12,349
Views
139
CrossRef citations to date
0
Altmetric
Reviews

Composition, physicochemical properties of pea protein and its application in functional foods

, , &

References

  • Abd El-Salam, M. H., and S. El-Shibiny. 2015. Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Science & Technology 95 (4):393–412. doi: 10.1007/s13594-015-0223-8.
  • Aberkane, L., G. Roudaut, and R. Saurel. 2014. Encapsulation and oxidative stability of PUFA-rich oil microencapsulated by spray drying using pea protein and pectin. Food and Bioprocess Technology 7 (5):1505–17. doi: 10.1007/s11947-013-1202-9.
  • Adebiyi, A. P., and R. E. Aluko. 2011. Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry 128 (4):902–8. doi: 10.1016/j.foodchem.2011.03.116.
  • Agboola, S. O., O. A. Mofolasayo, B. M. Watts, and R. E. Aluko. 2010. Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International 43 (2):582–8. doi: 10.1016/j.foodres.2009.07.013.
  • Ahn, J., Y. Kim, Y. Lee, E. Seo, K. Lee, and H. Kim. 2008. Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry 107 (1):98–105. doi: 10.1016/j.foodchem.2007.07.067.
  • Allred, C. D., K. F. Allred, Y. H. Ju, T. S. Goeppinger, D. R. Doerge, and W. G. Helferich. 2004. Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 25 (9):1649–57. doi: 10.1093/carcin/bgh178.
  • Aluko, R. E., O. A. Mofolasayo, and B. M. Watts. 2009. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours. Journal of Agricultural and Food Chemistry 57 (20):9793–800. doi: 10.1021/jf902199x.
  • Alting, A. C., R. J. Hamer, C. G. de Kruif, and R. W. Visscher. 2003. Cold-set globular protein gels: interaction, structure and rheology as a function of protein concentration. Journal of Agricultural and Food Chemistry 51 (10):3150–6. doi: 10.1021/jf0209342.
  • Amine, C., J. Dreher, T. Helgason, and T. Tadros. 2014. Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity. Food Hydrocolloids 39:180–6. doi: 10.1016/j.foodhyd.2014.01.001.
  • Arcan, I., and A. Yemenicioğlu. 2010. Effects of controlled pepsin hydrolysis on antioxidant potential and fractional changes of chickpea proteins. Food Research International 43 (1):140–7. doi: 10.1016/j.foodres.2009.09.012.
  • Babault, N., C. Paizis, G. Deley, L. Guerin-Deremaux, M. H. Saniez, C. Lefranc-Millot, and F. A. Allaert. 2015. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, placebo-controlled clinical trial vs. Whey protein. Journal of the International Society of Sports Nutrition 12 (1):3. doi: 10.1186/s12970-014-0064-5.
  • Bajaj, P., K. Bhunia, L. Kleiner, H. S. Joyner, D. Smith, G. Ganjyal, and S. S. Sablani. 2017. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Journal of Microencapsulation 34 (2):218–30. doi: 10.1080/02652048.2017.1317045.
  • Bajaj, P. R., J. Tang, and S. S. Sablani. 2015. Pea protein isolates: Novel wall materials for microencapsulating flaxseed oil. Food and Bioprocess Technology 8 (12):2418–28. doi: 10.1007/s11947-015-1589-6.
  • Bandyopadhyay, K., and S. Ghosh. 2002. Preparation and characterization of papain-modified sesame (Sesamum indicum L.) protein isolates. Journal of Agricultural and Food Chemistry 50 (23):6854–7. doi: 10.1021/jf020320x.
  • Barac, M., S. Cabrilo, M. Pesic, S. Stanojevic, S. Zilic, O. Macej, and N. Ristic. 2010. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences 11 (12):4973–90. doi: 10.3390/ijms11124973.
  • Barac, M., S. Cabrilo, M. Pesic, S. Stanojevic, M. Pavlicevic, O. Macej, and M. Ristic. 2011. Functional properties of pea (Pisum sativum L.) protein isolates modified with chymosin. International Journal of Molecular Sciences 12:8372–87.
  • Barac, M., S. Cabrilo, S. Stanojevic, M. Pesic, M. Pavlicevic, B. Zlatkovic, and M. Jankovic. 2012. Functional properties of protein hydrolysates from pea (Pisum sativum L) seeds. International Journal of Food Science & Technology 47 (7):1457–67. doi: 10.1111/j.1365-2621.2012.02993.x.
  • Barre, A., J. P. Borges, and P. Rouge. 2005. Molecular modelling of the major peanut allergen ara h 1 and other homotrimeric allergens of the cupin superfamily: a structural basis for their IgE-binding cross-reactivity. Biochimie 87 (6):499–506. doi: 10.1016/j.biochi.2005.02.011.
  • Baugreet, S., J. P. Kerry, C. Botineştean, P. Allen, and R. M. Hamill. 2016. Development of novel fortified beef patties with added functional protein ingredients for the elderly. Meat Science 122:40–7. doi: 10.1016/j.meatsci.2016.07.004.
  • Beardslee, T. A., M. G. Zeece, G. Sarath, and J. P. Markwell. 2000. Soybean glycinin G1 acidic chain shares IgE epitopes with peanut allergen ara h 3. International Archives of Allergy and Immunology 123 (4):299–307. doi: 10.1159/000053642.
