1,618
Views
34
CrossRef citations to date
0
Altmetric
Reviews

The relationship between host circadian rhythms and intestinal microbiota: A new cue to improve health by tea polyphenols

, , &

References

  • Arble, D. M., J. Bass, A. D. Laposky, M. H. Vitaterna, and F. W. Turek. 2009. Circadian timing of food intake contributes to weight gain. Obesity 17 (11):2100–2. doi: 10.1038/oby.2009.264.
  • Asher, G., and P. S. Corsi. 2015. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161 (1):84–92. doi: 10.1016/j.cell.2015.03.015.
  • Bass, J., and M. A. Lazar. 2016. Circadian time signatures of fitness and disease. Science 354 (6315):994–9. doi: 10.1126/science.aah4965.
  • Boulange, C. L., A. L. Neves, J. Chilloux, J. K. Nicholson, and M. E. Dumas. 2016. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine 8:42. doi: 10.1186/s13073-016-0303-2.
  • Brown, E. M., M. Sadarangani, and B. B. Finlay. 2013. The role of the immune system in governing host-microbe interactions in the intestine. Nature Immunology 14 (7):660–667. doi: 10.1038/ni.2611.
  • Brüning, F., S. B. Noya, T. Bange, S. Koutsouli, J. D. Rudolph, S. K. Tyagarajan, J. Cox, M. Mann, S. A. Brown, and M. S. Robles. 2019. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366 (6462):eaav3617. doi: 10.1126/science.aav3617.
  • Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57 (6):1470–81. doi: 10.2337/db07-1403.
  • Chen, T., and C. S. Yang. 2019. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: Implications on health effects. Critical Reviews in Food Science and Nutrition 10:1–19. doi: 10.1080/10408398.2019.1654430.
  • Cheng, L., Y. Chen, X. Zhang, X. Zheng, J. Cao, Z. Wu, W. Qin, and K. Cheng. 2019. A metagenomic analysis of the modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiome in a high fat diet-induced obesity mouse model. Journal of the Science of Food and Agriculture 99 (8):3967–75. doi: 10.1002/jsfa.9622.
  • Cheng, M., X. Zhang, X. J. Guo, Z. F. Wu, and P. F. Weng. 2017. The interaction effect and mechanism between tea polyphenols and intestinal microbiota: Role in human health. Journal of Food Biochemistry 41 (6):e12415. doi: 10.1111/jfbc.12415.
  • Cheng, M., X. Zhang, Y. Miao, J. Cao, Z. Wu, and P. Weng. 2017. The modulatory effect of (–)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3’’Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International 92:9–16. doi: 10.1016/j.foodres.2016.12.008.
  • Cronin, P., M. J. McCarthy, A. S. P. Lim, D. P. Salmon, D. Galasko, E. Masliah, P. L. De Jager, D. A. Bennett, and P. Desplats. 2017. Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimer’s & Dementia 13 (6):689–700. doi: 10.1016/j.jalz.2016.10.003.
  • Deaver, J. A., S. Y. Eum, and M. Toborek. 2018. Circadian disruption changes gut microbiome taxa and functional gene composition. Frontiers in Microbiology 9:737. doi: 10.3389/fmicb.2018.00737.
  • Devaraj, S., P. Hemarajata, and J. Versalovic. 2013. The human gut microbiome and body metabolism implications for obesity and diabetes. Clinical Chemistry 59 (4):617–28. doi: 10.1373/clinchem.2012.187617.
  • Elinav, E.,. R. Nowarski, C. A. Thaiss, B. Hu, C. Jin, and R. A. Flavell. 2013. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer 13 (11):759–71. doi: 10.1038/nrc3611.
  • Froy, O. 2007. The relationship between nutrition and circadian rhythms in mammals. Frontiers in Neuroendocrinology 28 (2–3):61–71. doi: 10.1016/j.yfrne.2007.03.001.
  • Guo, T., C. Ho, X. Zhang, J. Cao, H. Wang, X. Shao, D. Pan, and Z. Wu. 2019. Oolong tea polyphenols ameliorate circadian rhythm of intestinal microbiome and liver clock genes in mouse model. Journal of Agricultural and Food Chemistry 67 (43):11969–76. doi: 10.1021/acs.jafc.9b04869.
  • Guo, T., D. Song, C. Ho, X. Zhang, C. Zhang, J. Cao, and Z. Wu. 2019. Omics analyses of gut microbiota in a circadian rhythm disorder mouse model fed with oolong tea polyphenols. Journal of Agricultural and Food Chemistry 67 (32):8847–54. doi: 10.1021/acs.jafc.9b03000.
  • He, B., K. Nohara, N. Park, Y. S. Park, B. Guillory, Z. Zhao, J. M. Garcia, N. Koike, C. C. Lee, J. S. Takahashi, et al. 2016. The small molecule Nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metabolism 23 (4):610–21. doi: 10.1016/j.cmet.2016.03.007.
