3,349
Views
65
CrossRef citations to date
0
Altmetric
Reviews

Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients

, &

References

  • Acién, F. G., J. M. Fernández, J. J. Magán, and E. Molina. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances 30 (6):1344–53. doi: 10.1016/j.biotechadv.2012.02.005.
  • Arumugam, M., A. Agarwal, M. C. Arya, and Z. Ahmed. 2013. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresource Technology 131:246–9. doi: 10.1016/j.biortech.2012.12.159.
  • Azma, M., M. S. Mohamed, R. Mohamad, R. A. Rahim, and A. B. Ariff. 2011. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal 53 (2):187–95. doi: 10.1016/j.bej.2010.10.010.
  • Ba, F., A. V. Ursu, C. Laroche, and G. Djelveh. 2016. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties. Bioresource Technology 200:147–52. doi: 10.1016/j.biortech.2015.10.012.
  • Bai, X., H. Song, M. Lavoie, K. Zhu, Y. Su, H. Ye, S. Chen, Z. Fu, and H. Qian. 2016. Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports 6 (1):25494. doi: 10.1038/srep25494.
  • Banerjee, S., and S. Bhattacharya. 2012. Food gels: Gelling process and new applications. Critical Reviews in Food Science and Nutrition 52 (4):334–46. doi: 10.1080/10408398.2010.500234.
  • Barbarino, E., and S. O. Lourenço. 2005. An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology 17 (5):447–60. doi: 10.1007/s10811-005-1641-4.
  • Barkallah, M., M. Dammak, I. Louati, F. Hentati, B. Hadrich, T. Mechichi, M. A. Ayadi, I. Fendri, H. Attia, and S. Abdelkafi. 2017. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT - Food Science and Technology 84:323–30. doi: 10.1016/j.lwt.2017.05.071.
  • Barsanti, L., and P. Gualtieri. 2014. Algae: Anatomy, biochemistry, and biotechnology, second edition. (2nd ed.). Boca Raton, FL: CRC Press.
  • Batista, A. P., A. Niccolai, P. Fradinho, S. Fragoso, I. Bursic, L. Rodolfi, N. Biondi, M. R. Tredici, I. Sousa, and A. Raymundo. 2017. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research 26:161–71. doi: 10.1016/j.algal.2017.07.017.
  • Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25 (2):207–10. doi: 10.1016/j.biotechadv.2006.11.002.
  • Becker, W. 2004. Microalgae in human and animal nutrition. In Handbook of microalgal culture, ed. A. Richmond, 312–351. Hoboken, NJ: Blackwell Publishing Ltd.
  • Benelhadj, S., A. Gharsallaoui, P. Degraeve, H. Attia, and D. Ghorbel. 2016. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry 194:1056–63. doi: 10.1016/j.foodchem.2015.08.133.
  • Berliner, M. D. 1986. Proteins in Chlorella vulgaris. Microbios 46:199–203.
  • Bernaerts, T. M. M., A. Panozzo, V. Doumen, I. Foubert, L. Gheysen, K. Goiris, P. Moldenaers, M. E. Hendrickx, and A. M. Van Loey. 2017. Microalgal biomass as a (multi)functional ingredient in food products: Rheological properties of microalgal suspensions as affected by mechanical and thermal processing. Algal Research 25:452–63. doi: 10.1016/j.algal.2017.05.014.
  • Beyerinck, M. W. 1890. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung 48 (45):727–40.
  • Bínová, J., V. Tichy, K. Lívanský, and J. Zahradník. 1998. Bacterial contamination or microalgal biomass during outdoor production and downstream processing. Algological Studies/Archiv Für Hydrobiologie, Supplement Volumes 89:151–8. doi: 10.1127/algol_stud/89/1998/151.
  • Bleakley, S., and M. Hayes. 2017. Algal proteins: Extraction, application, and challenges concerning production. Foods 6 (5):33. doi: 10.3390/foods050033.
  • Boussiba, S., and A. E. Richmond. 1980. C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Archives of Microbiology 125 (1–2):143–7. doi: 10.1007/BF00403211.
  • Brasier, M. D., O. R. Green, A. P. Jephcoat, A. K. Kleppe, M. J. Van Kranendonk, J. F. Lindsay, A. Steele, and N. V. Grassineau. 2002. Questioning the evidence for earth's oldest fossils. Nature 416 (6876):76–81. doi: 10.1038/416076a.
  • Brown, M. R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 145 (1):79–99. doi: 10.1016/0022-0981(91)90007-J.
  • Brown, M. R., and S. W. Jeffrey. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. Journal of Experimental Marine Biology and Ecology 161 (1):91–113. doi: 10.1016/0022-0981(92)90192-D.
  • Buchmann, L., I. Brändle, I. Haberkorn, M. Hiestand, and A. Mathys. 2019. Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresource Technology 291:121870. doi: 10.1016/j.biortech.2019.121870.
  • Bumbak, F., S. Cook, V. Zachleder, S. Hauser, and K. Kovar. 2011. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Applied Microbiology and Biotechnology 91 (1):31–46. doi: 10.1007/s00253-011-3311-6.
  • Burcu, A. K., A. Ezgi, I. Oya, Ö. Gülsün, K. Ebru, E. Miray, and U. Leyla. 2016. Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. International Journal of Engineering Research and Applications 6 (12):30–8.
  • Campbell, P. K., T. Beer, and D. Batten. 2011. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresource Technology 102 (1):50–6. doi: 10.1016/j.biortech.2010.06.048.
  • Campo, J. A. D., M. García-González, and M. G. Guerrero. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology 74 (6):1163–74. doi: 10.1007/s00253-007-0844-9.
  • Caporgno, M. P., and A. Mathys. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition 5 (58). doi: 10.3389/fnut.2018.00058.
  • Cavonius, L. R., E. Albers, and I. Undeland. 2015. pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient. Algal Research 11:95–102. doi: 10.1016/j.algal.2015.05.022.
  • Chacón-Lee, T. l., and G. e González-Mariño. 2010. Microalgae for “healthy” foods—possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety 9 (6):655–75. doi: 10.1111/j.1541-4337.2010.00132.x.
  • Champenois, J., H. Marfaing, and R. Pierre. 2015. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. Journal of Applied Phycology 27 (5):1845–51. doi: 10.1007/s10811-014-0431-2.
  • Chen, G.-Q., and F. Chen. 2006. Growing phototrophic cells without light. Biotechnology Letters 28 (9):607–16. doi: 10.1007/s10529-006-0025-4.
  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25 (3):294–306. doi: 10.1016/j.biotechadv.2007.02.001.
  • Chronakis, I. S. 2001. Gelation of edible Blue-Green algae protein isolate (Spirulina platensis Strain Pacifica): thermal transitions, rheological properties, and molecular forces involved. Journal of Agricultural and Food Chemistry 49 (2):888–98. doi: 10.1021/jf0005059.