  • Betancur-Ancona, D., R. Martinez-Rosado, A. Corona-Cruz, A. Castellanos-Ruelas, M. E. Jaramillo-Flores, and L. Chel-Guerrero. 2009. Functional properties of hydrolysates from phaseolus lunatus seeds. International Journal of Food Science & Technology 44 (1):128–37. doi: 10.1111/j.1365-2621.2007.01690.x.
  • Bing, D.J. 2010. Breeding for field pea (Pisum sativum L.) varieties with high protein content. In 5th International food Legumes Research Conference (IFLRC V) and 7th European Conference on Grain Legumes (AEPII). Antalya, Turkey, April 26–30, Abstracts p. 180.
  • Bing, D. J., and Q. Liu. 2011. Investigation of relationships of yield, seed size, seed protein and starch content and development of varieties with improved protein content of field pea (Pisum sativum L.). Canadian Journal of Plant Science 91: 381.
  • Bing, D.J. 2012. Development of special pea cultivars to meet the demand for protein of the growing population. Biotechnology and Plant Breeding Perspectives Towards Food Security and Sustainability. Radzikow, Poland, September 10–12, Abstracts p. 111–112.
  • Bing, D.J. 2015. Breeding field pea cultivars with improved protein content. Eucarpia International Symposium on Protein Crops. Pontevedra, Spain, April 5–7, Abstracts p. 31–32.
  • Bouasla, A., A. Wojtowicz, M. N. Zidoune, M. Olech, R. Nowak, M. Mitrus, and A. Oniszczuk. 2016. Gluten-free precooked rice-yellow pea pasta: Effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. Journal of Food Science 81 (5):C1070–C1079. doi: 10.1111/1750-3841.13287.
  • Boye, J. I., S. Aksay, S. Roufik, S. Ribereau, M. Mondor, E. Farnworth, and S. H. Rajamohamed. 2010. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International 43 (2):537–46. doi: 10.1016/j.foodres.2009.07.021.
  • Boye, J., F. Zare, and A. Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43 (2):414–31. doi: 10.1016/j.foodres.2009.09.003.
  • Braudo, E. E., I. G. Plashchina, and K. D. Schwenke. 2001. Plant protein interactions with polysaccharides and their influence on legume protein functionality: a review. Nahrung/Food 45 (6):382–4. doi: 10.1002/1521-3803(20011001)45:6<382::AID-FOOD382>3.0.CO;2-W.
  • Bryant, C. M., and D. J. McClements. 1998. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in Food Science & Technology 9 (4):143–51. doi: 10.1016/S0924-2244(98)00031-4.
  • Burks, A. W., G. Cockrell, J. S. Stanley, R. M. Helm, and G. A. Bannon. 1995. Recombinant peanut allergen ara h 1 expression and IgE binding in patients with peanut hypersensitivity. Journal of Clinical Investigation 96 (4):1715–21. doi: 10.1172/JCI118216.
  • Butt, M. S., and R. Batool. 2010. Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition 9:373–9. doi: 10.3923/pjn.2010.373.379.
  • Cao, X., H. Wen, C. Li, and Z. Gu. 2009. Differences in functional properties and biochemical characteristics of congenetic rice proteins. Journal of Cereal Science 50 (2):184–9. doi: 10.1016/j.jcs.2009.04.009.
  • Chao, D., S. Jung, and R. E. Aluko. 2018. Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science & Emerging Technologies 45:179–85. doi: 10.1016/j.ifset.2017.10.014.
  • Claver, I. P., and H. Zhou. 2005. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates. Journal of Food Biochemistry 29 (1):13–26. doi: 10.1111/j.1745-4514.2005.00004.x.
  • Costa, G. E. D., K. D. S. Queiroz-Monici, S. M. P. M. Reis, and A. C. de Oliveira. 2006. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry 94:327–30. doi: 10.1016/j.foodchem.2004.11.020.
  • Costa, A. M. M., J. C. Nunes, B. N. B. Lima, C. Pedrosa, V. Calado, A. G. Torres, and A. P. T. R. Pierucci. 2015. Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry 168:157–66. doi: 10.1016/j.foodchem.2014.07.016.
  • Dadon, S. B., C. Y. Pascual, and R. Reifen. 2014. Food allergy and cross-reactivity-chickpea as a test case. Food Chemistry 165:483–8. doi: 10.1016/j.foodchem.2014.05.138.
  • Dahl, W. J., L. M. Foster, and R. T. Tyler. 2012. Review of the health benefits of peas (Pisum sativum L.). British Journal of Nutrition 108 (S1):S3–S10. doi: 10.1017/S0007114512000852.
  • Damodaran, S. 2005. Protein stabilization of emulsions and foams. Journal of Food Science 70 (3):R54–R66. doi: 10.1111/j.1365-2621.2005.tb07150.x.
  • Day, L. 2013. Proteins from land plants - Potential resources for human nutrition and food security. Trends in Food Science & Technology 32 (1):25–42. doi: 10.1016/j.tifs.2013.05.005.
