10.1021/acs.biomac.6b00417.
  • Flemming, A. 2015. Cancer stem cells: Targeting the root of cancer relapse. Nature Reviews Drug Discovery 14 (3):165–165. doi: 10.1038/nrd4560.
  • Forloni, M., S. K. Dogra, Y. Y. Dong, D. Conte, J. H. Ou, L. J. Zhu, A. Deng, M. Mahalingam, M. R. Green, and N. Wajapeyee. 2014. miR-146a promotes the initiation and progression of melanoma by activating notch signaling. Elife 3:e01460. doi: 10.7554/eLife.01460.
  • Fu, H., L. Fu, C. Xie, W. S. Zuo, Y. S. Liu, M. Z. Zheng, and J. M. Yu. 2017. miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer. Oncology Reports 37 (2):1093–1099. doi: 10.3892/or.2017.5360.
  • Fu, Y., H. Chang, X. Peng, Q. Bai, L. Yi, Y. Zhou, J. Zhu, and M. Mi. 2014. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing wnt/beta-catenin signaling pathway. PLoS One 9 (7):e102535. doi: 10.1371/journal.pone.0102535.
  • Fu, Y., H. Li, and X. S. Hao. 2017. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumor Biology 39 (4):1–7. doi: 10.1177/1010428317697577.
  • Fujiki, H., E. Sueoka, A. Rawangkan, and M. Suganuma. 2017. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. Journal of Cancer Research and Clinical Oncology 143 (12): 2401–2412. doi: 10.1007/s00432-017-2515-2.
  • Fujiki, H., T. Watanabe, E. Sueoka, A. Rawangkan, and M. Suganuma. 2018. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Molecular Cell 41 (2):73–82. doi: 10.14348/molcells.2018.2227.
  • Garg, M. 2017. Epithelial plasticity and cancer stem cells: Major mechanisms of cancer pathogenesis and therapy resistance. World Journal of Stem Cells 9 (8):118–126. doi: 10.4252/wjsc.v9.i8.118.
  • Ginestier, C., M. H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. Jacquemier, P. Viens, C. G. Kleer, S. Liu, et al. 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1 (5):555–567. doi: 10.1016/j.stem.2007.08.014.
  • Goldman, A., B. Majumder, A. Dhawan, S. Ravi, D. Goldman, M. Kohandel, P. K. Majumder, and S. Sengupta. 2015. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nature Communications 6:6139. doi: 10.1038/ncomms7139.
  • Gritli-Linde, A., M. Bei, R. Maas, X. Y. M. Zhang, A. Linde, and A. P. McMahon. 2002. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 129 (23):5323–5337. doi: 10.1242/dev.00100.
  • Gulcur, E., M. Thaqi, F. Khaja, A. Kuzmis, and H. Onyuksel. 2013. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: A novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Delivery and Translational Research 3 (6):562–574. doi: 10.1007/s13346-013-0167-6.
  • Ha, M., and V. N. Kim. 2014. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 15 (8):509–524. doi: 10.1038/nrm3838.
  • Hagiwara, K., N. Kosaka, Y. Yoshioka, R. U. Takahashi, F. Takeshita, and T. Ochiya. 2012. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Scientific Reports 2:314. doi: 10.1038/srep00314.
  • Iliopoulos, D., H. A. Hirsch, and K. Struhl. 2009. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139 (4):693–706. doi: 10.1016/j.cell.2009.10.014.
  • Iqbal, W., S. Alkarim, A. AlHejin, H. Mukhtar, and K. S. Saini. 2016. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget 7 (46):76337–76353. doi: 10.18632/oncotarget.10942.
  • Isobe, T., S. Hisamori, D. J. Hogan, M. Zabala, D. G. Hendrickson, P. Dalerba, S. Cai, F. Scheeren, A. H. Kuo, S. S. Sikandar, et al. 2014. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife 3:e1977. doi: 10.7554/eLife.01977.
  • Iwasaki, M., M. Inoue, T. Otani, S. Sasazuki, N. Kurahashi, T. Miura, S. Yamamoto, and S. Tsugane. 2008. Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: A nested case-control study from the Japan public health center-based prospective study group. Journal of Clinical Oncology 26 (10):1677–1683. doi: 10.1200/JCO.2007.13.9964.
  • Jang, J. W., Y. Song, S. H. Kim, J. Kim, and H. R. Seo. 2017. Potential mechanisms of CD133 in cancer stem cells. Life Sciences 184:25–29. doi: 10.1016/j.lfs.2017.07.008.
  • Jiang, F., Y. Li, J. Mu, C. Y. Hu, M. Zhou, X. X. Wang, L. Si, S. L. Ning, and Z. Li. 2016. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Molecular Carcinogenesis 55(5):929–940. doi: 10.1002/mc.22333.
  • Ju, Y. S., L. Alexandrov, M. Gerstung, I. Martincorena, M. Stratton, P. J. Campbell, I. B. C. Grp, I. C. M. D. Grp, and I. P. C. Grp. 2014. The landscape of mitochondrial DNA mutations in human cancer. Cancer Research 74 (19 Suppl):4322. doi: 10.1158/1538-7445.AM2014-4322.
  • Jung, S. K., M. H. Lee, D. Y. Lim, J. E. Kim, P. Singh, S. Y. Lee, C. H. Jeong, T. G. Lim, H. Y. Chen, Y. I. Chi, et al. 2014. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. Journal of Biological Chemistry 289 (52):35839–35848. doi: 10.1016/0002-9610(71)90360-6.
