1,155
Views
27
CrossRef citations to date
0
Altmetric
Review

Recent advances in the detection of 17β-estradiol in food matrices: A review

, , &

References

  • Adeel, M., X. Song, Y. Wang, D. Francis, and Y. Yang. 2017. Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International 99:107–19. doi: 10.1016/j.envint.2016.12.010.
  • Afifi, R., N. Elnwishy, A. Hannora, M. Hedstrom, B. Mattiasson, H. Omran, O. M. L. Alharbi, and I. Ali. 2016. SPE and HPLC monitoring of 17-beta-estradiol in Egyptian aquatic ecosysetms. Journal of Liquid Chromatography & Related Technologies 39 (8):428–34. doi: 10.1080/10826076.2016.1174712.
  • Albuquerque, C. D. L., R. B. Nogueira, and R. J. Poppi. 2016. Determination of 17 beta-estradiol and noradrenaline in dog serum using surface-enhanced Raman spectroscopy and random Forest. Microchemical Journal 128:95–101. doi: 10.1016/j.microc.2016.04.012.
  • Alonso-Magdalena, P., I. Quesada, and A. Nadal. 2011. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nature Reviews Endocrinology 7 (6):346–53. doi: 10.1038/nrendo.2011.56.
  • Alsager, O. A., S. Kumar, B. Zhu, J. Travas-Sejdic, K. P. McNatty, and J. M. Hodgkiss. 2015. Ultrasensitive colorimetric detection of 17 beta-estradiol: The effect of shortening DNA aptamer sequences. Analytical Chemistry 87 (8):4201–9. doi: 10.1021/acs.analchem.5b00335.
  • Aufartova, J., M. E. Torres-Padron, Z. Sosa-Ferrera, P. Solich, and J. J. Santana-Rodriguez. 2012. Optimisation of an in-tube solid phase microextraction method coupled with HPLC for determination of some oestrogens in environmental liquid samples using different capillary columns. International Journal of Environmental Analytical Chemistry 92 (4):382–96. doi: 10.1080/03067319.2011.585714.
  • Azzouz, A., and E. Ballesteros. 2015. Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid-phase extraction system and gas chromatography-mass spectrometry. Food Chemistry 178:63–9. doi: 10.1016/j.foodchem.2015.01.044.
  • Azzouz, A.,. B. Souhail, and E. Ballesteros. 2011. Determination of residual pharmaceuticals in edible animal tissues by continuous solid-phase extraction and gas chromatography-mass spectrometry. Talanta 84 (3):820–8. doi: 10.1016/j.talanta.2011.02.016.
  • Bai, Y., J. Hu, S. Liu, W. Zhang, J. Zhang, J. He, P. Li, X. Li, J. Jin, and Z. Wang. 2017. Production of antibodies and development of an enzyme-linked immunosorbent assay for 17 beta-estradiol in milk. Food and Agricultural Immunology 28 (6):1519–29.
  • Barreiros, L., J. F. Queiroz, L. M. Magalhaes, A. M. T. Silva, and M. A. Segundo. 2016. Analysis of 17-beta-estradiol and 17-alpha-ethinylestradiol in biological and environmental matrices-A review. Microchemical Journal 126:243–62. doi: 10.1016/j.microc.2015.12.003.
  • Bergman, A., J. J. Heindel, T. Kasten, K. A. Kidd, S. Jobling, M. Neira, R. T. Zoeller, G. Becher, P. Bjerregaard, R. Bornman, et al. 2013. The impact of endocrine disruption: A consensus statement on the state of the science. Environmental Health Perspectives 121 (4):A104–A106.
  • Brinkman, M. T., L. Baglietto, K. Krishnan, D. R. English, G. Severi, H. A. Morris, J. L. Hopper, and G. G. Giles. 2010. Consumption of animal products, their nutrient components and postmenopausal circulating steroid hormone concentrations. European Journal of Clinical Nutrition 64 (2):176–83. doi: 10.1038/ejcn.2009.129.