  • Chronakis, I. S., A. N. Galatanu, T. Nylander, and B. Lindman. 2000. The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 173 (1–3):181–92. doi: 10.1016/S0927-7757(00)00548-3.
  • Clarens, A. F., E. P. Resurreccion, M. A. White, and L. M. Colosi. 2010. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology 44 (5):1813–9. doi: 10.1021/es902838n.
  • Clifton, C. E., S. Raffel, and M. P. Starr. (Eds.). 1970. Annual review of microbiology. - Volume 24. Palo Alto, CA: Annual Reviews.
  • Colling Klein, B., A. Bonomi, and R. Maciel Filho. 2018. Integration of microalgae production with industrial biofuel facilities: a critical review. Renewable and Sustainable Energy Reviews 82:1376–92. doi: 10.1016/j.rser.2017.04.063.
  • Cooley, J. W., and W. F. J. Vermaas. 2001. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. Strain PCC 6803: Capacity comparisons and physiological function. Journal of Bacteriology 183 (14):4251–8. doi: 10.1128/JB.183.14.4251-4258.2001.
  • Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438 (7064):90. doi: 10.1038/nature04056.
  • Daum, B., D. Nicastro, J. Austin, J. R. McIntosh, and W. Kühlbrandt. 2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. The Plant Cell 22 (4):1299–312. doi: 10.1105/tpc.109.071431.
  • Day, A. G., D. Brinkmann, S. Franklin, K. Espina, G. Rudenko, A. Roberts, and K. S. Howse. 2009. Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regulatory Toxicology and Pharmacology 55 (2):166–80. doi: 10.1016/j.yrtph.2009.06.014.
  • Devi, M. A., G. Subbulakshmi, K. M. Devi, and L. V. Venkataraman. 1981. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis). Journal of Agricultural and Food Chemistry 29 (3):522–5. doi: 10.1021/jf00105a022.
  • Devi, M. A., and L. V. Venkataraman. 1984. Functional properties of protein products of mass cultivated Blue-Green alga spirulina platensia. Journal of Food Science 49 (1):24–7. doi: 10.1111/j.1365-2621.1984.tb13660.x.
  • Dickinson, E. 1991. Food polymers, gels and colloids. Sawston: Woodhead Publishing.
  • Domozych, D. S. 2016. Biosynthesis of the cell walls of the algae. In The physiology of microalgae, ed. M. A. Borowitzka, J. Beardall, and J. A. Raven, 47–63). New York, NY: Springer International Publishing.
  • Doucha, J., and K. Lívanský. 2008. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Applied Microbiology and Biotechnology 81 (3):431–40. doi: 10.1007/s00253-008-1660-6.
  • Ebert, S., L. Grossmann, J. Hinrichs, and J. Weiss. 2019. Emulsifying properties of water-soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodactylum tricornutum. Food & Function 10 (2):754–64. doi: 10.1039/C8FO02197J.
  • EC. 2018. Commodity price dashboard no 73. Brussels: European Commission.
  • Enzing, C., M. Ploeg, M. Barbarosa, and L. Sijtsma. 2014. Microalgae-based products for the food and feed sector: an outlook for Europe. In JRC scientific and policy reports, ed. M. Vigani, C. Parisi, and E. Rodríguez Cerezo, 1–78). Luxembourg: Publications Office of the European Union.
  • Fabregas, J., and C. Herrero. 1985. Marine microalgae as a potential source of single cell protein (SCP). Applied Microbiology and Biotechnology 23 (2):110–3. doi: 10.1007/BF00938962.
  • Fabregas, J., M. Patino, E. D. Morales, B. Cordero, and A. Otero. 1996. Optimal renewal rate and nutrient concentration for the production of the marine microalga Phaeodactylum tricornutum in semicontinuous cultures. Applied and Environmental Microbiology 62 (1):266–8.
  • FAO. 2013. Dietary protein quality evaluation in human nutrition: Report of a FAO expert consultation. Rome: Food and Agriculture Organization of the United Nations.
  • Fernández, F. G. A., J. M. F. Sevilla, and E. M. Grima. 2013. Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio/Technology 12 (2):131–51. doi: 10.1007/s11157-012-9307-6.
  • Field, L. M., W. R. Fagerberg, K. K. Gatto, and S. Anne Böttger. 2017. A comparison of protein extraction methods optimizing high protein yields from marine algae and cyanobacteria. Journal of Applied Phycology 29 (3):1271–8. doi: 10.1007/s10811-016-1027-9.
  • Flotow, J. v. 1844. Beobachtungen über Haematococcus pluvialis. Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher 12(Abt. 2):413–606.
  • Foegeding, E. A., and J. P. Davis. 2011. Food protein functionality: a comprehensive approach. Food Hydrocolloids 25 (8):1853–64. doi: 10.1016/j.foodhyd.2011.05.008.
  • Fradique, M., A. P. Batista, M. C. Nunes, L. Gouveia, N. M. Bandarra, and A. Raymundo. 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture 90 (10):1656–64. doi: 10.1002/jsfa.3999.
  • Fussenegger, M., R. Eibl, D. Eibl, W. Weber, R. Pörtner, G. Catapano, and P. Czermak. 2008. Cell and tissue reaction engineering. Berlin: Springer
  • Ganeteg, U., Å. Strand, P. Gustafsson, and S. Jansson. 2001. The properties of the chlorophyll a/b-Binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition. Plant Physiology 127 (1):150–8. doi: 10.1104/pp.127.1.150.
  • Garcia-Moscoso, J. L., W. Obeid, S. Kumar, and P. G. Hatcher. 2013. Flash hydrolysis of microalgae (Scenedesmus sp.) for protein extraction and production of biofuels intermediates. The Journal of Supercritical Fluids 82:183–90. doi: 10.1016/j.supflu.2013.07.012.
  • García, J. L., M. de Vicente, and B. Galán. 2017. Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology 10 (5):1017–24. doi: 10.1111/1751-7915.12800.
  • Geider, R. J., and B. A. Osborne. 1989. Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. The New Phytologist 112 (3):327–41. doi: 10.1111/j.1469-8137.1989.tb00321.x.
  • Gerde, J. A., T. Wang, L. Yao, S. Jung, L. A. Johnson, and B. Lamsal. 2013. Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Research 2 (2):145–53. doi: 10.1016/j.algal.2013.02.001.
  • Gerken, H. G., B. Donohoe, and E. P. Knoshaug. 2013. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237 (1):239–53. doi: 10.1007/s00425-012-1765-0.
  • González-Pérez, S., J. M. Vereijken, K. B. Merck, G. A. van Koningsveld, H. Gruppen, and A. G. J. Voragen. 2004. Conformational states of sunflower (Helianthus annuus) Helianthinin: Effect of heat and pH. Journal of Agricultural and Food Chemistry 52 (22):6770–8. doi: 10.1021/jf049612j.