  • Dewar, D., M. Amato, H. Ellis, E. Pollock, N. Gonzalez-Cinca, H. Wieser, and P. Ciclitira. 2006. The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. European Journal of Gastroenterology & Hepatology 18 (5):483–91. doi: 10.1097/00042737-200605000-00005.
  • Dickinson, E. 2003. Hydrocolloids at interfaces and the influence on properties of dispersed systems. Food Hydrocolloids 17 (1):25–39. doi: 10.1016/S0268-005X(01)00120-5.
  • Dickinson, E. 2012. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology 24 (1):4–12. doi: 10.1016/j.tifs.2011.09.006.
  • Dickinson, E. 2013. Stabilising emulsion-based colloidal structures with mixed food ingredients. Journal of the Science of Food and Agriculture 93 (4):710–21. doi: 10.1002/jsfa.6013.
  • Dijkink, B. H., and H. C. Langelaan. 2002. Milling properties of peas in relation to texture analysis. Part I. Effect of moisture content. Journal of Food Engineering 51 (2):99–104. doi: 10.1016/S0260-8774(01)00043-7.
  • Donsi, F., B. Senatore, Q. Huang, and G. Ferrari. 2010. Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals. Journal of Agricultural and Food Chemistry 58:10653–60. doi: 10.1021/jf101804g.
  • Ducel, V., J. Richard, Y. Popineau, and F. Boury. 2004. Adsorption kinetics and rheological interfacial properties of plant proteins at the oil-water interface. Biomacromolecules 5 (6):2088–93. doi: 10.1021/bm049739h.
  • Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77 (2):67–82. doi: 10.1016/j.fitote.2005.11.008.
  • Eyraud, V., L. Karaki, I. Rahioui, C. Sivignon, P. Da Silva, Y. Rahbe, C. Royer, and F. Gressent. 2013. Expression and biological activity of the cystine knot bioinsecticide PA1b (pea albumin 1 subunit b). PLoS One 8 (12):e81619. doi: 10.1371/journal.pone.0081619.
  • Fernandes, D., S. Borges, D. Botrel, E. Silva, J. Costa, and F. Queiroz. 2013. Microencapsulation of rosemary essential oil: Characterization of particles. Drying Technology 11:1245–54. doi: 10.1080/07373937.2013.785432.
  • Fernandez-Quintela, A., M. T. Macarulla, A. S. Del Barrio, and J. A. Martinez. 1997. Composition and functional properties of protein isolates obtained from commercial legumes grown in Northern Spain. Plant Foods for Human Nutrition 51:331–42.
  • Folter, J. W. J., M. W. M. Ruijven, and K. P. Velikov. 2012. Oil-in-water pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter 8:6807–15. doi: 10.1039/c2sm07417f.
  • Franco, J. M., Partal, P. D. Ruiz, M. B. Conde, and C. Gallegos. 2000. Influence of pH and protei thermal treatment on the rheology of pea protein-stabilized oil-in-water emulsions. Journal of the American Oil Chemists' Society 77 (9):975–84. doi: 10.1007/s11746-000-0154-x.
  • Freitas, R. L., R. B. Ferreira, and A. R. Teixeira. 2000. Use of a single method in the extraction of the seed storage globulins from several legume species. Application to analyse structural comparisons within the major classes of globulins. International Journal of Food Science and Nutrition 51:341–52.
  • Gancz, K., M. Alexander, and M. Corredig. 2005. Interactions of high methoxyl pectin with whey proteins at oil/water interfaces at acid pH. Journal of Agricultural and Food Chemistry 53 (6):2236–41. doi: 10.1021/jf048683f.
  • Ganjyal, G.M., C.C. Maningat, and S.I. Bassi. 2011. Process for preparing hybrid proteins. U.S. 7989592 B2.
  • Gharsallaoui, A., E. Cases, O. Chambin, and R. Saurel. 2009. Interfacial and emulsifying characteristics of acid-treated pea protein. Food Biophysics 4 (4):273–80. doi: 10.1007/s11483-009-9125-8.
  • Gharsallaoui, A., R. Saurel, O. Chambin, and A. Voilley. 2012. Pea (Pisum sativum L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying. Food and Bioprocess Technology 5 (6):2211–21. doi: 10.1007/s11947-010-0497-z.
  • Gorissen, S. H. M., J. J. R. Crombag, J. M. G. Senden, W. A. H. Waterval, J. Bierau, L. B. Verdijk, and L. J. C. van Loon. 2018. Protein content and amino acid composition of commercially available plant‑based protein isolates. Amino Acids 50 (12):1685–95. doi: 10.1007/s00726-018-2640-5.
  • Graaf, L. A., P. F. Harmsen, J. M. Vereijken, and M. Monikes. 2001. Requirements for non-food applications of pea proteins. A review. Die Nahrung 45 (6):408–11. doi: 10.1002/1521-3803(20011001)45:6&lt;408::AID-FOOD408&gt;3.0.CO;2-#.
  • Grand View Research 2015. Pea protein market by type (isolates, concentrates, textured), application, textured pea protein by form (dry, wet), by region - global trends and forecast to 2020. http://www.researchandmarkets.com/research/b8x63n/pea_protein
  • Gressent, F., P. D. Silva, V. Eyraud, L. Karaki, and C. Royer. 2011. Pea albumin 1 subunit b (PA1b), a promising bioinsecticide of plant origin. Toxins 3 (12):1502–17. doi: 10.3390/toxins3121502.
