3,167
Views
89
CrossRef citations to date
0
Altmetric
Reviews

Effects of processing and storage on pesticide residues in foods

ORCID Icon & ORCID Icon

References

  • Abdel-Hamid, R.M., W. El-Sayed, and N. S. Ahmed. 2013. The relationship between different formulation types and the residue levels of pesticides on tomato fruits. Research Journal of Agriculture and Biological Sciences 9 (1):8–16.
  • Abou-Arab, A. 1999a. Behavior of pesticides in tomatoes during commercial and home preparation. Food Chemistry 65 (4):509–14. doi: 10.1016/S0308-8146(98)00231-3.
  • Abou-Arab, A. 1999b. Effects of processing and storage of dairy products on lindane residues and metabolites. Food Chemistry 64 (4):467–73. doi: 10.1016/S0308-8146(98)00126-5.
  • Abou-Arab, A., and M. A. Donia. 2001. Pesticide residues in some Egyptian spices and medicinal plants as affected by processing. Food Chemistry 72 (4):439–45. doi: 10.1016/S0308-8146(00)00254-5.
  • Aguilera, A., A. Valverde, F. Camacho, M. Boulaid, and L. García-Fuentes. 2014. Household processing factors of acrinathrin, fipronil, kresoxim-methyl and pyridaben residues in green beans. Food Control 35 (1):146–52. doi: 10.1016/j.foodcont.2013.06.038.
  • Ahmed, A., M. A. Randhawa, M. J. Yusuf, and N. Khalid. 2011. Effect of processing on pesticide residues in food crops – A review. Journal of Agriculture Research 49:379–90.
  • Akyildiz, A., E. Ağçam, S. Gürkan, B. Cetinkaya, E. Karaca, and H. Benli. 2014. Effects of rinsing on residue level of chlorpyrifos ethyl, acetamiprid and penconazole in grapes. Tarim Bilimleri Dergisi - Journal of Agricultural Sciences 20 (2):12–9.
  • Alen, Y., F. Adriyani, N. Suharti, S. Nakajima, and A. Djamaan. 2016. Determination of profenofos pesticide residue in tomato (Solanum lycopersicum L.) using gas chromatography technique. Der Pharmacia Lettre 8 (8):137–41.
  • Alister, C., M. Araya, K. Becerra, C. Volosky, J. Saavedra, and M. Kogan. 2018. Industrial prune processing and its effect on pesticide residue concentrations. Food Chemistry 268:264–70. doi: 10.1016/j.foodchem.2018.06.090.
  • Amezqueta, A. S., X. Subirats, E. Fuguet, M. Rosés, and C. Ràfols. 2020. Octanol-water partition constant. In Handbooks in separation science – Liquid-phase extraction, ed. Colin F. Poole, 183–208. Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-0-12-816911-7.00006-2.
  • Amvrazi, E. G. 2011. Fate of pesticide residues on raw agricultural crops after postharvest storage and food processing to edible portions. In Pesticides – Formulations, effects, fate, ed. M. Stoytcheva, 575–94. Rijeka: InTechOpen.
  • Andrade, G. C. R. M., S. H. Monteiro, J. G. Francisco, L. A. Figueiredo, A. A. Rocha, L. Aldemar, and V. L. Tornisielo. 2015. Effects of types of washing and peeling in relation to pesticide residues in tomatoes. Journal of the Brazilian Chemical Society 26:1994–2002. http://dx.doi.org/10.5935/0103-5053.20150179.
  • Angioni, A., M. Schirra, V. L. Garau, M. Melis, C. I. G. Tuberoso, and P. Cabras. 2004. Residues of azoxystrobin, fenhexamid and pyrimethanil in strawberry following field treatments and the effect of domestic washing. Food Additives and Contaminants Part Contaminants 21 (11):1065–70. doi: 10.1080/02652030400010066.
  • Athanasopoulos, P. E., C. Pappas, N. V. Kyriakidis, and A. Thanos. 2005. Degradation of methamidophos on soultanina grapes on the vines and during refrigerated storage. Food Chemistry 91 (2):235–40. doi: 10.1016/j.foodchem.2003.10.018.
