1,447
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Whey proteins: Musings on denaturation, aggregate formation and gelation

, & ORCID Icon

References

  • Abaee, A., A. Madadlou, and A. A. Saboury. 2017. The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. Food Hydrocolloids 63:43–9. doi:10.1016/j.foodhyd.2016.08.024.
  • Adel, A., M. Nadia, O. Mohamed, and G. Abdelhafidh. 2008. Study of thermally and chemically unfolded conformations of bovine serum albumin by means of dynamic light scattering. Materials Science and Engineering: C 28 (5–6):594–600. doi:10.1016/j.msec.2007.10.004.
  • Ainis, W. N., C. Ersch, C. Farinet, Q. Yang, Z. J. Glover, and R. Ipsen. 2019. Rheological and water holding alterations in mixed gels prepared from whey proteins and rapeseed proteins. Food Hydrocolloids 87:723–33. doi:10.1016/j.foodhyd.2018.08.023.
  • Akin, M. S., and Z. Kirmaci. 2015. Influence of fat replacers on the chemical, textural and sensory properties of low-fat Beyaz pickled cheese produced from ewe’s milk. International Journal of Dairy Technology 68 (1):127–34. doi:10.1111/1471-0307.12164.
  • Ako, K., T. Nicolai, D. Durand, and G. Brotons. 2009. Micro-phase separation explains the abrupt structural change of denatured globular protein gels on varying the ionic strength or the pH. Soft Matter 5 (20):4033–41. doi:10.1039/b906860k.
  • Alting, A. C., M. Weijers, E. H. A. de Hoog, A. M. van de Pijpekamp, M. A. Cohen Stuart, R. J. Hamer, C. G. de Kruif, and R. W. Visschers. 2004. Acid-induced cold gelation of globular proteins: Effects of protein aggregate characteristics and disulfide bonding on rheological properties. Journal of Agricultural and Food Chemistry 52 (3):623–31. doi:10.1021/jf034753r.
  • Amin, S., G. V. Barnett, J. A. Pathak, C. J. Roberts, and P. S. Sarangapani. 2014. Protein aggregation, particle formation, characterization & rheology. Current Opinion in Colloid & Interface Science 19 (5):438–49. doi:10.1016/j.cocis.2014.10.002.
  • Anema, S. G. 2017. The thermal denaturation of the total whey protein in reconstituted whole milk. International Journal of Dairy Technology 70 (3):332–8. doi:10.1111/1471-0307.12356.
  • Anema, S. G., and A. B. McKenna. 1996. Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. Journal of Agricultural and Food Chemistry 44 (2):422–8. doi:10.1021/jf950217q.
  • Arunkumar, R., C. J. Drummond, and T. L. Greaves. 2019. FTIR spectroscopic study of the secondary structure of globular proteins in aqueous protic ionic liquids. Frontiers in Chemistry 7:74. doi:10.3389/fchem.2019.00074.
  • Ashokkumar, M., J. Lee, B. Zisu, R. Bhaskarcharya, M. Palmer, and S. Kentish. 2009. Hot topic: Sonication increases the heat stability of whey proteins. Journal of Dairy Science 92 (11):5353–6. doi:10.3168/jds.2009-2561.
  • Avanza, M. V., M. C. Puppo, and M. C. Añón. 2005. Rheological characterization of amaranth protein gels. Food Hydrocolloids 19 (5):889–98. doi:10.1016/j.foodhyd.2004.12.002.
  • Barbut, S., and E. A. Foegeding. 1993. Ca2+‐induced gelation of pre‐heated whey protein isolate. Journal of Food Science 58 (4):867–71. doi:10.1111/j.1365-2621.1993.tb09379.x.
  • Bhattacharjee, C., S. Saha, A. Biswas, M. Kundu, L. Ghosh, and K. P. Das. 2005. Structural changes of β-lactoglobulin during thermal unfolding and refolding - An FT-IR and circular dichroism study. The Protein Journal 24 (1):27–35. doi:10.1007/s10930-004-0603-z.
  • Bijsterbosch, B. H., M. T. A. Bos, E. Dickinson, J. H. J. van Opheusden, and P. Walstra. 1995. Brownian dynamics simulation of particle gel formation: From argon to yoghurt. Faraday Discussions 101:51. doi:10.1039/fd9950100051.
  • Biliaderis, C. G. 1983. Differential scanning calorimetry in food research-A review. Food Chemistry 10 (4):239–65.. (83)90081-X doi:10.1016/0308-8146(83)90081-X.
  • Bosnea, L. A., T. Moschakis, and C. G. Biliaderis. 2014. Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. Food and Bioprocess Technology 7 (10):2767–81. doi:10.1007/s11947-014-1317-7.