  • Chen, C., X. Mi, Y. Yuan, G. Chen, L. Ren, K. Wang, D. Zhu, and Y. Qian. 2014. A preliminary risk assessment of potential exposure to naturally occurring estrogens from Beijing (China) market milk products. Food and Chemical Toxicology 71:74–80. doi: 10.1016/j.fct.2014.05.028.
  • Chen, J., G. Qin, W. Shen, Y. Li, and B. Das. 2015. Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals. Journal of Materials Chemistry C 3 (6):1309–18. doi: 10.1039/C4TC02224F.
  • Chen, Q., J. Shi, W. Wu, X. Liu, and H. Zhang. 2012. A new pretreatment and improved method for determination of selected estrogens in high matrix solid sewage samples by liquid chromatography mass spectrometry. Microchemical Journal 104:49–55. doi: 10.1016/j.microc.2012.04.008.
  • Diaz-Cruz, M. S., M. J. L. de Alda, R. Lopez, and D. Barcelo. 2003. Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). Journal of Mass Spectrometry 38 (9):917–23.
  • Du, X., L. Dai, D. Jiang, H. Li, N. Hao, T. You, H. Mao, and K. Wang. 2017. Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17 beta-estradiol. Biosensors & Bioelectronics 91:706–13. doi: 10.1016/j.bios.2017.01.034.
  • Eliassen, A. H., D. Spiegelman, X. Xu, L. K. Keefer, T. D. Veenstra, R. L. Barbieri, W. C. Willett, S. E. Hankinson, and R. G. Ziegler. 2012. Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among premenopausal women. Cancer Research 72 (3):696–706. doi: 10.1158/0008-5472.CAN-11-2507.
  • Fan, L., G. Zhao, H. Shi, M. Liu, Y. Wang, and H. Ke. 2014. A femtomolar level and highly selective 17 beta-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environmental Science & Technology 48 (10):5754–61.
  • Fang, C., N. M. Bandaru, A. V. Ellis, and N. H. Voelcker. 2013. Beta-cyclodextrin decorated nanostructured SERS substrates facilitate selective detection of endocrine disruptor chemicals. Biosensors & Bioelectronics 42:632–9. doi: 10.1016/j.bios.2012.10.075.
  • Felix, F. S., and L. Angnes. 2018. Electrochemical immunosensors - A powerful tool for analytical applications. Biosensors & Bioelectronics 102:470–8. doi: 10.1016/j.bios.2017.11.029.
  • Feng, J., L. Xu, G. Cui, X. Wu, W. Ma, H. Kuang, and C. Xu. 2016. Building SERS-active heteroassemblies for ultrasensitive bisphenol A detection. Biosensors & Bioelectronics 81:138–42. doi: 10.1016/j.bios.2016.02.055.
  • Florea, A., C. Cristea, F. Vocanson, R. Săndulescu, and N. Jaffrezic-Renault. 2015. Electrochemical sensor for the detection of estradiol based on electropolymerized molecularly imprinted polythioaniline film with signal amplification using gold nanoparticles. Electrochemistry Communications 59:36–9. doi: 10.1016/j.elecom.2015.06.021.
  • Furst, A. L., A. C. Hoepker, and M. B. Francis. 2017. Quantifying hormone disruptors with an engineered bacterial biosensor. ACS Central Science 3 (2):110–6. doi: 10.1021/acscentsci.6b00322.
  • Fu, G., D.-W. Sun, H. Pu and Q. Wei. 2019. Fabrication of Gold Nanorods for SERS Detection of Thiabendazole in Apple. Talanta 195:841–849. doi: 10.1016/j.talanta.2018.11.114.
  • Ganmaa, D., X. Cui, D. Feskanich, S. E. Hankinson, and W. C. Willett. 2012. Milk, dairy intake and risk of endometrial cancer: A 26-year follow-up. International Journal of Cancer 130 (11):2664–71. doi: 10.1002/ijc.26265.
  • Giulivo, M., M. L. de Alda, E. Capri, and D. Barcelo. 2016. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environmental Research 151:251–64. doi: 10.1016/j.envres.2016.07.011.
  • Gong, Y., Y. Niu, X. Gong, M. Ma, X. Ren, W. Zhu, R. Luo, and B. Gong. 2015. Preparation of 17 beta-estradiol-imprinted material by surface-initiated atom transfer radical polymerization and its application. Journal of Separation Science 38 (7):1254–61. doi: 10.1002/jssc.201401375.