  • González López, C. V., M. d C. C. García, F. G. A. Fernández, C. S. Bustos, Y. Chisti, and J. M. F. Sevilla. 2010. Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology 101 (19):7587–91. doi: 10.1016/j.biortech.2010.04.077.
  • Granata, T. 2017. Dependency of microalgal production on biomass and the relationship to yield and bioreactor scale-up for biofuels: a statistical analysis of 60+ years of algal bioreactor data. BioEnergy Research 10 (1):267–87. doi: 10.1007/s12155-016-9787-2.
  • Griffiths, M. J., and S. T. L. Harrison. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21 (5):493–507. doi: 10.1007/s10811-008-9392-7.
  • Grimi, N., A. Dubois, L. Marchal, S. Jubeau, N. I. Lebovka, and E. Vorobiev. 2014. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresource Technology 153:254–9. doi: 10.1016/j.biortech.2013.12.011.
  • Grossman, A. 2016. Nutrient acquisition: the generation of bioactive vitamin B12 by microalgae. Current Biology 26 (8):R319–R321. doi: 10.1016/j.cub.2016.02.047.
  • Grossman, A. R., M. R. Schaefer, G. G. Chiang, and J. L. Collier. 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological Reviews 57 (3):725–49.
  • Grossmann, L., S. Ebert, J. Hinrichs, and J. Weiss. 2018a. Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal Research 29:266–76. doi: 10.1016/j.algal.2017.11.019.
  • Grossmann, L., S. Ebert, J. Hinrichs, and J. Weiss. 2018b. Production of protein-rich extracts from disrupted microalgae cells: Impact of solvent treatment and lyophilization. Algal Research 36:67–76. doi: 10.1016/j.algal.2018.09.011.
  • Grossmann, L., S. Ebert, J. Hinrichs, and J. Weiss. 2019. Formation and stability of emulsions prepared with a water-soluble extract from the microalga chlorella protothecoides. Journal of Agricultural and Food Chemistry 67 (23):6551–8. doi: 10.1021/acs.jafc.8b05337.
  • Grossmann, L., J. Hinrichs, H. D. Goff, and J. Weiss. 2019. Heat-induced gel formation of a protein-rich extract from the microalga Chlorella sorokiniana. Innovative Food Science & Emerging Technologies 56:102176. doi: 10.1016/j.ifset.2019.06.001.
  • Grossmann, L., J. Hinrichs, and J. Weiss. 2019. Solubility and aggregation behavior of protein fractions from the heterotrophically cultivated microalga Chlorella protothecoides. Food Research International 116:283–90. doi: 10.1016/j.foodres.2018.08.037.
  • Grossmann, L., D. Wefers, M. Bunzel, J. Weiss, and B. Zeeb. 2017. Accessibility of transglutaminase to induce protein crosslinking in gelled food matrices - Influence of network structure. LWT - Food Science and Technology 75:271–8. doi: 10.1016/j.lwt.2016.09.005.
  • Guccione, A., N. Biondi, G. Sampietro, L. Rodolfi, N. Bassi, and M. R. Tredici. 2014. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology for Biofuels 7 (1):84. doi: 10.1186/1754-6834-7-84.
  • Guiry, M. D. 2012. How many species of algae are there? Journal of Phycology 48 (5):1057–63. doi: 10.1111/j.1529-8817.2012.01222.x.
  • Gusbeth, C. A., C. Eing, M. Göttel, and W. Frey. 2013. Boost of algae growth by ultra short pulsed electric field treatment. Paper presented at the 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), 16–21 June 2013.
  • Halim, R., R. Harun, M. K. Danquah, and P. A. Webley. 2012. Microalgal cell disruption for biofuel development. Applied Energy 91 (1):116–21. doi: 10.1016/j.apenergy.2011.08.048.
  • Hariskos, I., and C. Posten. 2014. Biorefinery of microalgae – opportunities and constraints for different production scenarios. Biotechnology Journal 9 (6):739–52. doi: 10.1002/biot.201300142.
  • Hedenskog, G., H. Mogren, and L. Enebo. 1970. A method for obtaining protein concentrates from microorganisms. Biotechnology and Bioengineering 12 (6):947–59. doi: 10.1002/bit.260120607.
  • Henseler, M., I. Piot-Lepetit, E. Ferrari, A. G. Mellado, M. Banse, H. Grethe, C. Parisi, and S. Hélaine. 2013. On the asynchronous approvals of GM crops: Potential market impacts of a trade disruption of EU soy imports. Food Policy 41:166–76. doi: 10.1016/j.foodpol.2013.05.005.
  • Hippler, M., J. Klein, A. Fink, T. Allinger, and P. Hoerth. 2001. Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. The Plant Journal 28 (5):595–606. doi: 10.1046/j.1365-313X.2001.01175.x.
  • Hodač, L., C. Hallmann, K. Spitzer, J. Elster, F. Faßhauer, N. Brinkmann, D. Lepka, V. Diwan, and T. Friedl. 2016. Widespread green algae chlorella and stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiology Ecology 92 (8):fiw122. doi: 10.1093/femsec/fiw122.
  • Hoffman, J. R., and M. J. Falvo. 2004. Protein–which is best? Journal of Sports Science & Medicine 3 (3):118.
  • Hoiczyk, E., and A. Hansel. 2000. Cyanobacterial cell walls: News from an unusual prokaryotic envelope. Journal of Bacteriology 182 (5):1191–9. doi: 10.1128/JB.182.5.1191-1199.2000.
  • Huang, Q., F. Jiang, L. Wang, and C. Yang. 2017. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3 (3):318–29. doi: 10.1016/J.ENG.2017.03.020.
  • Hutcheson, P. S., H. C. Gray, and R. G. Slavin. 2004. Anaphylaxis to algae. Journal of Allergy and Clinical Immunology 113 (2):S242. doi: 10.1016/j.jaci.2004.01.330.
  • Isleten Hosoglu, M. 2018. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chemistry 240:1210–8. doi: 10.1016/j.foodchem.2017.08.052.
  • Juneja, A., R. Ceballos, and G. Murthy. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6 (9):4607. doi: 10.3390/en6094607.
  • Kajitvichyanukul, P., N. K. Shammas, Y.-T. Hung, L. K. Wang, and J. Ananpattarachai. 2011. Potable water biotechnology, membrane filtration and biofiltration. In Membrane and desalination technologies, ed. L. K. Wang, J. P. Chen, Y.-T. Hung, and N. K. Shammas, 477–523). Totowa, NJ: Humana Press.
  • Kent, M., H. M. Welladsen, A. Mangott, and Y. Li. 2015. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 10 (2):e0118985. doi: 10.1371/journal.pone.0118985.
  • Khatoon, H., N. Abdu Rahman, S. Banerjee, N. Harun, S. S. Suleiman, N. H. Zakaria, … A. Endut. 2014. Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China sea cultured under control and natural condition. International Biodeterioration & Biodegradation 95:11–8. doi: 10.1016/j.ibiod.2014.06.022.