  • Aysal, P., K. Gözek, N. Artik, and A. S. Tunçbilek. 1999. 14C-Chlorpyrifos residues in tomatoes and tomato products. Bulletin of Environmental Contamination and Toxicology 62 (4):377–82. doi: 10.1007/s001289900885.
  • Bajwa, U., and K. S. Sandhu. 2014. Effect of handling and processing on pesticide residues in food – A review. Journal of Food Science and Technology 51 (2):201–20. doi: 10.1007/s13197-011-0499-5.
  • Balinova, A. M., R. I. Mladenova, and D. D. Shtereva. 2007. Study on the effect of grain storage and processing on deltamethrin residues in post-harvest treated wheat with regard to baby-food safety requirements. Food Additives and Contaminants Part Contaminants 24 (8):896–901. doi: 10.1080/02652030701278313.
  • BfR. 2019. BfR data compilation on processing factors. Accessed July 1, 2019. https://mobil.bfr.bund.de/cm/349/bfr-data-compilation-on-processing-factors.pdf.
  • Bonnechère, A., V. Hanot, C. Bragard, T. Bedoret, and J. Van Loco. 2012. Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons. Food Additives & Contaminants: Part A 29 (7):1058–66. doi: 10.1080/19440049.2012.672339.
  • Bonnechère, A., V. Hanot, R. Jolie, M. Hendrickx, C. Bragard, T. Bedoret, and J. Van Loco. 2012. Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control 25 (1):397–406. doi: 10.1016/j.foodcont.2011.11.010.
  • Boon, P., H. Van der Voet, M. Van Raaij, and J. Van Klaveren. 2008. Cumulative risk assessment of the exposure to organophosphorus and carbamate insecticides in the Dutch diet. Food and Chemical Toxicology 46 (9):3090–8. doi: 10.1016/j.fct.2008.06.083.
  • Byrne, S. L., and S. L. Pinkerton. 2004. The effect of cooking on chlorpyrifos and 3,5,6-trichloro-2-pyridinol levels in chlorpyrifos-fortified produce for use in refining dietary exposure. Journal of Agricultural and Food Chemistry 52 (25):7567–73. doi: 10.1021/jf049212w.
  • Cabras, P., A. Angioni, V.L. Garau, M. Melis, F. M. Pirisi, F. Cabitza, and M. Cubeddu. 1998. Pesticide residues on field-sprayed apricots and in apricot drying processes. Journal of Agricultural and Food Chemistry 46 (6):2306–8. doi: 10.1021/jf980059d.
  • Cabras, P., A. Angioni, V. L. Garau, M. Melis, F. M. Pirisi, F. Cabitza, and M. Pala. 1998. Pesticide residues in raisin processing. Journal of Agricultural and Food Chemistry 46 (6):2309–11. doi: 10.1021/jf980058l.
  • Cabras, P., A. Angioni, V. L. Garau, F. M. Pirisi, V. Brandolini, F. Cabitza, and M. Cubeddu. 1998. Pesticide residues in prune processing. Journal of Agricultural and Food Chemistry 46 (9):3772–4. doi: 10.1021/jf980098p.
  • Cabras, P., M. Porcu, L. Spanedda, and F. Cabitza. 1991. The fate of the fungicide benalaxyl from vine to wine. Italian Journal of Food Science 3:181–6.
  • Çelik, S., Ş. Kunç, and T. Aşan. 1995. Degradation of some pesticides in the field and effect of processing. The Analyst 120 (6):1739–43. doi: 10.1039/AN9952001739.
  • Cengiz, M. F., M. Certel, and H. Göçmen. 2006. Residue contents of DDVP (Dichlorvos) and diazinon applied on cucumbers grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chemistry 98 (1):127–35. doi: 10.1016/j.foodchem.2005.05.064.