  • Guo, F., Q. Liu, G. Qu, S. Song, J. Sun, J. Shi, and G. Jiang. 2013. Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1281:9–18. doi: 10.1016/j.chroma.2013.01.044.
  • Handa, Y., H. Fujita, Y. Watanabe, S. Honma, M. Kaneuchi, H. Minakami, and R. Kishi. 2010. Does dietary estrogen intake from meat relate to the incidence of hormone-dependent cancers?. Journal of Clinical Oncology 28 (15_suppl):1553. doi: 10.1200/jco.2010.28.15_suppl.1553.
  • He, H., D.-W. Sun, H. Pu, L. Chen and L. Lin. 2019. Applications of Raman Spectroscopic Techniques for Quality and Safety Evaluation of Milk: A Review of Recent Developments. Critical Reviews in Food Science and Nutrition 59 (5):770–793. doi: 10.1080/10408398.2018.1528436.
  • He, Y. N., X. G. Yang, J. Xia, L. Y. Zhao, and Y. X. Yang. 2016. Consumption of meat and dairy products in China: A review. The Proceedings of the Nutrition Society 75 (3):385–391. doi: 10.1017/S0029665116000641.
  • Hu, C., M. He, B. B. Chen, and B. Hu. 2012. Determination of estrogens in pork and chicken samples by stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection. Journal of Agricultural and Food Chemistry 60 (42):10494–10500. doi: 10.1021/jf303269c.
  • Huang, H., S. Shi, X. Gao, R. Gao, Y. Zhu, X. Wu, R. Zang, and T. Yao. 2016. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17 beta-estradiol detection. Biosensors & Bioelectronics 79:198–204.
  • Jiang, Y., D.-W. Sun, H. Pu, and Q. Wei. 2018. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends in Food Science & Technology 75:10–22. doi: 10.1016/j.tifs.2018.02.020.
  • Jiang, Y., D.-W. Sun, H. Pu, and Q. Wei. 2019. Ultrasensitive Analysis of Kanamycin Residue in Milk by SERS-Based Aptasensor. Talanta 197:151–158. doi: 10.1016/j.talanta.2019.01.015.
  • Jiang, Y., M. G. Colazo, and M. J. Serpe. 2018. Poly(N-isopropylacrylamide) microgel-based etalons for the label-free quantitation of estradiol-17 beta in aqueous solutions and milk samples. Analytical and Bioanalytical Chemistry 410 (18):4397–4407. doi: 10.1007/s00216-018-1095-6.
  • Karoui, R., and C. Blecker. 2011. Fluorescence spectroscopy measurement for quality assessment of food systems-a review. Food and Bioprocess Technology 4 (3):364–386. doi: 10.1007/s11947-010-0370-0.
  • Kim, K., J. Wactawski-Wende, K. A. Michels, T. C. Plowden, E. N. Chaljub, L. A. Sjaarda, and S. L. Mumford. 2017. Dairy food intake is associated with reproductive hormones and sporadic anovulation among healthy premenopausal women. The Journal of Nutrition 147 (2):218–226. doi: 10.3945/jn.116.241521.
  • Lan, H., N. Gan, D. Pan, F. Hu, T. Li, N. Long, H. Shen, and Y. Feng. 2014. Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples. Journal of Chromatography A 1365:35–44. doi: 10.1016/j.chroma.2014.08.096.
  • Li, J.-L., D.-W. Sun, H. Pu, and D. S. Jayas. 2017. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chemistry 218:543–552. doi: 10.1016/j.foodchem.2016.09.051.
  • Li, J., S. Liu, J. Yu, W. Lian, M. Cui, W. Xu, and J. Huang. 2013. Electrochemical immunosensor based on graphene-polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors and Actuators B-Chemical 188:99–105. doi: 10.1016/j.snb.2013.06.082.