  • Kim, S., J-e Park, Y.-B. Cho, and S.-J. Hwang. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology 144:8–13. doi: 10.1016/j.biortech.2013.06.068.
  • Kiraga, J., P. Mackiewicz, D. Mackiewicz, M. Kowalczuk, P. Biecek, N. Polak, K. Smolarczyk, M. R. Dudek, and S. Cebrat. 2007. The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics 8 (1):163. doi: 10.1186/1471-2164-8-163.
  • Klamczynska, B., and W. D. Mooney. 2017. Chapter 20 - Heterotrophic microalgae: A scalable and sustainable protein source. In Sustainable protein sources, ed. S. R. Nadathur, J. P. D. Wanasundara, and L. Scanlin, 327–339. San Diego, CA: Academic Press.
  • Kramer, R. M., V. R. Shende, N. Motl, C. N. Pace, and J. M. Scholtz. 2012. Toward a molecular understanding of protein solubility: Increased negative surface charge correlates with increased solubility. Biophysical Journal 102 (8):1907–15. doi: 10.1016/j.bpj.2012.01.060.
  • Lagrange, V., D. Whitsett, and C. Burris. 2015. Global market for dairy proteins. Journal of Food Science 80 (S1):A16–22. doi: 10.1111/1750-3841.12801.
  • Lakemond, C. M. M., H. H. J. de Jongh, M. Hessing, H. Gruppen, and A. G. J. Voragen. 2000. Soy glycinin: Influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. Journal of Agricultural and Food Chemistry 48 (6):1985–90. doi: 10.1021/jf9908695.
  • Lam, G. P 't., P. R. Postma, D. A. Fernandes, R. A. H. Timmermans, M. H. Vermuë, M. J. Barbosa, M. H. M. Eppink, R. H. Wijffels, and G. Olivieri. 2017. Pulsed electric field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Research 24:181–7. doi: 10.1016/j.algal.2017.03.024.
  • Lam, M. K., and K. T. Lee. 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances 30 (3):673–90. doi: 10.1016/j.biotechadv.2011.11.008.
  • Lardon, L., A. Hélias, B. Sialve, J.-P. Steyer, and O. Bernard. 2009. Life-Cycle assessment of biodiesel production from microalgae. Environmental Science & Technology 43 (17):6475–81. doi: 10.1021/es900705j.
  • Lari, Z., N. Moradi-Kheibari, H. Ahmadzadeh, P. Abrishamchi, N. R. Moheimani, and M. A. Murry. 2016. Bioprocess engineering of microalgae to optimize lipid production through nutrient management. Journal of Applied Phycology 28 (6):3235–50. doi: 10.1007/s10811-016-0884-6.
  • Le, T. M., A. C. Knulst, and H. Röckmann. 2014. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food and Chemical Toxicology 74:309–10. doi: 10.1016/j.fct.2014.10.024.
  • Lea-Smith, D. J., P. Bombelli, R. Vasudevan, and C. J. Howe. 2016. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857 (3):247–55. doi: 10.1016/j.bbabio.2015.10.007.
  • Lee, S. Y., I. Khoiroh, C. W. Ooi, T. C. Ling, and P. L. Show. 2017. Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Separation & Purification Reviews 46 (4):291–304. doi: 10.1080/15422119.2017.1279628.
  • Levi, B., and M. Friedlander. 2004. Identification of two putative adhesive polypeptides in Caulerpa prolifera rhizoids using an adhesion model system. Journal of Applied Phycology 16 (1):1–9. doi: 10.1023/B:JAPH.0000019034.12015.87.
  • Li, S., X. Cao, Y. Wang, Z. Zhu, H. Zhang, S. Xue, and J. Tian. 2017. A method for microalgae proteomics analysis based on modified filter-aided sample preparation. Applied Biochemistry and Biotechnology 183 (3):923–30. doi: 10.1007/s12010-017-2473-9.
  • Li, Y., F. Han, H. Xu, J. Mu, D. Chen, B. Feng, and H. Zeng. 2014. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresource Technology 174:24–32. doi: 10.1016/j.biortech.2014.09.142.
  • Li, Y., H. Xu, F. Han, J. Mu, D. Chen, B. Feng, and H. Zeng. 2015. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresource Technology 192:781–91. doi: 10.1016/j.biortech.2014.07.028.
  • Liberton, M., J. R. Austin, R. H. Berg, and H. B. Pakrasi. 2011. Insights into the complex 3-D architecture of thylakoid membranes in the unicellular cyanobacterium Cyanothece sp. ATCC 51142. Plant Signaling & Behavior 6 (4):566–9. doi: 10.4161/psb.6.4.14946.
  • Lin, Q., and J. Lin. 2011. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresource Technology 102 (2):1615–21. doi: 10.1016/j.biortech.2010.09.008.
  • Lippi, L., L. Bähr, A. Wüstenberg, A. Wilde, and R. Steuer. 2018. Exploring the potential of high-density cultivation of cyanobacteria for the production of cyanophycin. Algal Research 31:363–6. doi: 10.1016/j.algal.2018.02.028.
  • Lourenço, S. O., E. Barbarino, U. M. L. Marquez, and E. Aidar. 1998. Distribution of intracellular nitrogen in marine microalgae: Basis for the calculation of specific nitrogen-to-protein conversion factors. Journal of Phycology 34 (5):798–811. doi: 10.1046/j.1529-8817.1998.340798.x.
  • Lowrey, J., M. S. Brooks, and P. J. McGinn. 2015. Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. Journal of Applied Phycology 27 (4):1485–98. doi: 10.1007/s10811-014-0459-3.
  • Luengo, E., S. Condón-Abanto, I. Álvarez, and J. Raso. 2014. Effect of pulsed electric field treatments on permeabilization and extraction of pigments from chlorella vulgaris. The Journal of Membrane Biology 247 (12):1269–77. doi: 10.1007/s00232-014-9688-2.
  • MacDonald, E. L., J. Brett, D. Kelton, M. E. Shannon, K. Snedeker, and S. M. Jan. 2011. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. Journal of Food Protection 74 (11):1814–32. doi: 10.4315/0362-028X.JFP-10-269.
  • Mahadevaswamy, M., and L. V. Venkataraman. 1981. Microbial load in mass cultures of green algae Scenedesmus acutus and its processed powder. Journal of Biosciences 3 (4):439–47. doi: 10.1007/BF02702632.
  • Mariotti, F., D. Tomé, and P. P. Mirand. 2008. Converting nitrogen into protein—beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition 48 (2):177–84. doi: 10.1080/10408390701279749.
  • Markou, G. 2012. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology 116:533–5. doi: 10.1016/j.biortech.2012.04.022.