  • Bromley, E. H. C., M. R. H. Krebs, and A. M. Donald. 2005. Aggregation across the length-scales in β-lactoglobulin. Faraday Discussions 128:13–27. doi:10.1039/B403014A.
  • Bryant, C. M., and D. J. McClements. 1998. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in Food Science & Technology 9 (4):143–51. doi:10.1016/S0924-2244(98)00031-4.
  • Bryant, C. M., and D. J. McClements. 2000. Influence of NaCl and CaCl2 on cold-set gelation of heat-denatured whey protein. Journal of Food Science 65 (5):801–4. doi:10.1111/j.1365-2621.2000.tb13590.x.
  • Buck, M. 1998. Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Quarterly Reviews of Biophysics 31 (3):297–355. doi:10.1017/S003358359800345X.
  • Carrotta, R., M. Manno, F. M. Giordano, A. Longo, G. Portale, V. Martorana, and P. L. S. Biagio. 2009. Protein stability modulated by a conformational effector: Effects of trifluoroethanol on bovine serum albumin. Physical Chemistry Chemical Physics 11 (20):4007. doi:10.1039/b818687a.
  • Chatterton, D. E. W., D. N. Nguyen, S. B. Bering, and P. T. Sangild. 2013. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. International Journal of Biochemistry and Cell Biology 45 (8):1730–1747. Elsevier Ltd. 10.1016/j.biocel.2013.04.028.
  • Chen, J., T. Moschakis, and P. V. Nelson. 2005. Application of surface friction measurements for surface characterization of heat-set whey protein gels. Journal of Texture Studies 35 (5):493–510. doi:10.1111/j.1745-4603.2004.35502.x.
  • Chen, J., T. Moschakis, and L. A. Pugnaloni. 2006. Surface topography of heat-set whey protein gels by confocal laser scanning microscopy. Food Hydrocolloids 20 (4):468–74. doi:10.1016/j.foodhyd.2005.04.002.
  • Chen, J. S., E. Dickinson, T. Moschakis, and K. Nayebzadeh. 2007. Surface topography of heat-set whey protein gels: Effects of added salt and xanthan gum. In Food colloids: Self-assembly and material science, ed. E. Dickinson and M. E. Leser, Vol. 302, 473–84. United Kingdom: The Royal Society of Chemistry. 10.1039/9781847557698-00473.
  • Cheng, Y., P. O. Donkor, X. Ren, J. Wu, K. Agyemang, I. Ayim, and H. Ma. 2019. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocolloids 89:434–42. doi:10.1016/j.foodhyd.2018.11.007.
  • Chiti, F., and C. M. Dobson. 2006. Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 75 (1):333–66. doi:10.1146/annurev.biochem.75.101304.123901.
  • Clark, A. H., G. M. Kavanagh, and S. B. Ross-Murphy. 2001. Globular protein gelation- Theory and experiment. Food Hydrocolloids 15 (4–6):383–400.. (01)00042-X doi:10.1016/S0268-005X(01)00042-X.
  • Considine, T., H. A. Patel, S. G. Anema, H. Singh, and L. K. Creamer. 2007. Interactions of milk proteins during heat and high hydrostatic pressure treatments — A Review. Innovative Food Science & Emerging Technologies 8 (1):1–23. doi:10.1016/j.ifset.2006.08.003.
  • Creusot, N., and H. Gruppen. 2007. Enzyme-induced aggregation and gelation of proteins. Biotechnology Advances 25 (6):597–601. doi:10.1016/j.biotechadv.2007.07.007.
  • Croguennec, T., B. T. O’Kennedy, and R. Mehra. 2004. Heat-induced denaturation/aggregation of β-lactoglobulin A and B: Kinetics of the first intermediates formed. International Dairy Journal 14 (5):399–409. doi:10.1016/j.idairyj.2003.09.005.
  • de Freitas, R. A., T. Nicolai, C. Chassenieux, and L. Benyahia. 2013. Stabilization of water-in-water emulsions by polysaccharide-coated protein particles. Langmuir 29:10658–64. doi:10.1021/acs.langmuir.5b03761.
  • De la Fuente, M. A., H. Singh, and Y. Hemar. 2002. Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends in Food Science and Technology 13 (8):262–274. Elsevier. https://doi.org/. doi:10.1016/S0924-2244(02)00133-4.
  • Deeth, H., and M. Lewis. 2016. Protein stability in sterilised milk and milk products. In Advanced dairy chemistry: Volume 1B: Proteins: Applied aspects, eds. P. L. H. McSweeney and J. A. O’Mahony, 247–86. New York, NY: Springer New York. 10.1007/978-1-4939-2800-2_10.