  • Gruber, P., W. M. Becker, and T. Hofmann. 2005. Influence of the maillard reaction on the allergenicity of rAra h2, a recombinant major allergen from peanut (arachis hypogaea), its major epitopes, and peanut agglutinin. Journal of Agricultural and Food Chemistry 53 (6):2289–96. doi: 10.1021/jf048398w.
  • Guan, X., H. Yao, Z. Chen, L. Shan, and M. Zhang. 2006. Some functional properties of oat bran protein concentrate modified by trypsin. Food Chemistry 101 (1):163–70. doi: 10.1016/j.foodchem.2006.01.011.
  • Guleria, S., S. Dua, and N. Chongtham. 2009. Analysis of variability in different genotypes of pea (Pisum sativum L.) on the basis of protein markers. Legume Research 32:265–9.
  • Guyomarc'h, F., A. J. R. Law, and D. G. Dalgleish. 2003a. Formation of soluble and micelle-bound protein aggregates in heated milk. Journal of Agricultural and Food Chemistry 51 (16):4652–60. doi: 10.1021/jf0211783.
  • Guyomarc’h, F., C. Queguiner, A. J. R. Law, D. S. Horne, and D. G. Dalgleish. 2003b. Role of soluble and micelle-bound heat-induced protein aggregates on network formation in acid skim milk gels. Journal of Agricultural and Food Chemistry 51:7743–50. doi: 10.1021/jf030201x.
  • Han, J., J. A. M. Janz, and M. Gerlat. 2010. Development of gluten-free cracker snacks using pulse flours and fractions. Food Research International 43 (2):627–33. doi: 10.1016/j.foodres.2009.07.015.
  • Henning, T., R. Mothes, S. Dudek, J. P. Krause, and K. D. Schwenke. 1997. Structural and functional changes of faba bean legumin during super-limited tryptic hydrolysis. Food/Nahrung 41 (2):81–6. doi: 10.1002/food.19970410205.
  • Higgins, T. J. V., P. M. Chandler, P. J. Randall, D. Spencer, L. R. Beach, R. J. Blagrove, A. A. Kortt, and A. S. Inglis. 1986. Gene structure, protein structure, and regulation of the synthesis of a sulfur-rich protein in pea seeds. Journal of Biological Chemistry 261:11124–30.
  • Hood-Niefer, S. D., T. D. Warkentin, R. N. Chibbar, A. Vandenberg, and R. T. Tyler. 2012. Effect of genotype and environment on the concentrations of starch in, and protein and the physicochemical properties of starch from, field pea and fababean. Journal of the Science of Food and Agriculture 92 (1):141–50. doi: 10.1002/jsfa.4552.
  • Humiski, L. M., and R. E. Aluko. 2007. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. Journal of Food Science 72 (8):S605–S611. doi: 10.1111/j.1750-3841.2007.00475.x.
  • Iqbal, A., I. A. Khalil, N. Ateeq, and M. Sayyar Khan. 2006. Nutritional quality of important food legumes. Food Chemistry 97 (2):331–5. doi: 10.1016/j.foodchem.2005.05.011.
  • Jiang, J., B. Zhu, Y. Liu, and Y. L. Xiong. 2014. Interfacial structural role of pH-shifting processed pea protein in the oxidative stability of oil/water emulsions. Journal of Agricultural and Food Chemistry 62 (7):1683–91. doi: 10.1021/jf405190h.
  • Jones, O. G., and D. J. McClements. 2011. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes. Advances in Colloid and Interface Science 167 (1-2):49–62. doi: 10.1016/j.cis.2010.10.006.
  • Karaca, A. C., N. Low, and M. Nickerson. 2011. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International 44 (9):2742–50. doi: 10.1016/j.foodres.2011.06.012.
  • Kim, H. J., E. A. Decker, and D. J. McClements. 2005. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH. Langmuir 21 (1):134–9. doi: 10.1021/la048019t.
  • Klassen, D. R., C. M. Elmer, and M. T. Nickerson. 2011. Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides. Food Chemistry 126 (3):1094–101. doi: 10.1016/j.foodchem.2010.11.138.
  • Klemmer, K. J. J., L. Waldner, A. Stone, N. H. H. Low, and M. T. T. Nickerson. 2012. Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chemistry 130 (3):710–5. doi: 10.1016/j.foodchem.2011.07.114.
  • Kumari, D., R. Kumar, S. Sridhara, N. Arora, S. N. Gaur, and B. P. Singh. 2006. Sensitization to blackgram in patients with bronchial asthma and rhinitis: clinical evaluation and characterization of allergens. Allergy 61 (1):104–10. doi: 10.1111/j.1398-9995.2006.00990.x.
  • Lam, R. S. H., and M. T. Nickerson. 2013. Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi: 10.1016/j.foodchem.2013.04.038.
  • Lam, A. C. Y., A. C. Karaca, R. T. Tyler, and M. T. Nickerson. 2018. Pea protein isolates: structure, extraction and functionality. Food Reviews International 34 (2):126–47. doi: 10.1080/87559129.2016.1242135.