  • Justyna Gil, A. S., K. A. Pesz, and M. M. Siadek. 2008. Cancer stem cells: The theory and perspectives in cancer therapy. Journal of Applied Genetics 49 (2):193–199. doi: 10.1007/BF03195612.
  • Kahn, M. 2014. Can we safely target the WNT pathway? Nature Reviews Drug Discovery 13 (7):513–532. doi: 10.1038/nrd4233.
  • Kakarala, M., D. E. Brenner, H. Korkaya, C. Cheng, K. Tazi, C. Ginestier, S. Liu, G. Dontu, and M. S. Wicha. 2010. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment 122 (3):777–785. doi: 10.1007/s10549-009-0612-x.
  • Kang, L., Y. Guo, X. Zhang, J. Meng, and Z. Y. Wang. 2011. A positive cross-regulation of HER2 and ER-alpha36 controls ALDH1 positive breast cancer cells. The Journal of Steroid Biochemistry and Molecular Biology 127 (3–5):262–268. doi: 10.1016/j.jsbmb.2011.08.011.
  • Kang, L., J. Mao, Y. J. Tao, B. Song, W. Ma, Y. Lu, L. J. Zhao, J. Z. Li, B. X. Yang, and L. H. Li. 2015. MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Science 106 (6):700–708. doi: 10.1111/cas.12656.
  • Kashyap, D., S. Mittal, K. Sak, P. Singhal, and H. S. Tuli. 2016. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumor Biology 37 (10):12927–12939. doi: 10.1007/s13277-016-5184-x.
  • Kim, J. Y., X. W. Zhang, K. M. Rieger-Christ, I. C. Summerhayes, D. E. Wazer, K. E. Paulson, and A. S. Yee. 2006. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells - Requirement of the transcriptional repressor HBP1. Journal of Biological Chemistry 281 (16):10865–10875. doi: 10.1074/jbc.M513378200.
  • Kim, R. J., J. R. Park, K. J. Roh, A. R. Choi, S. R. Kim, P. H. Kim, J. H. Yu, J. W. Lee, S. H. Ahn, G. Gong, et al. 2013. High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2alpha. Cancer Letters 333 (1):18–31. doi: 10.1016/j.canlet.2012.11.026.
  • Kise, K., Y. Kinugasa-Katayama, and N. Takakura. 2016. Tumor microenvironment for cancer stem cells. Advanced Drug Delivery Reviews 99 (Part B):197–205. doi: 10.1016/j.addr.2015.08.005.
  • Kosuru, R. Y., A. Roy, S. K. Das, and S. Bera. 2018. Gallic acid and gallates in human health and disease: Do mitochondria hold the key to success? Molecular Nutrition & Food Research 62 (1):699. doi: 10.1002/mnfr.201700699.
  • Kuang, W., J. Tan, Y. Duan, J. Duan, W. Wang, F. Jin, Z. Jin, X. Yuan, and Y. Liu. 2009. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of numb. Biochemical and Biophysical Research Communications 378 (2):259–263. doi: 10.1016/j.bbrc.2008.11.041.
  • Kuhajda, F. P. 2000. Fatty-Acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition 16 (3):202–208. doi: 10.1016/S0899-9007(99)00266-X.
  • Kwon, M. J., J. Han, J. H. Seo, K. Song, H. M. Jeong, J. S. Choi, Y. J. Kim, S. H. Lee, Y. L. Choi, and Y. K. Shin. 2015. CD24 overexpression is associated with poor prognosis in Luminal A and Triple-Negative breast cancer. PLoS One 10 (10):e0139112. doi: 10.1371/journal.pone.0139112.
  • Tume, L., K. Paco, R. Ubidia-Incio, and J. Moya. 2016. CD133 in breast cancer cells and in breast cancer stem cells as another target for immunotherapy. Gaceta Mexicana De Oncología 15 (1):22–30. doi: 10.1016/j.gamo.2016.01.003.
  • Lanou, A. J., and B. Svenson. 2010. Reduced cancer risk in vegetarians: An analysis of recent reports. Cancer Management and Research 3:1–8. doi: 10.2147/CMR.S6910.
  • Lee, C. H., H. M. Hong, Y. Y. Chang, and W. W. Chang. 2012. Inhibition of heat shock protein (Hsp) 27 potentiates the suppressive effect of Hsp90 inhibitors in targeting breast cancer stem-like cells. Biochimie 94 (6):1382–1389. doi: 10.1016/j.biochi.2012.02.034.
  • Lee, C. H., Y. T. Wu, H. C. Hsieh, Y. Yu, A. L. Yu, and W. W. Chang. 2014. Epidermal growth factor/heat shock protein 27 pathway regulates vasculogenic mimicry activity of breast cancer stem/progenitor cells. Biochimie 104:117–126. doi: 10.1016/j.biochi.2014.06.011.
  • Li, B. L., Y. Lu, H. H. Wang, X. C. Han, J. Mao, J. Z. Li, L. H. Yu, B. Wang, S. J. Fan, X. T. Yu, and B. Song. 2016. miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomedicine & Pharmacotherapy 79:93–101. doi: 10.1016/j.biopha.2016.01.045.
  • Li, S., and Q. Li. 2015. Cancer stem cells, lymphangiogenesis, and lymphatic metastasis. Cancer Letters 357 (2):438–447. doi: 10.1016/j.canlet.2014.12.013.
  • Li, S. Z., Q. Zhao, B. Wang, S. Yuan, X. Y. Wang, and K. Li. 2018. Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. Phytotherapy Research 32 (8):1530–1536. doi: 10.1002/ptr.6081.