  • Deeth, H. C., and N. Bansal. 2019. Chapter 1 - Whey proteins: An overview. In Whey proteins: From milk to medicine, eds. H. C. Deeth and N. Bansal, 1–50. United Kingdom: Elsevier Science. Retrieved from https://books.google.gr/books?id=GvJsDwAAQBAJ.
  • Destribats, M., M. Rouvet, C. Gehin-Delval, C. Schmitt, and B. P. Binks. 2014. Emulsions stabilised by whey protein microgel particles: Towards food-grade Pickering emulsions. Soft Matter 10 (36):6941–54. doi:10.1039/C4SM00179F.
  • Dickinson, E. 2012. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology 24 (1):4–12. doi:10.1016/j.tifs.2011.09.006.
  • Dickinson, E. 2015. Microgels - An alternative colloidal ingredient for stabilization of food emulsions. Trends in Food Science & Technology 43 (2):178–88. doi:10.1016/j.tifs.2015.02.006.
  • Dickinson, E. 2017. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids 68:219–31. doi:10.1016/j.foodhyd.2016.06.024.
  • Dickow, J. A., N. Kaufmann, L. Wiking, and M. Hammershøj. 2012. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate. Innovative Food Science & Emerging Technologies 13:178–83. doi:10.1016/j.ifset.2011.11.005.
  • Dissanayake, M., L. Ramchandran, O. N. Donkor, and T. Vasiljevic. 2013. Denaturation of whey proteins as a function of heat, pH and protein concentration. International Dairy Journal 31 (2):93–9. doi:10.1016/j.idairyj.2013.02.002.
  • Donato, L., C. Schmitt, L. Bovetto, and M. Rouvet. 2009. Mechanism of formation of stable heat-induced β-lactoglobulin microgels. International Dairy Journal 19 (5):295–306. doi:10.1016/j.idairyj.2008.11.005.
  • Fan, L., A. Ge, X. D. Chen, and R. Mercadé-Prieto. 2019. The role of non-covalent interactions in the alkaline dissolution of heat-set whey protein hydrogels made at gelation pH 2–11. Food Hydrocolloids 89:100–10. doi:10.1016/j.foodhyd.2018.10.035.
  • Fertsch, B., M. Müller, and J. Hinrichs. 2003. Firmness of pressure-induced casein and whey protein gels modulated by holding time and rate of pressure release. Innovative Food Science & Emerging Technologies 4 (2):143–50. doi:10.1016/S1466-8564(03)00008-0.
  • Gu, Y., L. Bouvier, A. Tonda, and G. Delaplace. 2019. A Mathematical Model for the Prediction of the Whey Protein Fouling Mass in a Pilot Scale Plate Heat Exchanger. Food Control 106:106729. https://doi.org/10.1016/j.foodcont.2019.106729.
  • Giugliarelli, A., P. Sassi, M. Paolantoni, A. Morresi, R. Dukor, and L. Nafie. 2013. Vibrational circular dichroism spectra of lysozyme solutions: Solvent effects on thermal denaturation processes. The Journal of Physical Chemistry B 117 (9):2645–52. doi:10.1021/jp311268x.
  • Goda, S., K. Takano, K. Yutani, Y. Yamagata, R. Nagata, H. Akutsu, S. Maki, and K. Namba. 2008. Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Science 9 (2):369–75. doi:10.1110/ps.9.2.369.
  • Gosal, W. S., and S. B. Ross-Murphy. 2000. Globular protein gelation. Current Opinion in Colloid & Interface Science 5 (3–4):188–94.. (00)00057-1 doi:10.1016/S1359-0294(00)00057-1.
  • Gülseren, I., Y. Fang, and M. Corredig. 2012. Whey protein nanoparticles prepared with desolvation with ethanol: Characterization, thermal stability and interfacial behavior. Food Hydrocolloids 29 (2):258–64. doi:10.1016/j.foodhyd.2012.03.015.
  • Hammershøj, M., A. B. Hougaard, J. S. Vestergaard, O. Poulsen, and R. H. Ipsen. 2010. Instant infusion pasteurisation of bovine milk. II. Effects on indigenous milk enzymes activity and whey protein denaturation. International Journal of Dairy Technology 63 (2):197–208. doi:10.1111/j.1471-0307.2010.00583.x.
  • Haque, M. A., P. Aldred, J. Chen, C. Barrow, and B. Adhikari. 2014. Drying and denaturation characteristics of α-lactalbumin, β-lactoglobulin, and bovine serum albumin in a convective drying process. Journal of Agricultural and Food Chemistry 62 (20):4695–706. doi:10.1021/jf405603c.