  • Lan, Y., B. Chen, and J. Rao. 2018. Pea protein isolate - high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids 80:245–53. doi: 10.1016/j.foodhyd.2018.02.021.
  • Legrand, J., J. Gueguen, S. Berot, Y. Popineau, and L. Nouri. 1997. Acetylation of pea isolate in a torus microreactor. Biotechnology and Bioengineering 53 (4):409–14. doi: 10.1002/(SICI)1097-0290(19970220)53:4&lt;409::AID-BIT9&gt;3.0.CO;2-R.]
  • Liang, H. N., and C. H. Tang. 2013. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids 33 (2):309–19. doi: 10.1016/j.foodhyd.2013.04.005.
  • Liang, H. N., and C. H. Tang. 2014. Pea protein exhibits a novel pickering stabilization for oil-in-water emulsions at pH 3.0. Lwt - Food Science and Technology 58:463–9. doi: 10.1016/j.lwt.2014.03.023.
  • Liu, S., N. H. Low, and M. T. Nickerson. 2009. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum Arabic complexes. Journal of Agricultural and Food Chemistry 57 (4):1521–6. doi: 10.1021/jf802643n.
  • Liu, F., and C. H. Tang. 2013. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. Journal of Agricultural and Food Chemistry 61 (37):8888–98. doi: 10.1021/jf401859y.
  • Lu, B. Y., L. Quillien, and Y. Popineau. 2000. Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface‐active components. Journal of the Science of Food and Agriculture 80 (13):1964–72. doi: 10.1002/1097-0010(200010)80:13<1964::AID-JSFA737>3.3.CO;2-A.
  • Ma, Z., J. Boye, K. Swallow, L. Malcolmson, and B. Simpson. 2016. Technofunctional characterization of salad dressing emulsions supplemented with pea, lentil and chickpea flours. Journal of the Science of Food and Agriculture 96 (3):837–47. doi: 10.1002/jsfa.7156.
  • Maninder, K., K. S. Sandhu, and N. Singh. 2007. Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chemistry 104 (1):259–67.
  • Mariotti, M., M. Lucisano, M. A. Pagani, and P. K. W. Ng. 2009. The role of corn starch, amaranth flour, pea isolate, and psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Research International 42 (8):963–75. doi: 10.1016/j.foodres.2009.04.017.
  • Martin, F., N. Cayot, A. Marin, L. Journaux, P. Cayot, P. Gervais, and R. Cachon. 2009. Effect of oxidoreduction potential and of gas bubbling on rheological properties and microstructure of acid skim milk gels acidified with glucono-δ-lactone. Journal of Dairy Science 92 (12):5898–906. doi: 10.3168/jds.2009-2491.
  • McCarthy, N. A., D. Kennedy, S. A. Hogan, P. M. Kelly, K. Thapa, K. M. Murphy, and M. A. Fenelon. 2016. Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication. Food Research International 89:415–21. doi: 10.1016/j.foodres.2016.07.024.
  • McCarty, M. F. 1999. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity. Medical Hypotheses 53 (6):459–85. doi: 10.1054/mehy.1999.0784.
  • McClements, D. J. 2004. Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science 9 (5):305–13. doi: 10.1016/j.cocis.2004.09.003.
  • McClements, D.J. 2005. Emulsion stability. In: Food emulsions: Principles, practices and techniques, ed. F.M. Clydesdale, 269–339. Boca Raton, CRC Press.
  • McClements, D. J. 2007. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition 47 (7):611–49. doi: 10.1080/10408390701289292.
  • Mertens, C., L. Dehon, A. Bourgeois, C. Verhaeghe-Cartrysse, and C. Blecker. 2012. Agronomical factors influencing the legumin/vicilin ratio in pea (Pisum sativum L.) seeds. Journal of the Science of Food and Agriculture 92 (8):1591–6. doi: 10.1002/jsfa.4738.
  • Mession, J. L., N. Sok, A. Assifaoui, and R. Saurel. 2013. Thermal denaturation of pea globulins (Pisum sativum L.) - Molecular interactions leading to heat-induced protein aggregates. Journal of Agricultural and Food Chemistry 61 (6):1196–204. doi: 10.1021/jf303739n.
  • Mession, J. L., M. L. Chihi, N. Sok, and R. Saurel. 2015. Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids 46:233–43. doi: 10.1016/j.foodhyd.2014.11.025.
  • Mession, J. L., S. Roustel, and R. Saurel. 2017a. Interactions in casein micelle - Pea protein system (part I): heat-induced denaturation and aggregation. Food Hydrocolloids 67:229–42. doi: 10.1016/j.foodhyd.2015.12.015.
  • Mession, J. L., S. Roustel, and R. Saurel. 2017b. Interactions in casein micelle - Pea protein system (part II): mixture acid gelation with glucono-δ-lactone. Food Hydrocolloids 73:344–57. doi: 10.1016/j.foodhyd.2017.06.029.
  • Nakauma, M., T. Funami, S. Noda, S. Ishihara, S. Al-Assaf, K. Nishinari, and G. O. Phillips. 2008. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocolloids 22 (7):1254–67. doi: 10.1016/j.foodhyd.2007.09.004.