  • Li, W., H. Ma, J. Zhang, L. Zhu, C. Wang, and Y. Yang. 2017. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Scientific Reports 7 (1):13856. doi: 10.1038/s41598-017-14364-2.
  • Li, W., T.-T. Lui, H.-H. Wang, and H.-M. Hong. 2011. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappa B. Breast Cancer Research 13 (5):101–114. doi: 10.1186/bcr3042.
  • Li, X. L., N. Zhou, J. Wang, Z. J. Liu, X. H. Wang, Q. Zhang, Q. Y. Liu, L. F. Gao, and R. Wang. 2018. Quercetin suppresses breast cancer stem cells (CD44(+)/CD24(-)) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sciences 196:56–62. doi: 10.1016/j.lfs.2018.01.014.
  • Li, Y., and T. Zhang. 2014. Targeting cancer stem cells by curcumin and clinical applications. Cancer Letters 346 (2):197–205. doi: 10.1016/j.canlet.2014.01.012.
  • Li, Y. Y., M. S. Wicha, S. J. Schwart, and D. X. Sun. 2011. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. The Journal of Nutritional Biochemistry 22 (9):799–806. doi: 10.1016/j.jnutbio.2010.11.001.
  • Li, Z., S. C. Yin, L. Zhang, W. G. Liu, B. Chen, and H. Xing. 2017. Clinicopathological characteristics and prognostic value of cancer stem cell marker CD133 in breast cancer: A meta-analysis. OncoTargets and Therapy 10:859–870. doi: 10.2147/OTT.S124733.
  • Liang, C. J. 2016. Diverse targets of beta-catenin during the epithelial-mesenchymal transition define cancer stem cells and predict disease relapse. Cancer Research 76 (20):6133–6133. doi: 10.1158/0008-5472.CAN-14-3265.
  • Liang, G. N., and D. J. Weisenberger. 2017. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 12 (6):416–432. doi: 10.1080/15592294.2017.1311434.
  • Liu, S., Y. Cong, D. Wang, Y. Sun, L. Deng, Y. Liu, R. Martin-Trevino, L. Shang, S. P. McDermott, M. D. Landis, et al. 2014. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2 (1):78–91. doi: 10.1016/j.stemcr.2013.11.009.
  • Liu, S. L., G. Dontu, I. D. Mantle, S. Patel, N. S. Ahn, K. W. Jackson, P. Suri, and M. S. Wicha. 2006. Hedgehog signaling and bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research 66 (12):6063–6071. doi: 10.1158/0008-5472.CAN-06-0054.
  • Liu, T. J., B. C. Sun, X. L. Zhao, X. M. Zhao, T. Sun, Q. Gu, Z. Yao, X. Y. Dong, N. Zhao, and N. Liu. 2013. CD133(+) cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32 (5):544–553. doi: 10.1038/onc.2012.85.
  • Liu, W., S. M. Shen, X. Y. Zhao, and G. Q. Chen. 2012. Targeted genes and interacting proteins of hypoxia inducible factor-1. International Journal of Biochemistry and Molecular Biology 3 (2):165–178.
  • Liu, Y., T. Zou, S. Wang, H. Chen, D. Su, X. Fu, Q. Zhang, and X. Kang. 2016. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. International Journal of Oncology 48 (3):1063–1072. doi: 10.3892/ijo.2016.3351.
  • Loureiro, R., K. A. Mesquita, P. J. Oliveira, and I. Vega-Naredo. 2013. Mitochondria in cancer stem cells: A target for therapy. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 7 (2):102–114. doi: 10.2174/18722148113079990006.
  • Lu, K. T., B. Y. Wang, W. Y. Chi, J. Chang-Chien, J. J. Yang, H. T. Lee, Y. M. Tzeng, and W. W. Chang. 2016. Ovatodiolide inhibits breast cancer stem/Progenitor cells through SMURF2-Mediated downregulation of Hsp27. Toxins (Basel) 8 (5):235–246. doi: 10.3390/toxins8050127.
  • Lu, X. Q., K. J. Xu, H. Y. Lu, Y. H. Yin, C. L. Ma, Y. H. Liu, H. X. Li, and Z. H. Suo. 2011. CD44(+)/CD24(-) cells are transit progenitors and do not determine the molecular subtypes and clinical parameters in breast carcinomas. Ultrastructural Pathology 35 (2):72–78. doi: 10.3109/01913123.2010.544843.
  • Lu, Y., W. Ma, J. Mao, X. T. Yu, Z. H. Hou, S. J. Fan, B. Song, H. Wang, J. Z. Li, L. Kang, et al. 2015. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of hedgehog signaling. Chemico-Biological Interactions 228:100–107. doi: 10.1016/j.cbi.2014.12.002.
  • Lv, L., J. Y. Zhou, C. W. Lin, G. Hu, L. Yi, J. Du, K. Gao, and X. R. Li. 2015. DNA methylation is involved in the aberrant expression of miR-133b in colorectal cancer cells. Oncology Letters 10 (2):907–912. doi: 10.3892/ol.2015.3336.
  • Ma, F., H. Li, H. Wang, X. Shi, Y. Fan, X. Ding, C. Lin, Q. Zhan, H. Qian, and B. Xu. 2014. Enriched CD44(+)/CD24(-) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Letters 353 (2):153–159. doi: 10.1016/j.canlet.2014.06.022.