  • Markou, G., I. Chatzipavlidis, and D. Georgakakis. 2012. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology 28 (8):2661–70. doi: 10.1007/s11274-012-1076-4.
  • Markou, G., D. Vandamme, and K. Muylaert. 2014. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Research 65:186–202. doi: 10.1016/j.watres.2014.07.025.
  • Martínez, K. D., C. Carrera Sánchez, J. M. Rodríguez Patino, and A. M. R. Pilosof. 2009. Interfacial and foaming properties of soy protein and their hydrolysates. Food Hydrocolloids 23 (8):2149–57. doi: 10.1016/j.foodhyd.2009.03.015.
  • Masojídek, J., G. Torzillo, and M. Koblížek. 2013. Photosynthesis in microalgae. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 21–36. Hoboken, NJ: John Wiley & Sons, Ltd.
  • Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 14 (1):217–32. doi: 10.1016/j.rser.2009.07.020.
  • McClements, D. J. 2004. Food emulsions: Principles, practices, and techniques. 2nd ed. Boca Raton, FL: CRC Press.
  • Medina, C., M. Rubilar, C. Shene, S. Torres, and M. Verdugo. 2015. Protein fractions with Techno-Functional and antioxidant properties from Nannochloropsis gaditana microalgal biomass. Journal of Biobased Materials and Bioenergy 9 (4):417–25. doi: 10.1166/jbmb.2015.1534.
  • Mendes-Pinto, M. M., M. F. J. Raposo, J. Bowen, A. J. Young, and R. Morais. 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology 13 (1):19–24. doi: 10.1023/A:1008183429747.
  • Menegol, T., A. B. Diprat, E. Rodrigues, and R. Rech. 2017. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Science and Technology 37 (spe):28–37. doi: 10.1590/1678-457x.13417.
  • Meyer, M. T., T. Genkov, J. N. Skepper, J. Jouhet, M. C. Mitchell, R. J. Spreitzer, and H. Griffiths. 2012. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas. Proceedings of the National Academy of Sciences of Sciences 109 (47):19474–9. doi: 10.1073/pnas.1210993109.
  • Michelon, W., M. L. B. Da Silva, M. P. Mezzari, M. Pirolli, J. M. Prandini, and H. M. Soares. 2016. Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology 178 (7):1407–19. doi: 10.1007/s12010-015-1955-x.
  • Mišurcová, L., F. Buňka, J. Vávra Ambrožová, L. Machů, D. Samek, and S. Kráčmar. 2014. Amino acid composition of algal products and its contribution to RDI. Food Chemistry 151:120–5. doi: 10.1016/j.foodchem.2013.11.040.
  • Mittal, A., M. K. Agarwal, and D. N. Shivpuri. 1979. Respiratory allergy to algae: clinical aspects. Annals of Allergy 42 (4):253–6.
  • Mohamed, A. G., B. E. Abo-El-Khair, and S. M. Shalaby. 2013. Quality of novel healthy processed cheese analogue enhanced with marine microalgae Chlorella vulgaris biomass. World Applied Sciences Journal 23 (7):914–25. doi: 10.5829/idosi.wasj.2013.23.07.13122.
  • Morales-Sánchez, D., O. A. Martinez-Rodriguez, J. Kyndt, and A. Martinez. 2015. Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology 31 (1):1–9. doi: 10.1007/s11274-014-1773-2.
  • Morales-Sánchez, D., O. A. Martinez-Rodriguez, and A. Martinez. 2017. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. Journal of Chemical Technology & Biotechnology 92 (5):925–36. doi: 10.1002/jctb.5115.
  • Morales, R., K. D. Martínez, V. M. Pizones Ruiz-Henestrosa, and A. M. R. Pilosof. 2015. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry 26:48–55. doi: 10.1016/j.ultsonch.2015.01.011.
  • Morist, A., J. L. Montesinos, J. A. Cusidó, and F. Gòdia. 2001. Recovery and treatment of Spirulina platensis cells cultured in a continuous photobioreactor to be used as food. Process Biochemistry 37 (5):535–47. doi: 10.1016/S0032-9592(01)00230-8.
  • Moro, I., N. La Rocca, and N. Rascio. 2016. Photosynthetic apparatus in cyanobacteria and microalgae. In Handbook of photosynthesis, ed. M. Pessarakli, 3rd ed., 349–364. Boca Raton, FL: CRC Press.
  • Morr, C. V., B. German, J. E. Kinsella, J. M. Regenstein, J. P V. A. N. Buren, A. Kilara, B. A. Lewis, and M. E. Mangino. 1985. A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science 50 (6):1715–8. doi: 10.1111/j.1365-2621.1985.tb10572.x.
  • Morris, H. J., A. Almarales, O. Carrillo, and R. C. Bermúdez. 2008. Utilisation of chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresource Technology 99 (16):7723–9. doi: 10.1016/j.biortech.2008.01.080.
  • Mubarak, M., A. Shaija, and T. V. Suchithra. 2015. A review on the extraction of lipid from microalgae for biodiesel production. Algal Research 7:117–23. doi: 10.1016/j.algal.2014.10.008.
  • Mullineaux, C. W. 2014. Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1837 (4):503–11. doi: 10.1016/j.bbabio.2013.11.017.
  • Nakauma, M., T. Funami, S. Noda, S. Ishihara, S. Al-Assaf, K. Nishinari, and G. O. Phillips. 2008. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum Arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocolloids 22 (7):1254–67. doi: 10.1016/j.foodhyd.2007.09.004.
  • Narala, R. R., S. Garg, K. K. Sharma, S. R. Thomas-Hall, M. Deme, Y. Li, and P. M. Schenk. 2016. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a Two-Stage hybrid system. Frontiers in Energy Research 4 (29). doi: 10.3389/fenrg.2016.00029.
  • Nelson, N., and A. Ben-Shem. 2004. The complex architecture of oxygenic photosynthesis. Nature Reviews Molecular Cell Biology 5 (12):971. doi: 10.1038/nrm1525.
  • Norsker, N.-H., M. J. Barbosa, M. H. Vermuë, and R. H. Wijffels. 2011. Microalgal production — a close look at the economics. Biotechnology Advances 29 (1):24–7. doi: 10.1016/j.biotechadv.2010.08.005.
  • Pane, G., G. Cacciola, E. Giacco, G. L. Mariottini, and E. Coppo. 2015. Assessment of the antimicrobial activity of algae extracts on bacteria responsible of external otitis. Marine Drugs 13 (10):6440–52. doi: 10.3390/md13106440.
  • Panyam, D., and A. Kilara. 1996. Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology 7 (4):120–5. doi: 10.1016/0924-2244(96)10012-1.
  • Parages, M., Capasso, L. J. M. Meco, V. Jiménez. and C. 2012. A novel method for phosphoprotein extraction from macroalgae. Botanica Marina 55 (3):261. doi: 10.1515/bot-2011-0051.