  • Cengiz, M. F., M. Certel, B. Karakaş, and H. Göçmen. 2007. Residue contents of captan and procymidone applied on tomatoes grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chemistry 100 (4):1611–9. doi: 10.1016/j.foodchem.2005.12.059.
  • Chai, M. K., and G. H. Tan. 2010. Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber and strawberry after washing treatment. Food Chemistry 123 (3):760–4. doi: 10.1016/j.foodchem.2010.05.038.
  • Chandra, S., M. Kumar, A. N. Mahindrakar, and L. Shinde. 2015. Effects of household processing on reduction of pesticide residues in brinjal and okra. International Journal of Advances in Pharmacy, Biology and Chemistry 4 (1):98–102.
  • Chauhan, R., S. Monga, and B. Kumari. 2012a. Dissipation and decontamination of bifenthrin residues in tomato (Lycopersicon esculentum Mill). Bulletin of Environmental Contamination and Toxicology 89 (1):181–6. doi: 10.1007/s00128-012-0629-4.
  • Chauhan, R., S. Monga, and B. Kumari. 2012b. Effect of processing on reduction of λ-cyhalothrin residues in tomato fruits. Bulletin of Environmental Contamination and Toxicology 88 (3):352–7. doi: 10.1007/s00128-011-0483-9.
  • Chavarri, M. J., A. Herrera, and A. Arino. 2005. The decrease in pesticides in fruit and vegetables during commercial processing. International Journal of Food Science and Technology 40 (2):205–11. doi: 10.1111/j.1365-2621.2004.00932.x.
  • Chemsafetypro. 2019a. Accessed October 7, 2019. http://www.chemsafetypro.com/Topics/CRA/n_Octanol_Water_Partition_Coefficient_Kow.html.
  • Chemsafetypro. 2019b. Accessed October 7, 2019. http://chemsafetypro.com/Topics/CRA/Soil_Adsorption_Coefficient_Kd_Koc.html.
  • Christensen, H. B., K. Granby, and M. Rabølle. 2003. Processing factors and variability of pyrimethanil, fenhexamid and tolylfluanid in strawberries. Food Additives and Contaminants Part Contaminants 20 (8):728–41. doi: 10.1080/0265203031000138286.
  • Dash, B., S. Kapoor, and B. Singh. 2001. Persistence of malathion residues on/in Bell pepper (Capsicum annuum Linn.). Pesticide Research Journal 13 (1):99–102.
  • Donia, M. A., A. Abou-Arab, A. Enb, M. El-Senaity, and N. Abd-Rabou. 2010. Chemical composition of raw milk and the accumulation of pesticide residues in milk products. Global Veterinaria 4 (1):6–14.
  • Đorđević, T. M., S. S. Šiler‐Marinković, R. D. Đurović, S. I. Dimitrijević‐Branković, and J. S. Gajić Umiljendić. 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture 93 (13):3377–83. doi: 10.1002/jsfa.6188.
  • Duhan, A., B. Kumari, and R. Gulati. 2010. Effect of household processing on fenazaquin residues in okra fruits. Bulletin of Environmental Contamination and Toxicology 84 (2):217–20. doi: 10.1007/s00128-009-9863-9.
  • EPA. 2019. Accessed October 7, 2019. http://www.epa.gov/reducing-pesticide-drift/pesticide-volatilization.
  • Ergen-Fikirdeşici, S., Y. S. Velioğlu, and P. Aksu. 2015. Study of imidacloprid degradation on field-treated tomatoes using ozonation. Journal of AgriSearch 2 (1):33–9.
  • Fantke, P., and R. Juraske. 2013. Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology 47 (8):3548–62. doi: 10.1021/es303525x.
  • Fenner, K., S. Canonica, L. P. Wackett, and M. Elsner. 2013. Evaluating pesticide degradation in environment: Blind spots and emerging opportunities. Science 341 (6147):752–8. doi: 10.1126/science.1236281.
  • Fenoll, J., E. Ruiz, P. Hellin, A. Lacasa, and P. Flores. 2009. Dissipation rates of insecticides and fungicides in peppers grown in greenhouse and under cold storage conditions. Food Chemistry 113 (2):727–32. doi: 10.1016/j.foodchem.2008.08.007.