  • Ma, Z. L., Y. P. Chen, J. L. Song, and Y. Q. Wang. 2015. Knockdown of CD24 inhibits proliferation, invasion and sensitizes breast cancer MCF-7 cells to tamoxifen in vitro. European Review for Medical and Pharmacological Sciences 19 (13):2394–2399.
  • Mamaeva, V., R. Niemi, M. Beck, E. Ozliseli, D. Desai, S. Landor, T. Gronroos, P. Kronqvist, I. K. N. Pettersen, E. McCormack, et al. 2016. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying gamma-secretase inhibitors. Molecular Therapy 24 (5):926–936. doi: 10.1038/mt.2016.42.
  • McCubrey, J. A., K. Lertpiriyapong, L. S. Steelman, S. L. Abrams, L. V. Yang, R. M. Murata, P. L. Rosalen, A. Scalisi, L. M. Neri, L. Cocco, et al. 2017. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging-Us 9 (6):1477–1536. doi: 10.18632/aging.101250
  • Miele, L. 2006. Notch signaling. Clinical Cancer Research 12 (4):1074–1079. doi: 10.1158/1078-0432.CCR-05-2570.
  • Miletti-Gonzalez, K. E., S. Chen, N. Muthukumaran, G. N. Saglimbeni, X. Wu, J. Yang, K. Apolito, W. J. Shih, W. N. Hait, and L. Rodriguez-Rodriguez. 2005. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Research 65 (15):6660–6667. doi: 10.1158/0008-5472.CAN-04-3478.
  • Minaei, A., M. Sabzichi, F. Ramezani, H. Hamishehkar, and N. Samadi. 2016. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Molecular Biology Reports 43 (2):99–105. doi: 10.1007/s11033-016-3942-x.
  • Mineva, N. D., K. E. Paulson, S. P. Naber, A. S. Yee, and G. E. Sonenshein. 2013. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One 8 (9):e73464. doi: 10.1371/journal.pone.0073464.
  • Monkkon, T., and M. T. Lewis. 2017. New paradigms for the hedgehog signaling network in mammary gland development and breast cancer. Biochimica Et Biophysica Acta-Reviews on Cancer 1868 (1):315–332. doi: 10.1016/j.bbcan.2017.06.003.
  • Montales, M. T., O. M. Rahal, J. Kang, T. J. Rogers, R. L. Prior, X. Wu, and R. C. Simmen. 2012. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis 33 (3):652–660. doi: 10.1093/carcin/bgr317.
  • Montales, M. T., O. M. Rahal, H. Nakatani, T. Matsuda, and R. C. Simmen. 2013. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells. Journal of Endocrinology 218 (1):135–149. doi: 10.1530/JOE-12-0520.
  • Moreno-Londono, A. P., C. Bello-Alvarez, and J. Pedraza-Chaverri. 2017. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food and Chemical Toxicology 109:143–154. doi: 10.1016/j.fct.2017.08.047.
  • Mukherjee, S., M. Mazumdar, S. Chakraborty, A. Manna, S. Saha, P. Khan, P. Bhattacharjee, D. Guha, A. Adhikary, S. Mukhjerjee, and T. Das. 2014. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin_β-catenin negative feedback loop. Stem Cell Research & Therapy 5 (5):116–135. doi: 10.1186/scrt506.
  • Naab, T., L. Ricks-Santi, and F. Khan. 2016. CD44 expression associated with triple negative breast cancers in african american women without unfavorable outcome. American Journal of Clinical Pathology 146(Suppl 1):295. doi: 10.1093/ajcp/aqw159.066.
  • Naksuriya, O., S. Okonogi, R. M. Schiffelers, and W. E. Hennink. 2014. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35 (10):3365–3383. doi: 10.1016/j.biomaterials.2013.12.090.
  • Nalls, D., S. N. Tang, M. Rodova, R. K. Srivastava, and S. Shankar. 2011. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6 (8):1–12. doi: 10.1371/journal.pone.0024099
  • Nandy, S. B., A. Arumugam, R. Subramani, D. Pedroza, K. Hernandez, E. Saltzstein, and R. Lakshmanaswamy. 2015. MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the hippo signaling pathway. Oncotarget 6 (19):17366–17378. doi: 10.18632/oncotarget.3953.
  • Newman, D. J., and G. M. Cragg. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products 75 (3):311–335. doi: 10.1021/np200906s.
  • Ning, Y. X., Q. X. Li, K. Q. Ren, M. F. Quan, and J. G. Cao. 2014. 7-difluoromethoxyl-5,4 '-di-n-octyl genistein inhibits ovarian cancer stem cell characteristics through the downregulation of FOXM1. Oncology Letters 8 (1):295–300. doi: 10.3892/ol.2014.2080.
  • Nobili, S., D. Lippi, E. Witort, M. Donnini, L. Bausi, E. Mini, and S. Capaccioli. 2009. Natural compounds for cancer treatment and prevention. Pharmacological Research 59 (6):365–378. doi: 10.1016/j.phrs.2009.01.017.
  • Oda, Y., Y. Ohishi, Y. Basaki, H. Kobayashi, T. Hirakawa, N. Wake, M. Ono, K. Nishio, M. Kuwano, and M. Tsuneyoshi. 2007. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: Their correlation with activated akt, LRP/MVP and P-glycoprotein expression. Cancer Science 98 (7):1020–1026. doi: 10.1111/j.1349-7006.2007.00492.x.
  • Oda, Y., Y. Ohishi, T. Saito, E. Hinoshita, T. Uchiumi, N. Kinukawa, Y. Iwamoto, K. Kohno, M. Kuwano, and M. Tsuneyoshi. 2003. Nuclear expression of Y-box-binding protein-1 correlates with P-glycoprotein and topoisomerase II alpha expression, and with poor prognosis in synovial sarcoma. The Journal of Pathology 199 (2):251–258. doi: 10.1002/path.1282.