  • Parimi, N. S., M. Singh, J. R. Kastner, K. C. Das, L. S. Forsberg, and P. Azadi. 2015. Optimization of protein extraction from spirulina platensis to generate a potential Co-Product and a biofuel feedstock with reduced nitrogen content. Frontiers in Energy Research 3 (30):3. doi: 10.3389/fenrg.2015.00030.
  • Perez-Garcia, O., F. M. E. Escalante, L. E. de-Bashan, and Y. Bashan. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research 45 (1):11–36. doi: 10.1016/j.watres.2010.08.037.
  • Perfiliev, Y. D., A. K. Tambiev, M. A. Konnychev, A. V. Skalny, E. S. Lobakova, and M. P. Kirpichnikov. 2018. Mössbauer spectroscopic study of transformations of iron species by the cyanobacterium Arthrospira platensis (formerly Spirulina platensis). Journal of Trace Elements in Medicine and Biology 48:105–10. doi: 10.1016/j.jtemb.2018.02.030.
  • Piorreck, M., K.-H. Baasch, and P. Pohl. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23 (2):207–16. doi: 10.1016/S0031-9422(00)80304-0.
  • Pittman, J. K., A. P. Dean, and O. Osundeko. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology 102 (1):17–25. doi: 10.1016/j.biortech.2010.06.035.
  • Polymenis, M., and R. Aramayo. 2015. Translate to divide: сontrol of the cell cycle by protein synthesis. Microbial Cell 2 (4):94–104. doi: 10.15698/mic2015.04.198.
  • Posten, C. 2009. Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences 9 (3):165–77. doi: 10.1002/elsc.200900003.
  • Posten, C., & Walter, C. (Eds.). 2013a. Microalgal biotechnology: Integration and economy. Berlin, Germany: De Gruyter.
  • Posten, C., & Walter, C. (Eds.). 2013b. Microalgal biotechnology: Potential and production. Berlin/Boston: Walter De Gruyter GmbH.
  • Pulz, O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 57 (3):287–93. doi: 10.1007/s002530100702.
  • Pulz, O., and W. Gross. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65 (6):635–48. doi: 10.1007/s00253-004-1647-x.
  • Raikos, V., L. Campbell, and S. R. Euston. 2007. Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International 40 (3):347–55. doi: 10.1016/j.foodres.2006.10.008.
  • Raven, J. A., and J. Beardall. 2016. Dark respiration and organic carbon loss. In The physiology of microalgae, ed. M. A. Borowitzka, J. Beardall, and J. A. Raven, 129–140. Basel: Springer International Publishing.
  • Renaud, S. M., L.-V. Thinh, and D. L. Parry. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170 (2):147–59. doi: 10.1016/S0044-8486(98)00399-8.
  • Richardson, J. W., M. D. Johnson, X. Zhang, P. Zemke, W. Chen, and Q. Hu. 2014. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Research 4:96–104. doi: 10.1016/j.algal.2013.12.003.
  • Rodolfi, L., Z. G. Chini, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102 (1):100–12. doi: 10.1002/bit.22033.
  • Safi, C., L. Cabas Rodriguez, W. J. Mulder, N. Engelen-Smit, W. Spekking, L. A. M. van den Broek, G. Olivieri, and L. Sijtsma. 2017. Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresource Technology 239:204–10. doi: 10.1016/j.biortech.2017.05.012.
  • Safi, C., M. Charton, O. Pignolet, F. Silvestre, C. Vaca-Garcia, and P.-Y. Pontalier. 2013. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology 25 (2):523–9. doi: 10.1007/s10811-012-9886-1.
  • Safi, C., G. Olivieri, R. P. Campos, N. Engelen-Smit, W. J. Mulder, L. A. M. van den Broek, and L. Sijtsma. 2017. Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresource Technology 225:151–8. doi: 10.1016/j.biortech.2016.11.068.
  • Safi, C., A. V. Ursu, C. Laroche, B. Zebib, O. Merah, P.-Y. Pontalier, and C. Vaca-Garcia. 2014. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research 3:61–5. doi: 10.1016/j.algal.2013.12.004.
  • Safi, C., B. Zebib, O. Merah, P.-Y. Pontalier, and C. Vaca-Garcia. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews 35:265–78. doi: 10.1016/j.rser.2014.04.007.
  • Şahin, A., K. Haydar, A. Aysun, and B. K. Çiğdem. 2016. Hazelnut culture in Turkey. Chronica Horticulturae 56 (4):30–5.
  • Santi Delia, A., G. Caruso, L. Melcarne, G. Caruso, S. Parisi, and P. Laganà. 2015. Biological toxins from marine and freshwater microalgae. In Microbial toxins and related contamination in the food industry, ed. G. Caruso, P. L. Laganà, A. Santi Delia, S. Parisi, C. Barone, L. Melcarne, and F. Mazzù, 13–55. Basel: Springer International Publishing.
  • Sari, Y. W., M. E. Bruins, and J. P. M. Sanders. 2013. Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products 43:78–83. doi: 10.1016/j.indcrop.2012.07.014.
  • Sari, Y. W., J. P. M. Sanders, and M. E. Bruins. 2016. Techno-economical evaluation of protein extraction for microalgae biorefinery. IOP Conference Series: Earth and Environmental Science 31 (1):012034. doi: 10.1088/1755-1315/31/1/012034.
  • Schirrmeister, B. E., A. Antonelli, and H. C. Bagheri. 2011. The origin of multicellularity in cyanobacteria. BMC Evolutionary Biology 11 (1):45. doi: 10.1186/1471-2148-11-45.
  • Schuck, P., R. Jeantet, G. Tanguy, S. Méjean, A. Gac, T. Lefebvre, E. Labussière, and C. Martineau. 2015. Energy consumption in the processing of dairy and feed powders by evaporation and drying. Drying Technology 33 (2):176–184. doi: 10.1080/07373937.2014.942913.
  • Schwenzfeier, A., A. Helbig, P. A. Wierenga, and H. Gruppen. 2013. Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocolloids 30 (1):258–263. doi: 10.1016/j.foodhyd.2012.06.002.
  • Schwenzfeier, A., F. Lech, P. A. Wierenga, M. H. M. Eppink, and H. Gruppen. 2013. Foam properties of algae soluble protein isolate: Effect of pH and ionic strength. Food Hydrocolloids 33 (1):111–117. doi: 10.1016/j.foodhyd.2013.03.002.
  • Schwenzfeier, A., P. A. Wierenga, M. H. M. Eppink, and H. Gruppen. 2014. Effect of charged polysaccharides on the techno-functional properties of fractions obtained from algae soluble protein isolate. Food Hydrocolloids 35:9–18. doi: 10.1016/j.foodhyd.2013.07.019.
  • Schwenzfeier, A., P. A. Wierenga, and H. Gruppen. 2011. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresource Technology 102 (19):9121–9127. doi: 10.1016/j.biortech.2011.07.046.