  • Ndiaye, F., T. Vuong, J. Duarte, R. E. Aluko, and C. Matar. 2012. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. European Journal of Nutrition 51 (1):29–37. doi: 10.1007/s00394-011-0186-3.
  • Nesterenko, A., I. Alric, F. Silvestre, and V. Durrieu. 2013. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Industrial Crops and Products 42:469–79. doi: 10.1016/j.indcrop.2012.06.035.
  • Nosworthy, M. G., M. C. Tulbek, and J. D. House. 2017. Does the concentration, isolation, or deflavoring of pea, lentil, and faba bean protein alter protein quality? Cereal Foods World 62 (4):139–42. doi: 10.1094/CFW-62-4-0139.
  • Nunes, M. C., A. Raymundo, and I. Sousa. 2006. Rheological behaviour and microstructure of pea protein/k-carrageenan/starch gels with different setting conditions. Food Hydrocolloids 20 (1):106–13. doi: 10.1016/j.foodhyd.2005.03.011.
  • O'Kane, F., R. P. Happe, J. M. Vereijken, H. Gruppen, and M. A. J. S. van Boekel. 2004a. Characterization of pea vicilin. 1. Denoting convicilin as the α-subunit of the pisum vicilin family. Journal of Agricultural and Food Chemistry 52:3141–8. doi: 10.1021/jf035104i.
  • O'Kane, F., R. P. Happe, J. M. Vereijken, H. Gruppen, and M. A. J. S. van Boekel. 2004b. Characterization of pea vicilin. 2. Consequences of compositional heterogeneity on heat-induced gelation behavior. Journal of Agricultural and Food Chemistry 52:3149–54. doi: 10.1021/jf035105a.
  • O'Kane, F., R. P. Happe, J. M. Vereijken, H. Gruppen, and M. A. J. S. van Boekel. 2004c. Heat-induced gelation of pea legumin: comparison with soybean glycinin. Journal of Agricultural and Food Chemistry 52:5071–8. doi: 10.1021/jf035215h.
  • O'Kane, F. E., J. M. Vereijken, H. Gruppen, and M. A. J. S. van Boekel. 2005. Gelation behavior of protein isolates extracted from 5 cultivars of Pisum sativum L. Journal of Food Science 70:132–7. doi: 10.1111/j.1365-2621.2005.tb07073.x.
  • Osen, R., S. Toelstede, F. Wild, P. Eisner, and U. Schweiggert-Weisz. 2014. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering 127:67–74. doi: 10.1016/j.jfoodeng.2013.11.023.
  • Osen, R., S. Toelstede, P. Eisner, and U. Schweiggert-Weisz. 2015. Effect of high moisture extrusion cooking on protein-protein interactions of pea (Pisum sativum L.) protein isolates. International Journal of Food Science & Technology 50 (6):1390–6. doi: 10.1111/ijfs.12783.
  • Owusu‐Ansah, Y. J., and S. M. McCurdy. 1991. Pea proteins: a review of chemistry, technology of production, and utilization. Food Reviews International 7 (1):103–34. doi: 10.1080/87559129109540903.
  • Peng, W., X. Kong, Y. Chen, C. Zhang, Y. Yang, and Y. Hua. 2016. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids 52:301–10. doi: 10.1016/j.foodhyd.2015.06.025.
  • Pereira, H. V. R., K. P. Saraiva, L. M. J. Carvalho, L. R. Andrade, C. Pedrosa, and A. P. T. R. Pierucci. 2009. Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International 42 (1):115–21. doi: 10.1016/j.foodres.2008.10.008.
  • Pierucci, A. P. T. R., L. R. Andrade, E. B. Baptista, N. M. Volpato, and M. H. M. Rocha-Leao. 2006. New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation 23 (6):654–62. doi: 10.1080/02652040600776523.
  • Pietrysiak, E., D. M. Smith, B. M. Smith, and G. M. Ganjyal. 2018. Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chemistry 243:338–44. doi: 10.1016/j.foodchem.2017.09.132.
  • Pownall, T. L., C. C. Udenigwe, and R. E. Aluko. 2010. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of Agricultural and Food Chemistry 58 (8):4712–8. doi: 10.1021/jf904456r.
  • Rabjohn, Pat, E. M. Helm, J. S. Stanley, C. M. West, H. A. Sampson, A. W. Burks, and G. A. Bannon. 1999. Molecular cloning and epitope analysis of the peanut allergens ara h 3. Journal of Clinical Investigation 103 (4):535–42. doi: 10.1172/JCI5349.
  • Reinkensmeier, A., S. Bußler, O. Schluter, S. Rohn, and H. M. Rawel. 2015. Characterization of individual proteins in pea protein isolates and air classified samples. Food Research International 76:160–7. doi: 10.1016/j.foodres.2015.05.009.
  • Ribotta, P. D., A. Colombo, and C. M. Rosell. 2012. Enzymatic modifications of pea protein and its application in protein-cassava and corn starch gels. Food Hydrocolloids 27 (1):185–90. doi: 10.1016/j.foodhyd.2011.07.006.
  • Richard, C., S. Jacquenet, P. Sergeant, and D. A. Moneret-Vautrin. 2015. Cross reactivity of a new food ingredient, dun pea, with legumes, and risk of anaphylaxis in legume allergic children. European Annals of Allergy and Clinical Immunology 47:118–25.