  • Okuda, H., F. Xing, P. R. Pandey, S. Sharma, M. Watabe, S. K. Pai, Y. Y. Mo, M. Iiizumi-Gairani, S. Hirota, Y. Liu, et al. 2013. miR-7 suppresses brain metastasis of breast cancer Stem-Like cells by modulating KLF4. Cancer Research 73 (4):1434–1444. doi: 10.1158/0008-5472.CAN-12-2037.
  • Pal, D., V. Kolluru, B. Chandrasekaran, B. V. Baby, M. Aman, S. Suman, S. Sirimulla, M. A. Sanders, H. Alatassi, M. K. Ankem, and C. Damodaran. 2017. Targeting aberrant expression of notch-1 in ALDH(+) cancer stem cells in breast cancer. Molecular Carcinogenesis 56 (3):1127–1136. doi: 10.1002/mc.22579.
  • Pan, X., B. Zhao, Z. Song, S. Han, and M. Wang. 2016. Estrogen receptor-alpha36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. Journal of Pharmacological Sciences 130 (2):85–93. doi: 10.1016/j.jphs.2015.12.003.
  • Pandey, P. R., H. Okuda, M. Watabe, S. K. Pai, W. Liu, A. Kobayashi, F. Xing, K. Fukuda, S. Hirota, T. Sugai, et al. 2011. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Research and Treatment 130 (2):387–398. doi: 10.1007/s10549-010-1300-6.
  • Pandey, P. R., F. Xing, S. Sharma, M. Watabe, S. K. Pai, M. Iiizumi-Gairani, K. Fukuda, S. Hirota, Y. Y. Mo, and K. Watabe. 2013. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene 32 (42):5111–5122. doi: 10.1038/onc.2012.519.
  • Park, S. Y., M. J. Kim, S. A. Park, J. S. Kim, K. N. Min, D. K. Kim, W. Lim, J. S. Nam, and Y. Y. Sheen. 2015. Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells. Oncotarget 6 (35):37526–37543. doi: 10.18632/oncotarget.6063.
  • Park, S. Y., H. E. Lee, H. L. Li, M. Shipitsin, R. Gelman, and K. Polyak. 2010. Heterogeneity for stem Cell-Related markers according to tumor subtype and histologic stage in breast cancer. Clinical Cancer Research 16 (3):876–887. doi: 10.1158/1078-0432.CCR-09-1532.
  • Pece, S., D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, G. Viale, P. G. Pelicci, and P. P. Di Fiore. 2010. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140 (1):62–73. doi: 10.1016/j.cell.2009.12.007.
  • Peng, F., H. L. Tang, P. Liu, J. G. Shen, X. Y. Guan, X. F. Xie, J. H. Gao, L. Xiong, L. Jia, J. P. Chen, and C. Peng. 2017. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Scientific Reports 7: 9022. doi: 10.1038/s41598-017-08422-y.
  • Pokharel, D., M. P. Padula, J. F. Lu, R. Jaiswal, S. P. Djordjevic, and M. Bebawy. 2016. The role of CD44 and ERM proteins in expression and functionality of P-glycoprotein in breast cancer cells. Molecules 21 (3):1–14. doi: 10.3390/molecules21030290.
  • Rahmani, M., M. Talebi, M. F. Hagh, A. A. H. Feizi, and S. Solali. 2018. Aberrant DNA methylation of key genes and acute lymphoblastic leukemia. Biomedicine & Pharmacotherapy 97:1493–1500. doi: 10.1016/j.biopha.2017.11.033.
  • Ray, A., S. Vasudevan, and S. Sengupta. 2015. 6-Shogaol inhibits breast cancer cells and stem Cell-Like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One 10 (9):e0137614. doi: 10.1371/journal.pone.0137614.
  • Sahin, E., C. Baycu, A. T. Koparal, D. B. Donmez, and E. Bektur. 2016. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells. Tumor Biology 37 (6):7573–7582. doi: 10.1007/s13277-015-4643-0.
  • Sansone, P., C. Ceccarelli, M. Berishaj, Q. Chang, V. K. Rajasekhar, F. Perna, R. L. Bowman, M. Vidone, L. Daly, J. Nnoli, et al. 2016. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nature Communications 7: 10442. doi: 10.1038/Ncomms10442.
  • Sato, T., A. Kaneda, S. Tsuji, T. Isagawa, S. Yamamoto, T. Fujita, R. Yamanaka, Y. Tanaka, T. Nukiwa, V. E. Marquez, et al. 2013. PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer. Scientific Reports 3:1911–1920. doi: 10.1038/srep01911
  • Sauvageau, M., and G. Sauvageau. 2008. Polycomb group genes: Keeping stem cell activity in balance. PLOS Biology 6 (4):678–681. doi: 10.1371/journal.pbio.0060113.
  • Shen, Y. A., C. Y. Wang, Y. T. Hsieh, Y. J. Chen, and Y. H. Wei. 2015. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle 14 (1):86–98. doi: 10.4161/15384101.2014.974419.
  • Shimono, Y., M. Zabala, R. W. Cho, N. Lobo, P. Dalerba, D. L. Qian, M. Diehn, H. P. Liu, S. P. Panula, E. Chiao, et al. 2009. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138 (3):592–603. doi: 10.1016/j.cell.2009.07.011.