  • Havea, P., H. Singh, L. K. Creamer, and O. H. Campanella. 1998. Electrophoretic characterization of the protein products formed during heat treatment of whey protein concentrate solutions. Journal of Dairy Research 65 (1):79–91. doi:10.1017/S0022029997002641.
  • Hirota-Nakaoka, N., and Y. Goto. 1999. Alcohol-induced denaturation of β-lactoglobulin: A close correlation to the alcohol-induced α-helix formation of melittin. Bioorganic & Medicinal Chemistry 7 (1):67–73.. (98)00219-3 doi:10.1016/S0968-0896(98)00219-3.
  • Ibanoglu, E. 2005. Effect of hydrocolloids on the thermal denaturation of proteins. Food Chemistry 90 (4):621–6. doi:10.1016/j.foodchem.2004.04.022.
  • Ipsen, R., J. Otte, and K. B. Qvist. 2001. Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. Journal of Dairy Research 68 (2):277–86. doi:10.1017/S0022029901004769.
  • Ipsen, R. 2017. Microparticulated whey proteins for improving dairy product texture. International Dairy Journal 67:73–9. doi:10.1016/j.idairyj.2016.08.009.
  • Ipsen, R., J. Otte, S. B. Lomholt, and K. B. Qvist. 2000. Standardized reaction times used to describe the mechanism of enzyme-induced gelation in whey protein systems. Journal of Dairy Research 67 (3):403–13. doi:10.1017/S0022029900004337.
  • Jeewanthi, R. K. C., N.-K. Lee, and H.-D. Paik. 2015. Improved functional characteristics of whey protein hydrolysates in food industry. Korean Journal for Food Science of Animal Resources 35 (3):350–9. doi:10.5851/kosfa.2015.35.3.350.
  • Jensen, H. B., N. A. Poulsen, H. S. Møller, A. Stensballe, and L. B. Larsen. 2012. Comparative proteomic analysis of casein and whey as prepared by chymosin-induced separation, isoelectric precipitation or ultracentrifugation. Journal of Dairy Research 79 (4):451–8. doi:10.1017/S0022029912000404.
  • Jose, J., L. Pouvreau, and A. H. Martin. 2016. Mixing whey and soy proteins: Consequences for the gel mechanical response and water holding. Food Hydrocolloids 60:216–24. doi:10.1016/j.foodhyd.2016.03.031.
  • Ju, Z. Y., and A. Kilara. 2008. Textural properties of cold-set gels induced from heat-denatured whey protein isolates. Journal of Food Science 63 (2):288–92. doi:10.1111/j.1365-2621.1998.tb15728.x.
  • Kehoe, J. J., L. Wang, E. R. Morris, and A. Brodkorb. 2011. Formation of non-native β-lactoglobulin during heat-induced denaturation. Food Biophysics 6 (4):487–96. doi:10.1007/s11483-011-9230-3.
  • Khaldi, M., T. Croguennec, C. André, G. Ronse, M. Jimenez, S. Bellayer, P. Blanpain-Avet, L. Bouvier, T. Six, S. Bornaz, et al. 2018. Effect of the calcium/protein molar ratio on β-lactoglobulin denaturation kinetics and fouling phenomena. International Dairy Journal 78:1–10. doi:10.1016/j.idairyj.2017.10.002.
  • Kharlamova, A., C. Chassenieux, and T. Nicolai. 2018. Acid-induced gelation of whey protein aggregates: Kinetics, gel structure and rheological properties. Food Hydrocolloids 81:263–72. doi:10.1016/j.foodhyd.2018.02.043.
  • Kharlamova, A., W. Inthavong, T. Nicolai, and C. Chassenieux. 2016. The effect of aggregation into fractals or microgels on the charge density and the isoionic point of globular proteins. Food Hydrocolloids 60:470–5. doi:10.1016/j.foodhyd.2016.04.013.
  • Kinsella, J. E., and D. M. Whitehead. 1989. Proteins in Whey: Chemical, physical, and functional properties. Advances in Food and Nutrition Research 33 (C):343–438. doi:10.1016/S1043-452608.
  • Lambrecht, M. A., I. Rombouts, and J. A. Delcour. 2016. Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocolloids 57:122–31. doi:10.1016/j.foodhyd.2016.01.018.
  • Leeb, E., N. Haller, and U. Kulozik. 2018. Effect of pH on the reaction mechanism of thermal denaturation and aggregation of bovine β-lactoglobulin. International Dairy Journal 78:103–11. doi:10.1016/j.idairyj.2017.09.006.