  • Li, Y., J. Xu, M. Jia, Z. Yang, Z. Liang, J. Guo, Y. Luo, F. Shen, and C. Sun. 2015. Colorimetric determination of 17 beta-estradiol based on the specific recognition of aptamer and the salt-induced aggregation of gold nanoparticles. Materials Letters 159:221–224. doi: 10.1016/j.matlet.2015.06.079.
  • Lima, D. L. D., C. P. Silva, M. Otero, and V. I. Esteves. 2013. Low cost methodology for estrogens monitoring in water samples using dispersive liquid-liquid microextraction and HPLC with fluorescence detection. Talanta 115:980–985.
  • Liu, B., P. Zhou, X. Liu, X. Sun, H. Li, and M. Lin. 2013. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food and Bioprocess Technology 6 (3):710–718. doi: 10.1007/s11947-011-0774-5.
  • Liu, J., W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen. 2014. Highly sensitive colorimetric detection of 17 beta-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Scientific Reports 4:7571.
  • Liu, S., R. Cheng, Y. Chen, H. Shi, and G. Zhao. 2018. A simple one-step pretreatment, highly sensitive and selective sensing of 17 beta-estradiol in environmental water samples using surface-enhanced Raman spectroscopy. Sensors and Actuators B-Chemical 254:1157–1164. doi: 10.1016/j.snb.2017.08.003.
  • Long, F., H. Shi, and H. Wang. 2014. Fluorescence resonance energy transfer based aptasensor for the sensitive and selective detection of 17 beta-estradiol using a quantum dot-bioconjugate as a nano-bioprobe. Rsc Advances 4 (6):2935–2941.
  • Lu, J., J. Wu, P. J. Stoffella, and P. C. Wilson. 2012. Isotope dilution-gas chromatography/mass spectrometry method for the analysis of alkylphenols, bisphenol A, and estrogens in food crops. Journal of Chromatography A 1258:128–135. doi: 10.1016/j.chroma.2012.08.033.
  • Lu, J., J. Wu, P. J. Stoffella, and P. C. Wilson. 2013. Analysis of bisphenol A, nonylphenol, and natural estrogens in vegetables and fruits using gas chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry 61 (1):84–89. doi: 10.1021/jf304971k.
  • Lu, X., H. M. Al-Qadiri, M. Lin, and B. A. Rasco. 2011. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology 4 (6):919–935. doi: 10.1007/s11947-011-0516-8.
  • Ma, Y., H. Liu, M. Mao, J. Meng, L. Yang, and J. Liu. 2016. Surface-enhanced Raman spectroscopy on liquid interfacial nanoparticle arrays for multiplex detecting drugs in urine. Analytical Chemistry 88 (16):8145–8151. doi: 10.1021/acs.analchem.6b01884.
  • Manickum, T., and W. John. 2015. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa. Analytical and Bioanalytical Chemistry 407 (17):4949–4970. doi: 10.1007/s00216-015-8546-0.
  • Matthiessen, P., J. R. Wheeler, and L. Weltje. 2018. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Critical Reviews in Toxicology 48 (3):195–216. doi: 10.1080/10408444.2017.1397099.
  • Metcalfe, S. S., F. J. Kroon, D. J. Beale, and G. Miller. 2018. Development of a validation protocol of enzyme immunoassay kits used for the analysis of steroid hormones in fish plasma. Journal of Experimental Marine Biology and Ecology 499:26–34. doi: 10.1016/j.jembe.2017.12.001.
  • Ming, W., X. Wang, W. Lu, Z. Zhang, X. Song, J. Li, and L. Chen. 2017. Magnetic molecularly imprinted polymers for the fluorescent detection of trace 17 beta-estradiol in environmental water. Sensors and Actuators B-Chemical 238:1309–1315.
  • Moraes, F. C., B. Rossi, M. C. Donatoni, K. T. de Oliveira, and E. C. Pereira. 2015. Sensitive determination of 17 beta-estradiol in river water using a graphene based electrochemical sensor. Analytica Chimica Acta 881:37–43. doi: 10.1016/j.aca.2015.04.043.
  • Pan, T.-T., D.-W. Sun, H. Pu, Q. Wei, W. Xiao, and Q.-J. Wang. 2017a. Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy based silver nanodots array. Journal of Food Engineering 215:147–155. doi: 10.1016/j.jfoodeng.2017.07.019.