  • Fukazawa, T., T. Kobayashi, S. Tokairin, K. Chimi, T. Maruyama, and T. Yanagita. 2007. Behavior of N-methylcarbamate pesticides during refinement processing of edible oils. Journal of Oleo Science 56 (2):65–71. doi: 10.5650/jos.56.65.
  • Gavrilescu, M. 2005. Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences 5 (6):497–526. doi: 10.1002/elsc.200520098.
  • Hajšlová, J. 1999. Pesticides. In Environmental contaminants in food, ed. C. F. Moffat and K. J. Whittle, 215–72. Sheffield, UK: Sheffield Academic Press Ltd.
  • Han, Y. T., F. S. Dong, J. Xu, X. G. Liu, Y. B. Li, Z. Q. Kong, X. Liang, N. Liu, and Y. Zheng. 2014. Residue change of pyridaben in apple samples during apple cider processing. Food Control 37:240–4. doi: 10.1016/j.foodcont.2013.09.053.
  • Hassan, H., E. Elsayed, A. E. El-Rahman, and S. N. Salman. 2019. Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety 14 (1):31–9. doi: 10.1007/s00003-018-1197-2.
  • Hassanzadeh, N., and N. Bahramifar. 2019. Residue content of chlorpyrifos added to greenhouse cucumbers and its reduction during pre-harvest interval and post-harvest household processing. Journal of Agricultural Science and Technology 21:381–91.
  • Hirahara, Y., M. Narita, K. Okamoto, T. Miyoshi, M. Miyata, S. Koiguchi, M. Hasegawa, K. Kamakura, T. Yamana, and Y. Tonogai. 1994. Stability of standard solution for pesticides during storage. Eisei Kagaku 40 (4):393–8. doi: 10.1248/jhs1956.40.393.
  • Holland, J., and P. Sinclair. 2004. Environmental fate of pesticides and the consequences for residues in food and drinking water. In Pesticide residues in food and drinking water: Human exposure and risks, ed. D. Hamilton and S. Crosssley, 27–62. Chichester, UK: John Wiley and Sons.
  • Holland, P. T., D. Hamilton, B. Ohlin, and M. W. Skidmore. 1994. IUPAC reports on pesticides. 31. Effects of storage and processing on pesticide-residues in plant-products. Pure and Applied Chemistry 66 (2):335–56. doi: 10.1351/pac199466020335.
  • Huan, Z. B., Z. Xu, W. Jiang, Z.Q. Chen, and J. H. Luo. 2015. Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing. Food Chemistry 170:118–22. doi: 10.1016/j.foodchem.2014.08.052.
  • Hwang, J. I., S. E. Lee, and J. E. Kim. 2017. Comparison of theoretical and experimental values for plant uptake of pesticide from soil. PLoS One 12 (2):e0172254. pone.0172254. doi: 10.1371/journal.
  • Jankowska, M., P. Kaczynski, I. Hrynko, and B. Lozowicka. 2016. Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environmental Science and Pollution Research 23 (12):11885–90. doi: 10.1007/s11356-016-6260-x.
  • Jankowska, M., B. Łozowicka, and P. Kaczyński. 2019. Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. Science of the Total Environment 652:1156–67. doi: 10.1016/j.scitotenv.2018.10.324.
  • Jiang, Y. P., T. Shibamoto, Y.J. Li, and C. P. Pan. 2013. Effect of household and commercial processing on acetamiprid, azoxystrobin and methidathion residues during crude rapeseed oil production. Food Additives & Contaminants: Part A 30 (7):1279–86. 796094 doi: 10.1080/19440049.2013.
  • Katagi, T. 2004. Photodegradation of pesticides on plant and soil surfaces. Reviews of Environmental Contamination and Toxicology 182:1–195. doi: 10.1007/978-1-4419-9098-3_1.