  • Leon, A. M., W. T. Medina, D. J. Park, and J. M. Aguilera. 2018. Properties of microparticles from a whey protein isolate/alginate emulsion gel. Food Science and Technology International 24 (5):414–23. doi:10.1177/1082013218762210.
  • Lerner, A., and T. Matthias. 2015. Possible association between celiac disease and bacterial transglutaminase in food processing: A hypothesis. Nutrition Reviews 73 (8):544–52. doi:10.1093/nutrit/nuv011.
  • Li, T., C. Wang, T. Li, L. Ma, D. Sun, J. Hou, and Z. Jiang. 2018. Surface hydrophobicity and functional properties of citric acid cross-linked whey protein isolate: The impact of pH and concentration of citric acid. Molecules 23 (9):2383. doi:10.3390/molecules23092383.
  • Liu, G., T. C. Jaeger, S. B. Nielsen, C. A. Ray, and R. Ipsen. 2018. Physicochemical properties of milk protein ingredients and their acid gelation behaviour in different ionic environments. International Dairy Journal 85:16–20. doi:10.1016/j.idairyj.2018.04.012.
  • Liu, K., Q. M. Li, X. Q. Zha, L. H. Pan, L. J. Bao, H. L. Zhang, and J. P. Luo. 2019. Effects of calcium or sodium ions on the properties of whey protein isolate-lotus root amylopectin composite gel. Food Hydrocolloids 87:629–36. doi:10.1016/j.foodhyd.2018.08.050.
  • Liu, W., X. Dong Chen, and R. Mercadé-Prieto. 2017. Spatial quantification of hydrogels swelling using wide-field fluorescence microscopy. Chemical Engineering Science 158:349–58. doi:10.1016/j.ces.2016.10.014.
  • Loveday, S. M. 2016. β-Lactoglobulin heat denaturation: A critical assessment of kinetic modelling. International Dairy Journal 52:92–100. doi:10.1016/j.idairyj.2015.08.001.
  • Manji, B., and Y. Kakuda. 1986. Thermal denaturation of whey proteins in skim milk. Canadian Institute of Food Science and Technology Journal 19 (4):163–6.. (86)71624-6 doi:10.1016/S0315-5463(86)71624-6.
  • Mantovani, R. A., Â. L. F. Cavallieri, and R. L. Cunha. 2016. Gelation of oil-in-water emulsions stabilized by whey protein. Journal of Food Engineering 175:108–16. doi:10.1016/j.jfoodeng.2015.12.011.
  • Markoska, T., T. Huppertz, M. K. Grewal, and T. Vasiljevic. 2019. Structural changes of milk proteins during heating of concentrated skim milk determined using FTIR. International Dairy Journal 89:21–30. doi:10.1016/j.idairyj.2018.08.010.
  • Matsuo, K., Y. Sakurada, S. Tate, H. Namatame, M. Taniguchi, and K. Gekko. 2012. Secondary-structure analysis of alcohol-denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Proteins: Structure, Function, and Bioinformatics 80 (1):281–93. doi:10.1002/prot.23206.
  • McGuffey, M. K., K. L. Epting, R. M. Kelly, and E. A. Foegeding. 2005. Denaturation and aggregation of three α-lactalbumin preparations at neutral pH. Journal of Agricultural and Food Chemistry 53 (8):3182–90. doi:10.1021/jf048863p.
  • McKerchar, H. J., S. Clerens, R. C. J. Dobson, J. M. Dyer, E. Maes, and J. A. Gerrard. 2019. Protein-protein crosslinking in food: Proteomic characterisation methods, consequences and applications. Trends in Food Science & Technology 86:217–29. doi:10.1016/j.tifs.2019.02.005.
  • McSweeney, P. L. H., and P. F. Fox. 2013. Advanced dairy chemistry: Volume 1A: Proteins: Basic aspects. Boston, MA: Springer Science & Business Media.
  • Mercade-Prieto, R., and S. Gunasekaran. 2016. Gelation and thickening with globular proteins at low temperatures. Novel Food Processing: Effects on Rheological and Functional Properties. CRC Press. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051089228&partnerID=40&md5=cde1038cce3898fc46e96b84e61b9f9c.
  • Mezzenga, R., and P. Fischer. 2013. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Reports on Progress in Physics 76 (4):046601. doi:10.1088/0034-4885/76/4/046601.
  • Mizuguchi, M., M. Nara, K. Kawano, and K. Nitta. 1997. FT-IR study of the Ca 2+ -binding to bovine α-lactalbumin. FEBS Letters 417 (1):153–6.. (97)01274-X doi:10.1016/S0014-5793(97)01274-X.