  • Pan, T.-T., H. Pu, D.-W. Sun. 2017b. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biology and Technology 132:119–129. doi: 10.1016/j.postharvbio.2017.05.012.
  • Pan, T.-T., D.-W. Sun, J. Paliwal, H. Pu and Q. Wei. 2018a. A New Method for Accurate Determination of Polyphenol Oxidase Activity Based on Reduction in SERS Intensity of Catechol. Journal of Agricultural and Food Chemistry 66(42):11180–11187. doi: 10.1021/acs.jafc.8b03985.
  • Pan, T.-T, D.-W. Sun, H. Pu, and Q. Wei. 2018b. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles. Journal of Agricultural and Food Chemistry 66:2180–2187. doi: 10.1021/acs.jafc.7b05664.
  • Pape-Zambito, D. A., R. F. Roberts, and R. S. Kensinger. 2010. Estrone and 17 beta-estradiol concentrations in pasteurized-homogenized milk and commercial dairy products. Journal of Dairy Science 93 (6):2533–2540. doi: 10.3168/jds.2009-2947.
  • Pei, M., Z. Zhang, X. Huang, and Y. Wu. 2017. Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples. Talanta 165:152–160. doi: 10.1016/j.talanta.2016.12.043.
  • Pu, H., W. Xiao, and D.-W. Sun. 2017. SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends in Food Science & Technology 70:114–126. doi: 10.1016/j.tifs.2017.10.001.
  • Pu, H., X. Xie, D.-W. Sun, Q. Wei and Y. Jiang. 2019. Double Strand DNA Functionalized Au@Ag Nps for Ultrasensitive Detection of 17ß-estradiol Using Surface-Enhanced Raman Spectroscopy. Talanta 195:419–425. doi: 10.1016/j.talanta.2018.10.021.
  • Qin, F., Y. Y. Zhao, M. B. Sawyer, and X.-F. Li. 2008. Column-switching reversed phase-hydrophilic interaction liquid chromatography/tandem mass spectrometry method for determination of free estrogens and their conjugates in river water. Analytica Chimica Acta 627 (1):91–98. doi: 10.1016/j.aca.2008.07.036.
  • Regal, P., A. Cepeda, and C. Fente. 2012. Development of an LC-MS/MS method to quantify sex hormones in bovine milk and influence of pregnancy in their levels. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment 29 (5):770–779. doi: 10.1080/19440049.2011.653989.
  • Rocha, S., V. F. Domingues, C. Pinho, V. C. Fernandes, C. Delerue-Matos, P. Gameiro, and C. Mansilha. 2013. Occurrence of bisphenol A, estrone, 17 beta-estradiol and 17 alpha-ethinylestradiol in portuguese Rivers. Bulletin of Environmental Contamination and Toxicology 90 (1):73–78. doi: 10.1007/s00128-012-0887-1.
  • Schug, T. T., A. Janesick, B. Blumberg, and J. J. Heindel. 2011. Endocrine disrupting chemicals and disease susceptibility. Journal of Steroid Biochemistry and Molecular Biology 127 (3–5):204–215. doi: 10.1016/j.jsbmb.2011.08.007.
  • Shi, Y., D. Peng, C. Shi, X. Zhang, Y. Xie, and B. Lu. 2011. Selective determination of trace 17 beta-estradiol in dairy and meat samples by molecularly imprinted solid-phase extraction and HPLC. Food Chemistry 126 (4):1916–1925. doi: 10.1016/j.foodchem.2010.12.020.
  • Silva, C. P., D. L. D. Lima, R. J. Schneider, M. Otero, and V. I. Esteves. 2013. Development of ELISA methodologies for the direct determination of 17 beta-estradiol and 17 alpha-ethinylestradiol in complex aqueous matrices. Journal of Environmental Management 124:121–127. doi: 10.1016/j.jenvman.2013.03.041.
  • Singh, A. C., G. Bacher, and S. Bhand. 2017. A label free immunosensor for ultrasensitive detection of 17 beta-Estradiol in water. Electrochimica Acta 232:30–37. doi: 10.1016/j.electacta.2017.02.120.