  • Kaushik, G., S. Satya, and S. N. Naik. 2009. Food processing a tool to pesticide residue dissipation – A review. Food Research International 42 (1):26–40. doi: 10.1016/j.foodres.2008.09.009.
  • Kaushik, G., S. Satya, and S. N. Naik. 2016. Pesticide residue dissipation upon storage and processing in chickpea legume for food safety. Advances in Food Technology and Nutritional Sciences – Open Journal 2 (2):64–72. doi: 10.17140/AFTNSOJ-2-131.
  • Kerle, E. A., J. J. Jenkins, and P. A. Vogue. 1994. Understanding pesticide persistence and mobility for groundwater and surface water protection. EM8161-E, Extension Service, Oregon State University, Corvallis.
  • Kiris, S., and Y. S. Velioglu. 2016. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil. Food Additives & Contaminants: Part A 33 (1):128–36. doi: 10.1080/19440049.2015.1114683.
  • Kiris, S., Y. S. Velioglu, and A. Tekin. 2017. Effect of ozonated water treatment on fatty acid composition and some quality parameters of olive oil. Ozone: Science & Engineering 39 (2):91–6. doi: 10.1080/01919512.2016.1257932.
  • Kong, Z. Q., F. Dong, J. Xu, X. Liu, J. Li, Y. Li, Y. Tian, L. Guo, W. Shan, and Y. Zheng. 2012. Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control 23 (1):149–53. doi: 10.1016/j.foodcont.2011.07.001.
  • Kwon, H., T. K. Kim, S. M. Hong, E. K. Se, N. J. Cho, and K. S. Kyung. 2015. Effect of household processing on pesticide residues in field-sprayed tomatoes. Food Science and Biotechnology 24 (1):1–6. doi: 10.1007/s10068-015-0001-7.
  • Kyriakidis, N. V., C. Pappas, and P. Athanasopoulos. 2005. Degradation of fenthion and fenthion sulfoxide on grapes on the vines and during refrigerated storage. Food Chemistry 91 (2):241–5. doi: 10.1016/j.foodchem.2003.10.022.
  • Lazic, S., D. Sunjka, S. Vukovic, and Z. Bjelica. 2016. Dissipation rate of iprodione in sour cherry fruits. Acta Horticulturae 1139:739–44.
  • Leili, M., A. Pirmoghani, M. T. Samadi, R. Shokoohi, G. Roshanaei, and A. Poormohammadi. 2016. Determination of pesticides residues in cucumbers grown in greenhouse and the effect of some procedures on their residues. Iranian Journal of Public Health 45 (11):1481–90.
  • Lentzarizos, C. 1995. Residues of iprodione in fresh and canned peaches after preharvest and postharvest treatment. Journal of Agricultural and Food Chemistry 43 (5):1357–60. doi: 10.1021/jf00053a043.
  • Li, M., Y. Liu, B. Fan, J. Lu, Y. He, Z. Kong, Y. Zhu, Q. Jian, and F. Wang. 2015. A chemometric processing-factor-based approach to the determination of the fates of five pesticides during apple processing. LWT – Food Science and Technology 63 (2):1102–9. doi: 10.1016/j.lwt.2015.03.105.
  • Ling, Y., H. Wang, W. Yong, F. Zhang, L. Sun, M. L. Yang, Y. N. Wu, and X.G. Chu. 2011. The effects of washing and cooking on chlorpyrifos and its toxic metabolites in vegetables. Food Control 22 (1):54–8. doi: 10.1016/j.foodcont.2010.06.009.
  • Lozowicka, B., and M. Jankowska. 2016. Comparison of the effects of water and thermal processing on pesticide removal in selected fruit and vegetables. Journal of Elementology 21 (1):99–111. doi: 10.5601/jelem.2015.20.2.917.
  • Lozowicka, B., M. Jankowska, I. Hrynko, and P. Kaczynski. 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment 188 (1):1–19. doi: 10.1007/s10661-015-4850-6.
  • Lozowicka, B., M. Jankowska, and E. Rutkowska. 2016. Investigations on fungicide removal from broccoli by various processing methods. Desalination and Water Treatment 57 (3):1564–72. doi: 10.1080/19443994.2014.988408.