  • Mohammadian, M., M. Salami, Z. Emam-Djomeh, S. Momen, and A. A. Moosavi-Movahedi. 2018. Gelation of oil-in-water emulsions stabilized by heat-denatured and nanofibrillated whey proteins through ion bridging or citric acid-mediated cross-linking. International Journal of Biological Macromolecules 120:2247–58. doi:10.1016/j.ijbiomac.2018.08.085.
  • Mohanta, D., and M. Jana. 2016. Effect of ethanol concentrations on temperature driven structural changes of chymotrypsin inhibitor 2. The Journal of Chemical Physics 144 (16):165101. doi:10.1063/1.4947239.
  • Moschakis, T., N. Chantzos, C. G. Biliaderis, and E. Dickinson. 2018. Microrheology and microstructure of water-in-water emulsions containing sodium caseinate and locust bean gum. Food & Function 9 (5):2840–52. doi:10.1039/C7FO01412K.
  • Moschakis, T., and C. G. Biliaderis. 2017. Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid & Interface Science 28:96–109. doi:10.1016/j.cocis.2017.03.006.
  • Moschakis, T., B. S. Murray, and C. G. Biliaderis. 2010. Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food Hydrocolloids 24 (1):8–17. doi:10.1016/j.foodhyd.2009.07.001.
  • Mulvihill, D. M., and M. P. Ennis. 2003. Functional milk proteins: Production and utilisation. In Advanced dairy chemistry Vol.1, Proteins, eds. P. F. Fox and P. L. H. McSweeney, 1175–228. New York: Kluwer Academic/Plenum publishers.
  • Nayebzadeh, K., J. Chen, E. Dickinson, and T. Moschakis. 2006. Surface structure smoothing effect of polysaccharide on a heat-set protein particle gel. Langmuir 22 (21):8873–80. doi:10.1021/la060419o.
  • Ngarize, S., A. Adams, and N. Howell. 2005. A comparative study of heat and high pressure induced gels of whey and egg albumen proteins and their binary mixtures. Food Hydrocolloids 19 (6):984–96. doi:10.1016/j.foodhyd.2004.12.008.
  • Nicolai, T., and D. Durand. 2013. Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science 18 (4):249–56. doi:10.1016/j.cocis.2013.03.001.
  • Nicolai, T. 2016. Formation and functionality of self-assembled whey protein microgels. Colloids and Surfaces B: Biointerfaces 137:32–8. doi:10.1016/j.colsurfb.2015.05.055.
  • Nicolai, T., M. Britten, and C. Schmitt. 2011. β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids 25 (8):1945–62. doi:10.1016/j.foodhyd.2011.02.006.
  • Nicolai, T., and B. Murray. 2017. Particle stabilized water in water emulsions. Food Hydrocolloids 68:157–63. doi:10.1016/j.foodhyd.2016.08.036.
  • Nikolaidis, A., M. Andreadis, and T. Moschakis. 2017. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra. Food Chemistry 232:425–33. doi:10.1016/j.foodchem.2017.04.022.
  • Nikolaidis, A., and T. Moschakis. 2017. Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis. Food Chemistry 215:235–44. doi:10.1016/j.foodchem.2016.07.133.
  • Nikolaidis, A., and T. Moschakis. 2018. On the reversibility of ethanol-induced whey protein denaturation. Food Hydrocolloids 84:389–95. doi:10.1016/j.foodhyd.2018.05.051.
  • Oldfield, D. J., H. Singh, and M. W. Taylor. 2005. Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. Journal of Dairy Research 72 (3):369–78. doi:10.1017/S002202990500107X.
  • Pace, C. N., S. Treviño, E. Prabhakaran, J. M. Scholtz, F. Franks, K. Wilson, … A. Purkiss. 2004. Protein structure, stability and solubility in water and other solvents. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359 (1448):1225–35. doi:10.1098/rstb.2004.1500.
  • Pal, S., V. Ellis, and S. Dhaliwal. 2010. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. British Journal of Nutrition 104 (5):716–23. doi:10.1017/S0007114510000991.
  • Panick, G., R. Malessa, and R. Winter. 1999. Differences between the pressure- and temperature-induced denaturation and aggregation of β-lactoglobulin A, B, and AB monitored by FT-IR spectroscopy and small-angle X-ray scattering. Biochemistry 38 (20):6512–9. doi:10.1021/bi982825f.
  • Peddireddy, K. R., T. Nicolai, L. Benyahia, and I. Capron. 2016. Stabilization of water-in-water emulsions by nanorods. ACS Macro Letters 5 (3):283–6. doi:10.1021/acsmacrolett.5b00953.