  • Roy, F., J. I. Boye, and B. K. Simpson. 2010. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International 43 (2):432–42. doi: 10.1016/j.foodres.2009.09.002.
  • Rubio, L. A., A. Perez, R. Ruiz, M. A. Guzman, I. Aranda-Olmedo, and A. Clemente. 2014. Characterization of pea (Pisum sativum) seed protein fractions. Journal of the Science of Food and Agriculture 94 (2):280–7. doi: 10.1002/jsfa.6250.
  • Rui, X., J. I. Boye, S. Ribereau, B. K. Simpson, and S. O. Prasher. 2011. Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Research International 44 (8):2497–504. doi: 10.1016/j.foodres.2011.01.008.
  • Sanchez-Monge, R. G., G. Lopez-Torrejon, C. Y. Pascual, J. Varela, M. Martin-Esteban, and G. Salcedo. 2004. Vicilin and convicilin are potential major allergen from pea. Clinical & Experimental Allergy 34 (11):1747–53. doi: 10.1111/j.1365-2222.2004.02085.x.
  • Schatz, B., and G. Endres. 2009. Field pea production. NDSU Extension Service. A-1166 (Revised ), 1–8.
  • Schneider, A., and J. P. Lacampagne. 2000. Peas: a European production of protein rich materials for seed and food. Industrial Proteins 8:3–6.
  • Semenova, M. 2017. Protein-polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid & Interface Science 28:15–21. doi: 10.1016/j.cocis.2016.12.003.
  • Serfert, Y., S. Drusch, and K. Schwarz. 2009. Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chemistry 113 (4):1106–12. doi: 10.1016/j.foodchem.2008.08.079.
  • Shand, P. J., H. Ya, Z. Pietrasik, and P. K. J. P. D. Wanasundara. 2007. Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry 102 (4):1119–30. doi: 10.1016/j.foodchem.2006.06.060.
  • Shang, H., Y. Wei, H. Long, Z. Yan, and Y. Zheng. 2005. Identification of LMW glutenin-like genes from secale sylvestre host. Genetika 41 (12):1656–64.
  • Shao, Y., and C. H. Tang. 2014. Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: influence of ionic strength and heat pre-treatment. Food Hydrocolloids 37:149–58. doi: 10.1016/j.foodhyd.2013.10.030.
  • Shen, S., H. W. Hou, C. B. Ding, D. J. Bing, and Z. X. Lu. 2016. Protein content correlates with starch morphology, composition and physicochemical properties in field peas. Canadian Journal of Plant Science 96 (3):404–12.
  • Shevkani, K., and N. Singh. 2014. Influence of kidney bean, field pea and amaranth protein isolates on the characteristics of starch based gluten free muffins. International Journal of Food Science & Technology 49 (10):2237–44. doi: 10.1111/ijfs.12537.
  • Shevkani, K., N. Singh, A. Kaur, and J. C. Rana. 2015. Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocolloids 43:679–89. doi: 10.1016/j.foodhyd.2014.07.024.
  • Shewry, P. R., and N. G. Halford. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany 53 (370):947–58. doi: 10.1093/jexbot/53.370.947.
  • Shewry, P. R., J. A. Napier, and A. S. Tatham. 1995. Seed storage proteins - structures and biosynthesis. The Plant Cell 7:945–56. doi: 10.2307/3870049.
  • Shimomura, Y., T. Murakami, N. Nakai, M. Nagasaki, and R. A. Harris. 2004. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. The Journal of Nutrition 134 (6):1583S–7S. doi: 10.1093/jn/134.6.1583S.
  • Sijtsma, L., D. Tezera, J. Hustinx, and J. M. Vereijken. 1998. Improvement of pea protein quality by enzymatic modification. Nahrung/Food 42 (03-04):215–6. doi: 10.1002/(SICI)1521-3803(199808)42:03/04<215::AID-FOOD215>3.3.CO;2-1.
  • Stone, A. K., A. Karalash, R. T. Tyler, T. D. Warkentin, and M. T. Nickerson. 2015. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International 76:31–8. doi: 10.1016/j.foodres.2014.11.017.
  • Sun, X. D., and S. D. Arntfield. 2010. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International 43 (2):509–15. doi: 10.1016/j.foodres.2009.09.039.
  • Sun, X. D., and S. D. Arntfield. 2011. Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chemistry 124 (3):1011–6. doi: 10.1016/j.foodchem.2010.07.063.
  • Sun, X. D., and S. D. Arntfield. 2012. Molecular forces involved in heat-induced pea protein gelation: Effects of various reagents on the rheological properties of salt-extracted pea protein gels. Food Hydrocolloids 28 (2):325–32. doi: 10.1016/j.foodhyd.2011.12.014.
  • Szymkiewicz, A., and J. Chudzik-Kozłowska. 2013. Peanut allergenicity and cross-reactivity with pea proteins in the in vivo model. Polish Journal of Food and Nutrition Sciences 63 (1):35–42. doi: 10.2478/v10222-012-0063-7.
  • Szymkiewicz, A., and J. Chudzik-Kozłowska. 2014. Pea proteins immunotherapy in peanut allergic mice model. Acta Alimentaria 43 (2):193–201. doi: 10.1556/AAlim.43.2014.2.1.