  • Seyfabadi, J., Z. Ramezanpour, and Z. Amini Khoeyi. 2011. Protein, fatty acid, and pigment content of chlorella vulgaris under different light regimes. Journal of Applied Phycology 23 (4):721–726. doi: 10.1007/s10811-010-9569-8.
  • Sharma, N. K., and A. K. Rai. 2008. Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicology and Environmental Safety 69 (1):158–162. doi: 10.1016/j.ecoenv.2006.08.006.
  • Simon, R. D. 1971. Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proceedings of the National Academy of Sciences of Sciences 68 (2):265–267. doi: 10.1073/pnas.68.2.265.
  • Singh, S., B. N. Kate, and U. C. Banerjee. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology 25 (3):73–95. doi: 10.1080/07388550500248498.
  • Slade, R., and A. Bauen. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy 53:29–38. doi: 10.1016/j.biombioe.2012.12.019.
  • Smetana, S., M. Sandmann, S. Rohn, D. Pleissner, and V. Heinz. 2017. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresource Technology 245:162–170. doi: 10.1016/j.biortech.2017.08.113.
  • Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101 (2):87–96. doi: 10.1263/jbb.101.87.
  • Stal, L. J., and R. Moezelaar. 1997. Fermentation in cyanobacteria. FEMS Microbiology Reviews 21 (2):179–211. doi: 10.1111/j.1574-6976.1997.tb00350.x.
  • Suarez Garcia, E., C. A. Suarez Ruiz, T. Tilaye, M. H. M. Eppink, R. H. Wijffels, and C. van den Berg. 2018. Fractionation of proteins and carbohydrates from crude microalgae extracts using an ionic liquid based-aqueous two phase system. Separation and Purification Technology 204:56–65. doi: 10.1016/j.seppur.2018.04.043.
  • Suarez Garcia, E., J. van Leeuwen, C. Safi, L. Sijtsma, M. H. M. Eppink, R. H. Wijffels, and C. van den Berg. 2018. Selective and energy efficient extraction of functional proteins from microalgae for food applications. Bioresource Technology 268:197–203. doi: 10.1016/j.biortech.2018.07.131.
  • Sukenik, A., H. Takahashi, and S. Mokady. 1994. Dietary lipids from marine unicellular algae enhance the amount of liver and blood omega-3 fatty acids in rats. Annals of Nutrition and Metabolism 38 (2):85–96. doi: 10.1159/000177797.
  • Suresh Kumar, K., H.-U. Dahms, E.-J. Won, J.-S. Lee, and K.-H. Shin. 2015. Microalgae – a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety 113:329–352. doi: 10.1016/j.ecoenv.2014.12.019.
  • Szabo, N. J., R. A. Matulka, and T. Chan. 2013. Safety evaluation of whole algalin protein (WAP) from Chlorella protothecoides. Food and Chemical Toxicology 59:34–45. doi: 10.1016/j.fct.2013.05.035.
  • Takeda, H. 1991. Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). Journal of Phycology 27 (2):224–232. doi: 10.1111/j.0022-3646.1991.00224.x.
  • Tam, N. F. Y., and Y. S. Wong. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology 57 (1):45–50. doi: 10.1016/0960-8524(96)00045-4.
  • Tamayo Tenorio, A., K. E. Kyriakopoulou, E. Suarez-Garcia, C. van den Berg, and A. J. van der Goot. 2018. Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass - Consequences for industrial use. Trends in Food Science & Technology 71:235–245. doi: 10.1016/j.tifs.2017.11.010.
  • Tan, K. W. M., H. Lin, H. Shen, and Y. K. Lee. 2016. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Scientific Reports 6 (1):37235. doi: 10.1038/srep37235.
  • Tan, X. B., M. K. Lam, Y. Uemura, J. W. Lim, C. Y. Wong, and K. T. Lee. 2018. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chinese Journal of Chemical Engineering 26 (1):17–30. doi: 10.1016/j.cjche.2017.08.010.
  • Tang, H., M. Chen, K. Y. Simon Ng, and S. O. Salley. 2012. Continuous microalgae cultivation in a photobioreactor. Biotechnology and Bioengineering 109 (10):2468–2474. doi: 10.1002/bit.24516.
  • Tchorbanov, B., and M. Bozhkova. 1988. Enzymatic hydrolysis of cell proteins in green algae Chlorella and Scenedesmus after extraction with organic solvents. Enzyme and Microbial Technology 10 (4):233–238. doi: 10.1016/0141-0229(88)90072-5.
  • Teuling, E., P. A. Wierenga, J. O. Agboola, H. Gruppen, and J. W. Schrama. 2018. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 499:269–282. doi: 10.1016/j.aquaculture.2018.09.047.
  • Teuling, E., P. A. Wierenga, J. W. Schrama, and H. Gruppen. 2017. Comparison of protein extracts from various unicellular green sources. Journal of Agricultural and Food Chemistry 65 (36):7989–8002. doi: 10.1021/acs.jafc.7b01788.
  • Tibbetts, S. M., J. E. Milley, and S. P. Lall. 2015. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology 27 (3):1109–1119. doi: 10.1007/s10811-014-0428-x.
  • Tibbetts, S. M., C. G. Whitney, M. J. MacPherson, S. Bhatti, A. H. Banskota, R. Stefanova, and P. J. McGinn. 2015. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research 11:435–447. doi: 10.1016/j.algal.2014.11.011.
  • Tiberg, E., S. Dreborg, and B. Björkstén. 1995. Allergy to green algae (Chlorella) among children. Journal of Allergy and Clinical Immunology 96 (2):257–259. doi: 10.1016/S0091-6749(95)70016-1.
  • Trautmann, A., B. Watzer, A. Wilde, K. Forchhammer, and C. Posten. 2016. Effect of phosphate availability on cyanophycin accumulation in Synechocystis sp. PCC 6803 and the production strain BW86. Algal Research 20:189–196. doi: 10.1016/j.algal.2016.10.009.
  • Tredici, M. R., N. Bassi, M. Prussi, N. Biondi, L. Rodolfi, G. Chini Zittelli, and G. Sampietro. 2015. Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high net energy ratio. Applied Energy 154:1103–1111. doi: 10.1016/j.apenergy.2015.01.086.
  • Tredici, M. R., L. Rodolfi, N. Biondi, N. Bassi, and G. Sampietro. 2016. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Research 19:253–263. doi: 10.1016/j.algal.2016.09.005.
  • Trentacoste, E. M., A. M. Martinez, and T. Zenk. 2015. The place of algae in agriculture: policies for algal biomass production. Photosynthesis Research 123 (3):305–315. doi: 10.1007/s11120-014-9985-8.
  • Ursu, A.-V., A. Marcati, T. Sayd, V. Sante-Lhoutellier, G. Djelveh, and P. Michaud. 2014. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology 157:134–139. doi: 10.1016/j.biortech.2014.01.071.