  • Snoj, T., M. C. Zuzek, N. Cebulj-Kadunc, and G. Majdic. 2018. Short communication: Heat treatment and souring do not affect milk estrone and 17 beta-estradioI concentrations. Journal of Dairy Science 101 (1):61–65. doi: 10.3168/jds.2017-13205.
  • Socas-Rodriguez, B., M. Asensio-Ramos, J. Hernandez-Borges, and M. A. Rodriguez-Delgado. 2014. Analysis of oestrogenic compounds in dairy products by hollow-fibre liquid-phase microextraction coupled to liquid chromatography. Food Chemistry 149:319–325. doi: 10.1016/j.foodchem.2013.10.066.
  • Soh, J. H., Y. Lin, S. Rana, J. Y. Ying, and M. M. Stevens. 2015. Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Analytical Chemistry 87 (15):7644–7652. doi: 10.1021/acs.analchem.5b00875.
  • Srinath, B. S., and V. R. Rai. 2015. Rapid biosynthesis of gold nanoparticles by Staphylococcus epidermidis: Its characterisation and catalytic activity. Materials Letters 146:23–25. doi: 10.1016/j.matlet.2015.01.151.
  • Su, R., X. Wang, X. Xu, Z. Wang, D. Li, X. Zhao, X. Li, H. Zhang, and A. Yu. 2011. Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry. Journal of Chromatography A 1218 (31):5047–5054. doi: 10.1016/j.chroma.2011.05.088.
  • Sun, D., Q. Deng, and J. Long. 2018. Highly sensitive electrochemical sensor for estradiol based on the signal amplification strategy of Cu-BDC frameworks. Journal of Solid State Electrochemistry 22 (2):487–493. doi: 10.1007/s10008-017-3778-x.
  • Sun, L., W. Yong, X. Chu, and J.-M. Lin. 2009. Simultaneous determination of 15 steroidal oral contraceptives in water using solid-phase disk extraction followed by high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1216 (28):5416–5423. doi: 10.1016/j.chroma.2009.05.041.
  • Tao, H., W. Wei, X. Zeng, X. Liu, X. Zhang, and Y. Zhang. 2009. Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchimica Acta 166 (1–2):53–59. doi: 10.1007/s00604-009-0163-1.
  • Trasande, L., R. T. Zoeller, U. Hass, A. Kortenkamp, P. Grandjean, J. P. Myers, J. DiGangi, M. Bellanger, R. Hauser, J. Legler, et al. 2015. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European Union. Journal of Clinical Endocrinology & Metabolism 100 (4):1245–1255. doi: 10.1210/jc.2014-4324.
  • Varriale, A., A. Pennacchio, G. Pinto, G. Oliviero, S. D’Errico, A. Majoli, A. Scala, A. Capo, A. Pennacchio, S. Di Giovanni, et al. 2015. A fluorescence polarization assay to detect steroid hormone traces in milk. Journal of Agricultural and Food Chemistry 63 (41):9159–9164. doi: 10.1021/acs.jafc.5b03689.
  • Vedad, J., E. R. E. Mojica, and R. Z. B. Desamero. 2018. Raman spectroscopic discrimination of estrogens. Vibrational Spectroscopy 96:93–100. doi: 10.1016/j.vibspec.2018.02.011.
  • Wang, K., D.-W. Sun, H. Pu and Q. Wei. 2019a. Shell Thickness-Dependent Au@Ag Nanoparticles Aggregates for High-Performance SERS Applications. Talanta 195:506–515. doi: 10.1016/j.talanta.2018.11.057.
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2019b. Surface-enhanced Raman Scattering of Core-Shell Au@Ag Nanowire Aggregates for Rapid Detection of Difenoconazole in Grapes. Talanta 191:449–456. doi: 10.1016/j.talanta.2018.08.005.
  • Wang, K., D.-W. Sun, Q. Wei, H. Pu. 2018. Quantification and visualization of alpha-tocopherol in oil-in-water emulsion based delivery systems by Raman microspectroscopy. Lwt-Food Science and Technology 96:66–74. doi: 10.1016/j.lwt.2018.05.017.