  • Taherian, A. R., M. Mondor, J. Labranche, H. Drolet, D. Ippersiel, and F. Lamarche. 2011. Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International 44 (8):2505–14. doi: 10.1016/j.foodres.2011.01.030.
  • Tamm, F., S. Herbst, A. Brodkorb, and S. Drusch. 2016. Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids 58:204–14. doi: 10.1016/j.foodhyd.2016.02.032.
  • Tang, C. H., and X. Sun. 2011. A comparative study of physicochemical and conformational properties in three vicilins from phaseolus legumes: implications for the structure-function relationship. Food Hydrocolloids 25 (3):315–24. doi: 10.1016/j.foodhyd.2010.06.009.
  • Tharanathan, R. N., and S. Mahadevamma. 2003. Grain legumes - A boon to human nutrition. Trends in Food Science & Technology 14 (12):507–18. doi: 10.1016/j.tifs.2003.07.002.
  • Tiwari, B., and N. Singh. 2012. Pulse chemistry and technology, 1–10. Cambridge, UK: RSC Publishing.
  • Tome, D. 2012. Criteria and markers for protein quality assessment - A review. British Journal of Nutrition 108 (S2):S222–S229. doi: 10.1017/S0007114512002565.
  • Tome, A. S., C. Pires, I. Batista, I. Sousa, and A. Raymundo. 2015. Protein gels and emulsions from mixtures of cape hake and pea proteins. Journal of the Science of Food and Agriculture 95 (2):289–98. doi: 10.1002/jsfa.6717.
  • Troszynska, A., A. Szymkiewicz, and A. Wolejszo. 2007. The effects of germination on the sensory quality and immunoreactive properties of pea (Pisum Sativum L.) and soybean (Glycine Max). Journal of Food Quality 30:1083–100. doi: 10.1111/j.1745-4557.2007.00179.x.
  • Tsoukala, A., E. Papalamprou, E. Makri, G. Doxastakis, and E. E. Braudo. 2006. Adsorption at the air-water interface and emulsification properties of grain legume protein derivatives from pea and broad bean. Colloids and Surfaces B: Biointerfaces 53 (2):203–8. doi: 10.1016/j.colsurfb.2006.08.019.
  • Tsumura, K., T. Saito, K. Tsuge, H. Ashida, W. Kugimiya, and K. Inouye. 2005. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT - Food Science and Technology 38 (3):255–61. doi: 10.1016/j.lwt.2004.06.007.
  • Tulbek, M.C., R.S.H. Lam, Y.C. Wang, P. Asavajaru, and A. Lam. 2016. Pea: a sustainable vegetable protein crop. In Sustainable protein sources, ed. S.R. Nadathur, J.P.D. Wanasundara, and L. Scanlin, 145–164. San Diego, CA, Academic Press.
  • Tzitzikas, E. N., J. P. Vincken, J. de Groot, H. Gruppen, and R. G. F. Visser. 2006. Genetic variation in pea seed globulin composition. Journal of Agricultural and Food Chemistry 54 (2):425–33. doi: 10.1021/jf0519008.
  • Utrilla, M. P., M. J. Peinado, R. Ruiz, A. Rodriguez-Nogales, F. Algieri, M. E. Rodriguez-Cabezas, A. Clemente, J. Galvez, and L. A. Rubio. 2015. Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis. Molecular Nutrition & Food Research 59 (4):807–19. doi: 10.1002/mnfr.201400630.
  • Wagoner, T. B., and E. A. Foegeding. 2017. Whey protein-pectin soluble complexes for beverage applications. Food Hydrocolloids 63:130–8. doi: 10.1016/j.foodhyd.2016.08.027.
  • Wan, Z. L., J. Guo, and X. Q. Yang. 2015. Plant protein-based delivery systems for bioactive ingredients in foods. Food & Function 6 (9):2876–89. doi: 10.1039/C5FO00050E.
  • Wang, T. L., C. Domoney, C. L. Hedley, R. Casey, and M. A. Grusak. 2003. Can we improve the nutritional quality of legume seeds? Plant Physiology 131 (3):886–91. doi: 10.1104/pp.102.017665.
  • Wang, N., D. W. Hatcher, and E. J. Gawalko. 2008. Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chemistry 111 (1):132–8. doi: 10.1016/j.foodchem.2008.03.047.
  • Wang, N., D. W. Hatcher, T. D. Warkentin, and R. Toews. 2010. Effect of cultivar and environment on physicochemical and cooking characteristics of field pea (Pisum sativum). Food Chemistry 118 (1):109–15. doi: 10.1016/j.foodchem.2009.04.082.
  • Wang, T., L. Wang, R. Wang, and Z. Chen. 2016. Effects of freeze-milling on the physicochemical properties of rice protein isolates. LWT - Food Science and Technology 65:832–9. doi: 10.1016/j.lwt.2015.09.016.
  • Yin, B., R. Zhang, and P. Yao. 2015. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions. Molecules 20 (3):5165–83. doi: 10.3390/molecules20035165.
  • Zong, A., H. Cao, and F. Wang. 2012. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydrate Polymers 90 (4):1395–410. doi: 10.1016/j.carbpol.2012.07.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.