  • Mahmoud, H., and F. Eissa. 2007. Diniconazole residues in field-sprayed and household processed cucumber and pepper fruits. Annals of Agricultural Science (Cairo) 52 (1):253–60.
  • Mendez, M. V., I. P. de la Rosa, A. Jiménez Marquez, and M. Uceda Ojeda. 2005. Elimination of pesticides in olive oil by refining using bleaching and deodorization. Food Additives and Contaminants Part A - Chemistry Analysis Control Exposure and Risk Assessment 22 (1):23–30. doi: 10.1080/02652030400027946.
  • Navarro, S., N. Vela, and G. Navarro. 2011. Fate of triazole fungicide residues during malting, mashing and boiling stages of beermaking. Food Chemistry 124 (1):278–84. doi: 10.1016/j.foodchem.2010.06.033.
  • Noh, H. H., D. K. Kim, E. Y. Lee, M. I. Chang, M. H. Im, Y. D. Lee, and K. S. Kyung. 2015. Effects of oven drying on pesticide residues in field-grown chili peppers. Journal of the Korean Society for Applied Biological Chemistry 58 (1):97–104. doi: 10.1007/s13765-015-0016-z.
  • Noh, H. D., H. Kwon, H. S. Lee, J. Ro, K. S. Kyung, and B. Moon. 2019. Determination of pyraclostrobin and trifloxystrobin residues in red pepper powder processed from raw red pepper. Food Analytical Methods 12 (1):94–9. doi: 10.1007/s12161-018-1341-8.
  • Öğüt, S., H. S. Canbay, and M. Yilmazer. 2014. Changes in pesticide residue amounts on frozen cherries over time. Suleyman Demirel University Journal of Natural and Applied Science 18 (1):72–7.
  • Ortiz-Hernández, L., E. Sánchez-Salinas, E. Dantán-González, and M. L. Castrejón-Godíne. 2013. Pesticide biodegradation: Mechanisms, genetics and strategies to enhance the process. Revista Internacional de Contaminacion Ambiental 29:85–104.
  • Özbey, A., Ş. Karagöz, and A. Cingöz. 2017. Effect of drying process on pesticide residues in grapes. GIDA - The Journal of Food 42 (2):204–9. doi: 10.15237/gida.GD16098.
  • Ozbey, A., and U. Uygun. 2006. Effect of drying on organophosphorus pesticide residues in peppermint (Mentha piperita L.). Bulletin of Environmental Contamination and Toxicology 77 (5):638–42. doi: 10.1007/s00128-006-1110-z.
  • Ozbey, A., and U. Uygun. 2007. Behaviour of some organophosphorus pesticide residues in peppermint tea during the infusion process. Food Chemistry 104 (1):237–41. doi: 10.1016/j.foodchem.2006.11.034.
  • Panhwar, A. A., S. A. Sheikh, A. H. Soomro, and G. H. Abro. 2014. Removal of pesticide residues from tomato and its products. Journal of Basic & Applied Sciences 10:559–65. doi: 10.6000/1927-5129.2014.10.75.
  • Park, J.-Y., J.-H. Choi, B.-M. Kim, J.-H. Park, S.-K. Cho, M. W. Ghafar, A. M. Abd El-Aty, and J.-H. Shim. 2011. Determination of acetamiprid residues in zucchini grown under greenhouse conditions: Application to behavioral dynamics. Biomedical Chromatography 25 (1–2):136–46. doi: 10.1002/bmc.1529.
  • Peng, W., L. Zhao, F. Liu, J. Xue, H. Li, and K. Shi. 2014. Effect of paste processing on residue levels of imidacloprid, pyraclostrobin, azoxystrobin and fipronil in winter jujube. Food Additives & Contaminants: Part A 31 (9):1562–7. doi: 10.1080/19440049.2014.941948.
  • Pesticide Manual. 2009. British Crop Production Council (16th ed.). Software engineered by P. J. Mann Web Design & Consultancy, UK.