  • Wang, J., C. Cheng, and Y. Yang. 2015. Determination of estrogens in milk samples by magnetic-solid-phase extraction technique coupled with high-performance liquid chromatography. Journal of Food Science 80 (12):C2655–C2661. doi: 10.1111/1750-3841.13113.
  • Wang, J., L. Tian, Y. Yan, Y. Liu, Y. Zhang, and C. Yang. 2018. Preparation and performance of an estradiol templated magnetic sphere of molecularly imprinted cryogel. Journal of the Brazilian Chemical Society 29 (1):2–10.
  • Wang, L., G. Ying, J. Zhao, S. Liu, B. Yang, L. Zhou, R. Tao, and H. Su. 2011a. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environmental Pollution 159 (1):148–156. doi: 10.1016/j.envpol.2010.09.017.
  • Wang, Q., A. Zhang, X. Pan, and L. Chen. 2010. Simultaneous determination of sex hormones in egg products by ZnCl2 depositing lipid, solid-phase extraction and ultra performance liquid chromatography/electrospray ionization tandem mass spectrometry. Analytica Chimica Acta 678 (1):108–116. doi: 10.1016/j.aca.2010.08.014.
  • Wang, S., Y. Li, X. Wu, M. Ding, L. Yuan, R. Wang, T. Wen, J. Zhang, L. Chen, X. Zhou, and F. Li. 2011b. Construction of uniformly sized pseudo template imprinted polymers coupled with HPLC-UV for the selective extraction and determination of trace estrogens in chicken tissue samples. Journal of Hazardous Materials 186 (2–3):1513–1519. doi: 10.1016/j.jhazmat.2010.12.026.
  • Wang, X., Q. Kang, D. Shen, Z. Zhang, J. Li, and L. Chen. 2014. Novel monodisperse molecularly imprinted shell for estradiol based on surface imprinted hollow vinyl-SiO2 particles. Talanta 124:7–13. doi: 10.1016/j.talanta.2014.02.040.
  • Wei, N., Z. J. Zheng, Y. H. Wang, Y. D. Tao, Y. Shao, S. Y. Zhu, J. M. You, and X. E. Zhao. 2017. Rapid and sensitive determination of multiple endocrine-disrupting chemicals by ultrasound-assisted in situ derivatization dispersive liquid-liquid microextraction coupled with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 31 (11):937–950. doi: 10.1002/rcm.7865.
  • Wei, S., J. Li, and Y. Liu. 2015. Colourimetric assay for beta-estradiol based on the peroxidase-like activity of Fe3O4@mSiO(2)@HP-beta-CD nanoparticles. RSC Advances 5 (130):107670–107679. doi: 10.1039/C5RA20695B.
  • Wiley, A. S. 2011. Milk intake and total dairy consumption: Associations with early menarche in NHANES 1999–2004. Plos One 6 (2):e14685. doi: 10.1371/journal.pone.0014685.
  • Wu, H., G. Li, S. Liu, N. Hu, D. Geng, G. Chen, Z. Sun, X. Zhao, L. Xia, and J. You. 2016. Monitoring the contents of six steroidal and phenolic endocrine disrupting chemicals in chicken, fish and aquaculture pond water samples using pre-column derivatization and dispersive liquid-liquid microextraction with the aid of experimental design methodology. Food Chemistry 192:98–106. doi: 10.1016/j.foodchem.2015.06.059.
  • Xiao, L., Z. Zhang, C. Wu, L. Han, and H. Zhang. 2017. Molecularly imprinted polymer grafted paper-based method for the detection of 17 beta-estradiol. Food Chemistry 221:82–86. doi: 10.1016/j.foodchem.2016.10.062.
  • Xie, X., H. Pu, and D.-W. Sun. 2018. Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis. Critical Reviews in Food Science and Nutrition 58 (6):2800–13.
  • Xu, Q., S. Y. Wu, M. Wang, X. Y. Yin, Z. Y. Wen, W. N. Ge, and Z. Z. Gu. 2010. Electrospun nylon6 nanofibrous membrane as SPE adsorbent for the enrichment and determination of three estrogens in environmental water samples. Chromatographia 71 (5–6):487–492. doi: 10.1365/s10337-009-1453-9.