  • Shindo, T., N. Nishiyama, T. Niinuma, H. Kitajima, M. Kai, T. Tokino, N. Shinkai, H. Suzuki, and N. Masumori. 2017. Downregulation of mir-200b is associated with cisplatin-resistance in bladder cancer cells. The Journal of Urology 197 (Suppl 4):568–569. doi: 10.1016/j.juro.2017.02.1345.
  • Siddiqui, I. A., V. Sanna, V. M. Adhami, S. M. Shabana, M. Sechi, and H. Mukhtar. 2013. Prostate specific membrane antigen (PSMA) targeting nano-EGCG for prostate cancer prevention and treatment. Cancer Research 73 (8):3663. doi: 10.1158/1538-7445.AM2013-3663.
  • Siu, P. M., and S. E. Alway. 2005. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. The Journal of Physiology 565 (1):309–323. doi: 10.1113/jphysiol.2004.081083.
  • Stacker, S. A., S. P. Williams, T. Karnezis, R. Shayan, S. B. Fox, and M. G. Achen. 2014. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nature Reviews Cancer 14 (3):159–172. doi: 10.1038/nrc3677.
  • Su, J., S. F. Wu, H. Y. Wu, L. I. Le, and T. Guo. 2016. CD44 is functionally crucial for driving lung cancer stem cells metastasis through wnt/β-catenin-FoxM1-Twist signaling. Molecular Carcinogenesis 55 (12):1962–1973. doi: 10.1002/mc.22443.
  • Suh, J., D. H. Kim, and Y. J. Surh. 2018. Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk. Archives of Biochemistry and Biophysics 643:62–71. doi: 10.1016/j.abb.2018.02.011.
  • Sun, M. J., N. Zhang, X. L. Wang, Y. M. Li, W. W. Qi, H. W. Zhang, Z. J. Li, and Q. F. Yang. 2016. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell & Bioscience 6:44. doi: 10.1186/s13578-016-0104-8.
  • Sun, X., C. Xu, G. Xiao, J. Meng, J. Wang, S. C. Tang, S. Qin, N. Du, G. Li, H. Ren, and D. Liu. 2018. Breast cancer stem-like cells are sensitized to tamoxifen induction of self-renewal inhibition with enforced let-7c dependent on wnt blocking. International Journal of Molecular Medicine 41 (4):1967–1975. doi: 10.3892/ijmm.2018.3388.
  • Suva, M. L., N. Riggi, M. Janiszewska, I. Radovanovic, P. Provero, J. C. Stehle, K. Baumer, M. A. Le Bitoux, D. Marino, L. Cironi, et al. 2009. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research 69 (24):9211–9218. doi: 10.1158/0008-5472.CAN-09-1622.
  • Tanaka, S., S. Miyagi, G. Sashida, T. Chiba, J. Yuan, M. Mochizuki-Kashio, Y. Suzuki, S. Sugano, C. Nakaseko, K. Yokote, et al. 2012. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 120 (5):1107–1117. doi: 10.1182/blood-2011-11-394932.
  • Tang, B. W., A. Raviv, D. Esposito, C. Daniel, K. C. Flanders, Y. A. Yang, and L. M. Wakefield. 2015. Transforming growth factor-beta (TGF-beta) directly regulates breast cancer stem cell dynamics in vitro and in vivo. Cancer Research 75(15 Suppl):2221. doi: 10.1158/1538-7445.AM2015-2221.
  • Tay, Y., J. Q. Zhang, A. M. Thomson, B. Lim, and I. Rigoutsos. 2008. MicroRNAs to nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455 (7216):1124–1128. doi: 10.1038/nature07299.
  • To, K., A. Fotovati, K. M. Reipas, J. H. Law, K. J. Hu, J. Wang, A. Astanehe, A. H. Davies, L. Lee, A. L. Stratford., et al. 2010. Y-Box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Research 70 (7):2840–2851. doi: 10.1158/0008-5472.CAN-09-3155.
  • Torchilin, V. P. 2014. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery 13 (11):813–827. doi: 10.1038/nrd4333.
  • Tsai, J. H., L. S. Hsu, C. L. Lin, H. M. Hong, M. H. Pan, T. D. Way, and W. J. Chen. 2013. 3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and wnt/beta-catenin signaling Cascades and reversal of epithelial-mesenchymal transition. Toxicology and Applied Pharmacology 272 (3):746–756. doi: 10.1016/j.taap.2013.07.019.
  • Tsang, J. Y. S., Y. H. Huang, M. H. Luo, Y. B. Ni, S. K. Chan, P. C. W. Lui, A. M. C. Yu, P. H. Tan, and G. M. Tse. 2012. Cancer stem cell markers are associated with adverse biomarker profiles and molecular subtypes of breast cancer. Breast Cancer Research and Treatment 136 (2):407–417. doi: 10.1007/s10549-012-2271-6.
  • Tuna, M., A. S. Machado, and G. A. Calin. 2016. Genetic and epigenetic alterations of MicroRNAs and implications for human cancers and other diseases. Genes, Chromosomes and Cancer 55 (3):193–214. doi: 10.1002/gcc.22332.
  • Vanden Berghe, W. 2012. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacological Research 65(6):565–576. doi: 10.1016/j.phrs.2012.03.007.
  • Vlashi, E., K. Kim, C. Lagadec, L. D. Donna, J. T. McDonald, M. Eghbali, J. W. Sayre, E. Stefani, W. McBride, and F. Pajonk. 2009. In vivo imaging, Tracking, and targeting of cancer stem cells. JNCI: Journal of the National Cancer Institute 101 (5):350–359. doi: 10.1093/jnci/djn509.