  • Quiroz, M.A., E.R. Bandala, and C. A. Martínez-Huitle. 2011. Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media. In Pesticides – Formulations, effects, fate, ed. M. Stoytcheva, 685–730. Rijeka: InTechOpen.
  • Radwan, M. A., M. M. Abu-Elamayem, M. H. Shiboob, and A. Abdel-Aal. 2005. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food and Chemical Toxicology 43 (4):553–7. doi: 10.1016/j.fct.2004.12.009.
  • Rani, M., S. Saini, and B. Kumari. 2013. Persistence and effect of processing on chlorpyriphos residues in tomato (Lycopersicon esculantum Mill.). Ecotoxicology and Environmental Safety 95:247–52. doi: 10.1016/j.ecoenv.2013.04.028.
  • Rasolonjatovo, M. A., M. Cemek, M. F. Cengiz, D. Ortaç, H. B. Konuk, E. Karaman, A. T. Kocaman, and S. Göneş. 2017. Reduction of methomyl and acetamiprid residues from tomatoes after various household washing solutions. International Journal of Food Properties 20 (11):2748–59. doi: 10.1080/10942912.2016.1250099.
  • Rawn, D. F. K., S. C. Quade, W. F. Sun, A. Fouguet, A. Belanger, and M. Smith. 2008. Captan residue reduction in apples as a result of rinsing and peeling. Food Chemistry 109 (4):790–6. doi: 10.1016/j.foodchem.2008.01.061.
  • Reiler, E., E. Jørs, J. Baelum, O. Huici, M. M. A. Caero, and N. Cedergreen. 2015. The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Science of the Total Environment 527:262–9. doi: 10.1016/j.scitotenv.2015.04.081.
  • Riccio, R., M. Trevisan, and E. Capri. 2006. Effect of surface waxes on the persistence of chlorpyrifos-methyl in apples, strawberries and grapefruits. Food Additives and Contaminants 23 (7):683–92. doi: 10.1080/02652030600627248.
  • Romeh, A. A., T. M. Mekky, R. A. Ramadan, and M. Y. Hendawi. 2009. Dissipation of profenofos, imidacloprid and penconazole in tomato fruits and products. Bulletin of Environmental Contamination and Toxicology 83 (6):812–7. doi: 10.1007/s00128-009-9852-z.
  • Saber, A. N., F. M. Malhat, H. M. Badawy, and D. A. Barakat. 2016. Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition. Food Chemistry 196:1108–16. doi: 10.1016/j.foodchem.2015.10.052.
  • Saravi, S. S. S., and M. Shokrzadeh. 2016. Effects of washing, peeling, storage, and fermentation on residue contents of carbaryl and mancozeb in cucumbers grown in greenhouses. Toxicology and Industrial Health 32 (6):1135–42. doi: 10.1177/0748233714552295.
  • Satpathy, G., Y. K. Tyagi, and R. K. Gupta. 2011. Removal of organophosphorus (OP) pesticide residues from vegetables using washing solutions and boiling. Journal of Agricultural Science 4 (2):69–78. doi: 10.5539/jas.v4n2p69.
  • Sheikh, S., S. Nizamani, B. Mirani, and N. Mahmood. 2013. Decontamination of bifenthrin and profenofos residues in edible portion of bitter gourd (Momordica charantia), through household traditional processing. Food Science and Technology Letters 4 (1):32–5.
  • Singh, S., N. Krishnaiah, T. M. Rao, R. Pushpa, and G. Reddy. 2017. Effect of heat processing on degradation of organophosphorus compounds in milk. The Pharma Innovation 6 (3, Part D):209–12.
  • Singh, S., and K. Nelapati. 2017. Effect of food processing on degradation of hexachlorocyclohexane and its isomers in milk. Veterinary World 10 (3):270–5. doi: 10.14202/vetworld.2017.270-275.
  • Soliman, K. M. 2001. Changes in concentration of pesticide residues in potatoes during washing and home preparation. Food and Chemical Toxicology 39 (8):887–91. doi: 10.1016/S0278-6915(00)00177-0.