  • Petit, J., A. Moreau, G. Ronse, P. Debreyne, L. Bouvier, P. Blanpain-Avet, R. Jeantet, and G. Delaplace. 2016. Role of Whey Components in the Kinetics and Thermodynamics of β-Lactoglobulin Unfolding and Aggregation. Food and Bioprocess Technology 9 (8):1367–79. http://dx.doi.org/10.1007/s11947-016-1726-x.
  • Phan-Xuan, T., D. Durand, T. Nicolai, L. Donato, C. Schmitt, and L. Bovetto. 2013. Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules 14 (6):1980–9. doi:10.1021/bm400347d.
  • Phan-Xuan, T., D. Durand, T. Nicolai, L. Donato, C. Schmitt, and L. Bovetto. 2014. Heat induced formation of beta-lactoglobulin microgels driven by addition of calcium ions. Food Hydrocolloids 34:227–35. doi:10.1016/j.foodhyd.2012.09.008.
  • Plamper, F. A., and W. Richtering. 2017. Functional microgels and microgel systems. Accounts of Chemical Research 50 (2):131–40. doi:10.1021/acs.accounts.6b00544.
  • Quan, W., C. Zhang, M. Zheng, Z. Lu, H. Zhao, and F. Lu. 2019. Effects of small laccase from Streptomyces coelicolor on the solution and gel properties of whey protein isolate. LWT 101:17–24. doi:10.1016/j.lwt.2018.11.041.
  • Relkin, P., and D. M. Mulvihill. 1996. Thermal unfolding of β‐lactoglobulin, α‐lactalbumin, and bovine serum albumin. A thermodynamic approach. Critical Reviews in Food Science and Nutrition 36 (6):565–601. doi:10.1080/10408399609527740.
  • Roefs, S. P. F. M., and K. G. Kruif. 1994. A model for the denaturation and aggregation of beta-lactoglobulin. European Journal of Biochemistry 226 (3):883–9. doi:10.1111/j.1432-1033.1994.00883.x.
  • Sato, M., T. Sasaki, M. Kobayashi, and H. Kise. 2000. Time-dependent structure and activity changes of α-chymotrypsin in water/alcohol mixed solvents. Bioscience, Biotechnology, and Biochemistry 64 (12):2552–8. doi:10.1271/bbb.64.2552.
  • Schenkel, P., R. Samudrala, and J. Hinrichs. 2013. The effect of adding whey protein particles as inert filler on thermophysical properties of fat-reduced semihard cheese type Gouda. International Journal of Dairy Technology 66 (2):220–30. doi:10.1111/1471-0307.12036.
  • Schmid, F.-X. 2001. Biological macromolecules: UV-visible spectrophotometry. In Encyclopedia of life sciences. Chichester, UK: John Wiley & Sons, Ltd. 10.1038/npg.els.0003142.
  • Schmidt, S., T. Liu, S. RüTten, K.-H. Phan, M. MöLler, and W. Richtering, 2011. Influence of microgel architecture and oil polarity on stabilization of emulsions by stimuli-sensitive core-shell poly(N -isopropylacrylamide- co -methacrylic acid) microgels: Mickering versus pickering behavior? Langmuir 27 (16):9801–6. doi:10.1021/la201823b.
  • Shewan, H. M., and J. R. Stokes. 2013. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering 119 (4):781–92. doi:10.1016/j.jfoodeng.2013.06.046.
  • Sousa, G. T. D., F. S. Lira, J. C. Rosa, E. P. Oliveira, L. M. Oyama, R. V. Santos, and G. D. Pimentel. 2012. Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids in Health and Disease 11 (1):67. https://doi.org/10.1186/1476-511X-11-67.
  • Spotti, M. J., Ö. Tarhan, S. Schaffter, C. Corvalan, and O. H. Campanella. 2017. Whey protein gelation induced by enzymatic hydrolysis and heat treatment: Comparison of creep and recovery behavior. Food Hydrocolloids 63:696–704. doi:10.1016/j.foodhyd.2016.10.014.
  • Tan, J., and H. S. Joyner. 2018. Characterizing wear behaviors of κ-carrageenan and whey protein gels by numerical modeling. Journal of Food Engineering 235:98–105. doi:10.1016/j.jfoodeng.2018.05.002.
  • Tarhan, O., M. J. Spotti, S. Schaffter, C. M. Corvalan, and O. H. Campanella. 2016. Rheological and structural characterization of whey protein gelation induced by enzymatic hydrolysis. Food Hydrocolloids 61:211–20. doi:10.1016/j.foodhyd.2016.04.042.