  • Vuong, T., J. F. Mallet, M. Ouzounova, S. Rahbar, H. Hernandez-Vargas, Z. Herceg, and C. Matar. 2016. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation. Journal of Translational Medicin 14:1–12. doi: 10.1186/s12967-016-0770-7.
  • Wainwright, E. N., and P. Scaffidi. 2017. Epigenetics and cancer stem cells: Unleashing, hijacking, and restricting cellular plasticity. Trends in Cancer 3 (5):372–386. doi: 10.1016/j.trecan.2017.04.004.
  • Wang, D., C. Cai, X. Dong, Q. C. Yu, X. O. Zhang, L. Yang, and Y. A. Zeng. 2015. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517 (7532):81–84. doi: 10.1038/nature13851.
  • Wang, H., L. Wang, Y. Song, S. Wang, X. Huang, Q. Xuan, X. Kang, and Q. Zhang. 2017. CD44(+)/CD24(-) phenotype predicts a poor prognosis in triple-negative breast cancer. Oncology Letters 14 (5):5890–5898. doi: 10.3892/ol.2017.6959.
  • Wang, K., H. Fan, Q. S. Chen, G. J. Ma, M. Zhu, X. M. Zhang, Y. Y. Zhang, and J. Yu. 2015. Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro. Anticancer Drugs 26 (1):15–24. doi: 10.1097/CAD.0000000000000132.
  • Wang, N., Z. Y. Wang, C. Peng, J. S. You, J. G. Shen, S. W. Han, and J. P. Chen. 2014. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via beta-catenin/ABCG2 signaling. Carcinogenesis 35 (11):2544–2554. doi: 10.1093/carcin/bgu187.
  • Wang, N., Z. Y. Wang, Y. Wang, X. M. Xie, J. G. Shen, C. Peng, J. S. You, F. Peng, H. L. Tang, X. Y. Guan, and J. P. Chen. 2015. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget 6 (12):9854–9876. doi: 10.18632/oncotarget.3396.
  • Wang, R. A., Z. S. Li, H. Z. Zhang, P. J. Zheng, Q. L. Li, J. G. Shi, Q. G. Yan, J. Ye, J. B. Wang, Y. Guo, et al. 2013. Invasive cancers are not necessarily from preformed in situ tumours - an alternative way of carcinogenesis from misplaced stem cells. Journal of Cellular and Molecular Medicine 17(7):921–926. doi: 10.1111/jcmm.12078.
  • Wang, S., R. Chen, Z. Zhong, Z. Shi, M. Chen, and Y. Wang. 2014. Epigallocatechin-3-gallate potentiates the effect of curcumin in inducing growth inhibition and apoptosis of resistant breast cancer cells. The American Journal of Chinese Medicine 42 (05):1279–1300. doi: 10.1142/S0192415X14500803.
  • Wang, T., and Z. Y. Xu. 2010. miR-27 promotes osteoblast differentiation by modulating wnt signaling. Biochemical and Biophysical Research Communications 402 (2):186–189. doi: 10.1016/j.bbrc.2010.08.031.
  • Wang, X. Z., Y. K. Hang, J. B. Liu, Y. Q. Hou, N. Wang, and M. J. Wang. 2017. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncology Letters 13 (6):4825–4831. doi: 10.3892/ol.2017.6053.
  • Wang, Y. W., J. Y. Yu, R. Cui, J. J. Lin, and X. T. Ding. 2016. Curcumin in treating breast cancer: A review. Journal of Laboratory Automation 21 (6):723–731. doi: 10.1177/2211068216655524.
  • Wang, Z. M., W. J. Du, G. A. Piazza, and Y. Xi. 2013. MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacologica Sinica 34 (11):1374–1380. doi: 10.1038/aps.2013.134.
  • Warfel, N. A., and W. S. El-Deiry. 2014. HIF-1 signaling in drug resistance to chemotherapy. Current Medicinal Chemistry 21 (26):3021–3028. doi: 10.2174/0929867321666140414101056.
  • Warin, R. F., H. D. Chen, D. N. Soroka, Y. D. Zhu, and S. M. Sang. 2014. Induction of lung cancer cell apoptosis through a p53 pathway by [6]-shogaol and its cysteine-conjugated metabolite M2. Journal of Agricultural and Food Chemistry 62 (6):1352–1362. doi: 10.1021/jf405573e.
  • Wei, X., T. H. Senanayake, G. Warren, and S. V. Vinogradov. 2013. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjugate Chemistry 24 (4):658–668. doi: 10.1021/bc300632w.
  • Wu, C. H., B. H. Hong, C. T. Ho, and G. C. Yen. 2015. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. Journal of Agricultural and Food Chemistry 63 (9):2432–2441. doi: 10.1021/acs.jafc.5b00002.
  • Wu, L. C., L. X. Guo, Y. H. Liang, X. Liu, L. H. Jiang, and L. S. Wang. 2015. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncology Reports 34 (6):3311–3317. doi: 10.3892/or.2015.4279.
  • Xi, G., E. Hayes, R. Lewis, S. Ichi, B. Mania-Farnell, K. Shim, T. Takao, E. Allender, C. S. Mayanil, and T. Tomita. 2016. CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-kappa B pathway in multidrug-resistant glioblastoma cells in vitro. Oncogene 35 (42):5576–5576. doi: 10.1038/onc.2016.64.