  • Teicher, H. 2019. logP, pKa and Pesticide Solubility: The LabCoat Guide to Pesticides & BioPesticides. Accessed October 7, 2019. http://www.linkedin.com/pulse/labcoat-guide-pesticide-mode-action-logp-pka-bioscience-solutions.
  • Teixeira, M. J., A. Aguiar, C. M. M. Afonso, A. Alves, and M. Bastos. 2004. Comparison of pesticides levels in grape skin and in the whole grape by a new liquid chromatographic multiresidue methodology. Analytica Chimica Acta 513 (1):333–40. doi: 10.1016/j.aca.2003.11.077.
  • Uygun, U., R. Ozkara, A. Ozbey, and H. Koksel. 2007. Residue levels of malathion and fenitrothion and their metabolites in postharvest treated barley during storage and malting. Food Chemistry 100 (3):1165–9. doi: 10.1016/j.foodchem.2005.10.063.
  • Uygun, U., B. Senoz, S. Ozturk, and H. Koksel. 2009. Degradation of organophosphorus pesticides in wheat during cookie processing. Food Chemistry 117 (2):261–4. doi: 10.1016/j.foodchem.2009.03.111.
  • Velioglu, Y. S., E. Cönger, P. Aksu, S. Fikirdeșici-Ergen, and M. Yiğit-Baltacı. 2016. Effects of ozonated water washing on pesticide removal, ascorbic acid and colour of tomatoes. GIDA – The Journal of Food 41 (5):337–44.
  • Velioglu, Y. S., S. Fikirdesici-Ergen, P. Aksu, and A. Altindag. 2018. Effects of ozone treatment on the degradation and toxicity of several pesticides in different groups. Tarim Bilimleri Dergisi – Journal of Agricultural Sciences 24 (2):245–55.
  • Vijayasree, V., H. Bai, S. N. Beevi, T. B. Mathew, T. George, and G. Xavier. 2015. Persistence and effect of processing on reduction of chlorantraniliprole residues on brinjal and okra fruits. Environmental Monitoring and Assessment 187 (5):299–308. doi: 10.1007/s10661-015-4530-6.
  • Waghulde, P. N., and P. R. Patil. 2009. Pesticidal contamination status and decontamination of various pesticide residues in fruits by household preparations. Environmental Science - An Indian Journal 4 (6):497–501.
  • Wu, Y., Q. An, D. Li, J. Wu, and C. Pan. 2019. Comparison of different home/commercial washing strategies for ten typical pesticide removal effects in kumquat, spinach and cucumber. International Journal of Environmental Research and Public Health 16 (3):472. doi: 10.3390/ijerph16030472.
  • Yang, A., J.H. Park, A. A. El-Aty, J. H. Choi, J. H. Oh, J. A. Do, K. Kwon, K. H. Shim, O. J. Choi, and J. H. Shim. 2012. Synergistic effect of washing and cooking on the removal of multi-classes of pesticides from various food samples. Food Control 28 (1):99–105. doi: 10.1016/j.foodcont.2012.04.018.
  • Zhang, Z. Y., X. J. Liu, and X.Y. Hong. 2007. Effects of home preparation on pesticide residues in cabbage. Food Control 18 (12):1484–7. doi: 10.1016/j.foodcont.2006.11.002.
  • Zhao, L. W., J. Ge, F.M. Liu, and N. W. Jiang. 2014. Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry 150:182–6. doi: 10.1016/j.foodchem.2013.10.124.
  • Zhao, F., L. Jingkun, B. Han, and J. Luo. 2019. Investigation and validation of detection of storage stability of difenoconazole residue in mango. Journal of Food Quality 2019:8. Article ID: 5641643. doi: 10.1155/2019/5641643.
  • Zohair, A. 2001. Behaviour of some organophosphorus and organochlorine pesticides in potatoes during soaking in different solutions. Food and Chemical Toxicology 39 (7):751–5. doi: 10.1016/S0278-6915(01)00016-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.