  • Torres, I. C., J. M. Amigo, J. C. Knudsen, A. Tolkach, B. Ø. Mikkelsen, and R. Ipsen. 2018. Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer. International Dairy Journal 81:62–71. doi:10.1016/j.idairyj.2018.01.004.
  • Torres, I. C., J. M. Amigo Rubio, and R. Ipsen. 2012. Using fractal image analysis to characterize microstructure of low-fat stirred yoghurt manufactured with microparticulated whey protein. Journal of Food Engineering 109 (4):721–9. doi:10.1016/j.jfoodeng.2011.11.016.
  • Truong, V., D. A. Clare, G. L. Catignani, and H. E. Swaisgood. 2004. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. Journal of Agricultural and Food Chemistry 52 (5):1170–6. doi:10.1021/jf034397c.
  • Tzoumaki, M. V., T. Moschakis, V. Kiosseoglou, and C. G. Biliaderis. 2011. Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids 25 (6):1521–9. doi:10.1016/j.foodhyd.2011.02.008.
  • Tzoumaki, M. V., T. Moschakis, E. Scholten, and C. G. Biliaderis. 2013. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food & Function 4 (1):121–9. doi:10.1039/C2FO30129F.
  • Van Camp, J., and A. Huyghebaert. 1995. A comparative rheological study of heat and high pressure induced whey protein gels. Food Chemistry 54 (4):357–64.. (95)00040-P doi:10.1016/0308-8146(95)00040-P.
  • Vijayalakshmi, L., R. Krishna, R. Sankaranarayanan, and M. Vijayan. 2007. An Asymmetric Dimer of Beta-Lactoglobulin in a Low Humidity Crystal Form-Structural Changes That Accompany Partial Dehydration and Protein Action. Proteins 71:241–49. http://www.rcsb.org/structure/2Q2M.
  • Wagner, J., M. Andreadis, A. Nikolaidis, C. G. Biliaderis, and T. Moschakis. 2020. Effect of ethanol on the microstructure and rheological properties of whey proteins: acid-induced cold gelation. Thessaloniki, Greece: Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki.
  • Wijayanti, H. B., N. Bansal, and H. C. Deeth. 2014. Stability of Whey Proteins during Thermal Processing: A Review. Comprehensive Reviews in Food Science and Food Safety 13 (6):1235–51. doi:10.1111/1541-4337.12105.
  • Wijayanti, H. B., A. Brodkorb, S. A. Hogan, and E. G. Murphy. 2019. Chapter 6 - Thermal Denaturation, Aggregation, and Methods of Prevention. In Whey proteins: From milk to medicine, eds. H. C. Deeth and N. Bansal, 185–247. Cambridge, MA: Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812124-5.00006-0.
  • Wilson, A., G. Gasparini, and S. Matile. 2014. Functional systems with orthogonal dynamic covalent bonds. Chemical Society Reviews 43 (6):1948–62. doi:10.1039/C3CS60342C.
  • Wolfe, R. R., J. I. Baum, C. Starck, and P. J. Moughan. 2018. Factors contributing to the selection of dietary protein food sources. Clinical Nutrition 37 (1):130–8. doi:10.1016/j.clnu.2017.11.017.
  • Wong, D., T. Vasanthan, and L. Ozimek. 2013. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins. Food Chemistry 141 (4):3913–9. doi:10.1016/j.foodchem.2013.05.082.
  • Wu, J., M. Shi, W. Li, L. Zhao, Z. Wang, X. Yan, W. Norde, and Y. Li. 2015. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking. Colloids and Surfaces B: Biointerfaces 127:96–104. doi:10.1016/j.colsurfb.2015.01.029.
  • Xu, H., L. Shen, L. Xu, and Y. Yang. 2015. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study. Biomedical Microdevices 17 (1):8. doi:10.1007/s10544-014-9926-5.
  • Yoshida, K., K. Vogtt, Z. Izaola, M. Russina, T. Yamaguchi, and M.-C. Bellissent-Funel. 2012. Alcohol induced structural and dynamic changes in β-lactoglobulin in aqueous solution: A neutron scattering study. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1824 (3):502–10. doi:10.1016/j.bbapap.2011.12.011.
  • Yoshikawa, H., A. Hirano, T. Arakawa, and K. Shiraki. 2012. Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. International Journal of Biological Macromolecules 50 (5):1286–91. doi:10.1016/j.ijbiomac.2012.03.014.
  • Zhao, X., L. Wang, X. Hao, Y. Liu, P. Qin, and R. Liu. 2010. Toxic effects of ethanol on bovine serum albumin. Journal of Biochemical and Molecular Toxicology 24 (1):66–71. doi:10.1002/jbt.20314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.