  • Xiao, W., Z. Y. Gao, Y. X. Duan, W. X. Yuan, and Y. Ke. 2017. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. Journal of Experimental & Clinical Cancer Research 36 (1):41. doi: 10.1186/S13046-017-0507-3.
  • Xie, Q., S. Wang, Y. Zhao, Z. C. Zhang, C. Qin, and X. J. Yang. 2017. MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1. Oncotarget 8 (13):22003–22013. doi: 10.18632/oncotarget.15781.
  • Xu, L., L. Zhang, C. Hu, S. Liang, X. Fei, N. Yan, Y. Zhang, and F. Zhang. 2016. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. International Journal of Oncology 48 (3):1175–1186. doi: 10.3892/ijo.2016.3337.
  • Yang, F., J. Xu, L. Tang, and X. Guan. 2017. Breast cancer stem cell: the roles and therapeutic implications. Cellular and Molecular Life Sciences 74 (6):951–966. doi: 10.1007/s00018-016-2334-7.
  • Yang, J. Z., C. L. Wang, Z. J. Zhang, X. J. Chen, Y. S. Jia, B. Wang, and T. Kong. 2017. Curcumin inhibits the survival and metastasis of prostate cancer cells via the notch-1 signaling pathway. APMIS 125 (2):134–140. doi: 10.1111/apm.12650.
  • Yang, Z., N. Sun, R. Cheng, C. Zhao, Z. Liu, X. Li, J. Liu, and Z. Tian. 2017. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Biomaterials 147:53–67. doi: 10.1016/j.biomaterials.2017.09.013.
  • Yasuda, K., Y. Hirohashi, T. Mariya, A. Murai, Y. Tabuchi, T. Kuroda, H. Kusumoto, A. Takaya, E. Yamamoto, T. Kubo, et al. 2017. Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27. Oncotarget 8 (19):31540–31553. doi: 10.18632/oncotarget.16361.
  • Yin, A. H., S. Miraglia, E. D. Zanjani, G. AlmeidaPorada, M. Ogawa, A. G. Leary, J. Olweus, J. Kearney, and D. W. Buck. 1997. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90 (12):5002–5012.
  • Yin, T., H. J. Wei, S. M. Gou, P. F. Shi, Z. Y. Yang, G. Zhao, and C. Y. Wang. 2011. Cancer Stem-Like cells enriched in panc-1 spheres possess increased migration ability and resistance to gemcitabine. International Journal of Molecular Sciences 12 (3):1595–1604. doi: 10.3390/ijms12031595.
  • Yu, D., H. S. Shin, Y. S. Lee, D. Lee, S. Kim, and Y. C. Lee. 2014. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncology Reports 31 (2):673–678. doi: 10.3892/or.2013.2893.
  • Yu, F., H. Yao, P. Zhu, X. Zhang, Q. Pan, C. Gong, Y. Huang, X. Hu, F. Su, J. Lieberman, and E. Song. 2007. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131 (6):1109–1123. doi: 10.1016/j.cell.2007.10.054.
  • Zhang, X. T., L. G. Kang, L. Ding, S. Vranic, Z. Gatalica, and Z. Y. Wang. 2011. A positive feedback loop of ER-alpha36/EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene 30 (7):770–780. doi: 10.1038/onc.2010.458.
  • Zhao, Y. Y., J. Ma, Y. L. Fan, Z. Y. Wang, R. Tian, W. Ji, F. Zhang, and R. F. Niu. 2018. TGF-beta transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Molecular Oncology 12 (3):305–321. doi: 10.1002/1878-0261.12162.
  • Zhong, Y., S. J. Shen, Y. D. Zhou, F. Mao, J. H. Guan, Y. Lin, Y. L. Xu, and Q. Sun. 2014. ALDH1 is a better clinical indicator for relapse of invasive ductal breast cancer than the CD44(+)/CD24(-) phenotype. Medical Oncology 31 (3):1–8. doi: 10.1007/s12032-014-0864-0.
  • Zhou, L., L. C. Zhao, N. Jiang, X. L. Wang, X. N. Zhou, X. L. Luo, and J. Ren. 2017. MicroRNA miR-590-5p inhibits breast cancer cell stemness and metastasis by targeting SOX2. European Review for Medical and Pharmacological Sciences 21 (1):87–94.
  • Zhou, M. L., Y. X. Hou, G. L. Yang, H. L. Zhang, G. Tu, Y. E. Du, S. Y. Wen, L. Y. Xu, X. Tang, S. F. Tang, et al. 2016. LncRNA-Hh strengthen cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells 34 (1):55–66. doi: 10.1002/stem.2219.
  • Zhou, Q., M. Ye, Y. Lu, H. Zhang, Q. Chen, S. Huang, and S. Su. 2015. Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem Cell-Like breast cancer cells. PLoS One 10 (8):e0136694. doi: 10.1371/journal.pone.0136694.
  • Zhu, J., Y. Jiang, X. Yang, S. Wang, C. Xie, X. Li, Y. Li, Y. Chen, X. Wang, Y. Meng, et al. 2017. Wnt/beta-catenin pathway mediates (-)-epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochemical and Biophysical Research Communications 482 (1):15–21. doi: 10.1016/j.bbrc.2016.11.038.
  • Zhu, J. Y., X. Yang, Y. Chen, Y. Jiang, S. J. Wang, Y. Li, X. Q. Wang, Y. Meng, M. M. Zhu, X. Ma, et al. 2017. Curcumin suppresses lung cancer stem cells via inhibiting wnt/beta-catenin and sonic hedgehog pathways. Phytotherapy Research 31 (4):680–688. doi: 10.1002/ptr.5791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.