  • Uslu, L., O. Isik, K. Koc, and T. Göksan. 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology 10 (17):386–389.
  • van Apeldoorn, M. E., H. P. van Egmond, G. J. A. Speijers, and G. J. I. Bakker. 2007. Toxins of cyanobacteria. Molecular Nutrition & Food Research 51 (1):7–60. doi: 10.1002/mnfr.200600185.
  • van der Goot, A. J., P. J. M. Pelgrom, J. A. M. Berghout, M. E. J. Geerts, L. Jankowiak, N. A. Hardt, J. Keijer, M. A. I. Schutyser, C. V. Nikiforidis, and R. M. Boom. 2016. Concepts for further sustainable production of foods. Journal of Food Engineering 168:42–51. doi: 10.1016/j.jfoodeng.2015.07.010.
  • Van Durme, J., K. Goiris, A. De Winne, L. De Cooman, and K. Muylaert. 2013. Evaluation of the volatile composition and sensory properties of five species of microalgae. Journal of Agricultural and Food Chemistry 61 (46):10881–10890. doi: 10.1021/jf403112k.
  • Vermaas, W. F. 2001. Photosynthesis and respiration in cyanobacteria. eLS. doi: 10.1038/npg.els.0001670.
  • Waghmare, A. G., M. K. Salve, J. G. LeBlanc, and S. S. Arya. 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3 (1):16. doi: 10.1186/s40643-016-0094-8.
  • Walstra, P. 2003. Physical chemistry of foods. New York, NY: CRC Press.
  • Wang, H., W. Zhang, L. Chen, J. Wang, and T. Liu. 2013. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology 128:745–750. doi: 10.1016/j.biortech.2012.10.158.
  • Wang, S.-B., Q. Hu, M. Sommerfeld, and F. Chen. 2003. An optimized protocol for isolation of soluble proteins from microalgae for two-dimensional gel electrophoresis analysis. Journal of Applied Phycology 15 (6):485–496. doi: 10.1023/B:JAPH.0000004324.88897.b2.
  • Wang, Y., W. Xu, and P. R. Chitnis. 2009. Identification and bioinformatic analysis of the membrane proteins of Synechocystis sp. PCC 6803. Proteome Science 7 (1):11–11. doi: 10.1186/1477-5956-7-11.
  • Watzer, B., A. Engelbrecht, W. Hauf, M. Stahl, I. Maldener, and K. Forchhammer. 2015. Metabolic pathway engineering using the Central signal processor P(II). Microbial Cell Factories 14 (1):192. doi: 10.1186/s12934-015-0384-4.
  • Wikfors, G. H. 1986. Altering growth and gross chemical composition of two microalgal molluscan food species by varying nitrate and phosphate. Aquaculture 59 (1):1–14. doi: 10.1016/0044-8486(86)90073-6.
  • Wilde, E. W., and J. R. Benemann. 1993. Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances 11 (4):781–812. doi: 10.1016/0734-9750(93)90003-6.
  • Williams, P. J. l B., and L. M. L. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science 3 (5):554–590. doi: 10.1039/b924978h.
  • Woitzik, D., J. Weckesser, and U. J. Jürgens. 1988. Isolation and characterization of cell wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307. Microbiology 134 (3):619–627. doi: 10.1099/00221287-134-3-619.
  • Xu, H., X. Miao, and Q. Wu. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126 (4):499–507. doi: 10.1016/j.jbiotec.2006.05.002.
  • Yamamoto, M., I. Kurihara, and S. Kawano. 2005. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta 221 (6):766–775. doi: 10.1007/s00425-005-1486-8.
  • Yao, S., S. Lyu, Y. An, J. Lu, C. Gjermansen, and A. Schramm. 2018. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. Journal of Applied Microbiology 126 (2):359–368. doi: 10.1111/jam.14095.
  • Yap, B. H. J., S. A. Crawford, R. R. Dagastine, P. J. Scales, and G. J. O. Martin. 2016. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. Journal of Industrial Microbiology & Biotechnology 43 (12):1671–1680. doi: 10.1007/s10295-016-1848-1.
  • Zdunczyk, Z., D. Minakowski, S. Frejnagel, and M. Flis. 1999. Comparative study of the chemical composition and nutritional value of pumpkin seed cake, soybean meal and casein. Nahrung/Food 43 (6):392–395. doi: 10.1002/(SICI)1521-3803(19991201)43:6 < 392::AID-FOOD392 > 3.0.CO;2-2.
  • Zeeb, B., L. Grossmann, and J. Weiss. 2016. Accessibility of transglutaminase to induce protein crosslinking in gelled food Matrices - Impact of membrane structure. Food Biophysics 11 (2):176–183. doi: 10.1007/s11483-016-9428-5.
  • Zeeb, B., M. Yavuz-Duzgun, J. Dreher, J. Evert, T. Stressler, L. Fischer, B. Özcelik, J. Weiss. 2018. Modulation of the bitterness of pea and potato proteins by a complex coacervation method. Food & Function 9 (4):2261–2269. doi: 10.1039/C7FO01849E.
  • Zhang, C.-C., R. Jeanjean, and F. Joset. 1998. Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiology Letters 161 (2):285–292. doi: 10.1111/j.1574-6968.1998.tb12959.x.
  • Zhang, J., C. Brown, X. Dong, and S. Waldron. 2017. Price transmission in whole milk powder markets: implications for the Oceania dairy sector of changing market developments. New Zealand Journal of Agricultural Research 60 (2):140–153. doi: 10.1080/00288233.2017.1284133.
  • Zhang, S., and D. A. Bryant. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334 (6062):1551–1553. doi: 10.1126/science.1210858.
  • Zhang, S., X. Qian, S. Chang, G. C. Dismukes, and D. A. Bryant. 2016. Natural and synthetic variants of the tricarboxylic acid cycle in cyanobacteria: Introduction of the GABA shunt into Synechococcus sp. PCC 7002. Frontiers in Microbiology 7:1972. doi: 10.3389/fmicb.2016.01972.
  • Zhang, T., Z. Chi, and J. Sheng. 2009. A highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for Single-Cell protein production and its nutritive components. Marine Biotechnology 11 (2):280–286. doi: 10.1007/s10126-008-9144-3.
  • Zheng, Y., Z. Chi, B. Lucker, and S. Chen. 2012. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresource Technology 103 (1):484–488. doi: 10.1016/j.biortech.2011.09.122.
  • Zouari, N., M. Abid, N. Fakhfakh, M. A. Ayadi, L. Zorgui, M. Ayadi, and H. Attia. 2011. Blue-green algae (Arthrospira platensis) as an ingredient in pasta: free radical scavenging activity, sensory and cooking characteristics evaluation. International Journal of Food Sciences and Nutrition 62 (8):811–813. doi: 10.3109/09637486.2011.582461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.