  • Xu, X., F. Liang, J. Shi, X. Zhao, Z. Liu, L. Wu, Y. Song, H. Zhang, and Z. Wang. 2013. Determination of hormones in milk by hollow fiber-based stirring extraction bar liquid-liquid microextraction gas chromatography mass spectrometry. Analytica Chimica Acta 790:39–46. doi: 10.1016/j.aca.2013.06.035.
  • Yang, L. H., Q. Cheng, N. F. Y. Tam, L. Lin, W. Q. Su, and T. G. Luan. 2016. Contributions of abiotic and biotic processes to the aerobic removal of phenolic endocrine-disrupting chemicals in a simulated estuarine aquatic environment. Environmental Science & Technology 50 (8):4324–4334. doi: 10.1021/acs.est.5b06196.
  • Yang, X. D., F. Y. Wang, C. M. Song, S. Y. Wu, G. P. Zhang, and X. Y. Zeng. 2015. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of estradiol in milk samples. LWT - Food Science and Technology 64 (1):88–94. doi: 10.1016/j.lwt.2015.04.022.
  • Yaseen, T., D.-W. Sun, and J.-H. Cheng. 2017. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends in Food Science & Technology 62:177–189. doi: 10.1016/j.tifs.2017.01.012.
  • Yaseen, T., D.-W. Sun, H. Pu, and T.-T. Pan. 2018a. Detection of Omethoate Residues in Peach with Surface-Enhanced Raman Spectroscopy. Food Analytical Methods 11:2518–2527. doi: 10.1007/s12161-018-1233-y.
  • Yaseen, T., H. Pu, and D.-W. Sun. 2018b. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends in Food Science & Technology 72:162–174. doi: 10.1016/j.tifs.2017.12.012.
  • Yaseen, T., H. Pu, and D.-W. Sun. 2019. Fabrication of Silver-coated Gold Nanoparticles to Simultaneously Detect Multi-class Insecticide Residues in Peach with SERS Technique. Talanta 196:537–545. doi: 10.1016/j.talanta.2018.12.030.
  • Yuan, L., J. Ma, M. Ding, S. Wang, X. Wu, Y. Li, K. Ma, X. Zhou, and F. Li. 2012. Preparation of estriol-molecularly imprinted silica nanoparticles for determining oestrogens in milk tablets. Food Chemistry 131 (3):1063–1068. doi: 10.1016/j.foodchem.2011.09.090.
  • Zeng, D., C. Lin, Z. Zeng, X. Huang, and L. He. 2010. Multi-residue determination of eight anabolic steroids by GC-MS in muscle tissues from pigs. Agricultural Sciences in China 9 (2):306–312. doi: 10.1016/S1671-2927(09)60098-5.
  • Zhang, G. L., T. Li, J. Zhang, and A. L. Chen. 2018. A simple FRET-based turn-on fluorescent aptasensor for 17 beta-estradiol determination in environmental water, urine and milk samples. Sensors and Actuators B-Chemical 273:1648–1653.
  • Zhang, K., and K. Fent. 2018. Determination of two progestinmetabolites (17 alpha-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in Rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Science of the Total Environment 610:1164–1172. doi: 10.1016/j.scitotenv.2017.08.114.
  • Zhang, X., Y. Peng, J. Bai, B. Ning, S. Sun, X. Hong, Y. Liu, Y. Liu, and Z. Gao. 2014. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer and gold nanomaterials amplification for estradiol detection. Sensors and Actuators B-Chemical 200:69–75. doi: 10.1016/j.snb.2014.04.028.
  • Zhang, Y., J. Li, Z. Wang, H. Ma, D. Wu, Q. Cheng, and Q. Wei. 2016. Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid. Scientific Reports 6:23391.
  • Zhong, Q., Y. Hu, Y. Hu, and G. Li. 2012. Dynamic liquid-liquid-solid microextraction based on molecularly imprinted polymer filaments on-line coupling to high performance liquid chromatography for direct analysis of estrogens in complex samples. Journal of Chromatography A 1241:13–20. doi: 10.1016/j.chroma.2012.04.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.