  • Henrik, R. D., E. Alexander, S. Anders, G. Vedrana, J. F. Lars, G. Peter, D. M. Kathy, J. M. Andrew, A. M. Leonardo, and J. Finn. 2011. Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression. PLoS One 6 (3):e17996. doi: 10.1371/journal.pone.0017996.
  • Jacobi, D., S. Liu, K. Burkewitz, N. Kory, N. H. Knudsen, R. K. Alexander, U. Unluturk, X. Li, X. Kong, A. L. Hyde, et al. 2015. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metabolism 22 (4):709–20. doi: 10.1016/j.cmet.2015.08.006.
  • Jennifer, L., V. Sharon, and D. Hannah. 2017. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutrition Reviews 75 (9):673–82. doi: 10.1093/nutrit/nux036.
  • Kaczmarek, J. L., S. M. Musaad, and H. D. Holscher. 2017. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. American Journal of Clinical Nutrition 106 (5):1220–31. doi: 10.3945/ajcn.117.156380.
  • Kalaimathi, G., M. S. John, P. G. Casey, S. Fergus, S. A. Joyce, and C. G. M. Gahan. 2016. Unconjugated bile acids influence expression of circadian genes: A potential mechanism for microbe-host crosstalk. PLoS One 11 (12):e0167319. doi: 10.1371/journal.pone.0167319.
  • Kemperman, R. A., S. Bolca, L. C. Roger, and E. E. Vaughan. 2010. Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology 156 (11):3224–31. doi: 10.1099/mic.0.042127-0.
  • Krautkramer, K.,. J. Kreznar, K. Romano, E. Vivas, G. Barrett-Wilt, M. Rabaglia, M. Keller, A. Attie, F. Rey, and J. Denu. 2016. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular Cell 64 (5):982–92. doi: 10.1016/j.molcel.2016.10.025.
  • Kuang, Z., Y. Wang, L. Yun, C. Ye, K. A. Ruhn, C. L. Behrendt, E. N. Olson, and L. V. Hooper. 2019. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365 (6460):1428–34. doi: 10.1126/science.aaw3134.
  • Kumar, J. P., E. Challet, and A. Kalsbeek. 2015. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Molecular and Cellular Endocrinology 418:74–88. doi: 10.1016/j.mce.2015.01.024.
  • Lamia, K. A., K. F. Storch, and C. J. Weitz. 2008. Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences 105 (39):15172–7. doi: 10.1073/pnas.0806717105.
  • Lee, J., K. Ma, M. Moulik, and V. Yechoor. 2018. Untimely oxidative stress in β-cells leads to diabetes-role of circadian clock in β-cell function. Free Radical Biology and Medicine 119:69–74. doi: 10.1016/j.freeradbiomed.2018.02.022.
  • Leone, V., S. M. Gibbons, K. Martinez, A. L. Hutchison, E. Y. Huang, C. M. Cham, J. F. Pierre, A. F. Heneghan, A. Nadimpalli, N. Hubert, et al. 2015. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host & Microbe 17:681–9. doi: 10.1016/j.chom.2015.03.006.
  • Li, Y., X. Gao, and Y. Lou. 2019. Interactions of tea polyphenols with intestinal microbiota and their implication for cellular signal conditioning mechanism. Journal of Food Biochemistry 43 (8):e12953. doi: 10.1111/jfbc.12953.
  • Liang, X., F. D. Bushman, and G. A. Fitzgerald. 2015. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proceedings of the National Academy of Sciences 112 (33):10479–84. doi: 10.1073/pnas.1501305112.
  • Liu, F., X. Zhang, B. Zhao, X. Tan, L. Wang, and X. Liu. 2019. Role of food phytochemicals in the modulation of circadian clocks. Journal of Agricultural and Food Chemistry 67 (32):8735–9. doi: 10.1021/acs.jafc.9b02263.
  • Mattson, M. P., D. B. Allison, L. Fontana, M. Harvie, V. D. Longo, W. J. Malaisse, M. Mosley, L. Notterpek, E. Ravussin, F. A. Scheer, et al. 2014. Meal frequency and timing in health and disease. Proceedings of the National Academy of Sciences 111 (47):16647–53. doi: 10.1073/pnas.1413965111.
  • Mi, Y., G. Qi, Y. Gao, R. Li, Y. Wang, X. Li, S. Huang, and X. Liu. 2017. (–)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in hepG2 cells: Involvement of Bmal1. Molecular Nutrition & Food Research 61 (12):1700440. doi: 10.1002/mnfr.201700440.
  • Mi, Y., G. Qi, R. Fan, X. Ji, Z. Liu, and X. Liu. 2017. EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1863 (6):1575–89. doi: 10.1016/j.bbadis.2017.04.009.
  • Minemura, M., and Y. Shimizu. 2015. Gut microbiota and liver diseases. World Journal of Gastroenterology 21 (6):1691–702. doi: 10.3748/wjg.v21.i6.1691.
  • Montagner, A., A. Korecka, A. Polizzi, Y. Lippi, Y. Blum, C. Canlet, M. T. Franco, A. G. Stein, R. Burcelin, Y. C. Yen, et al. 2016. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Scientific Reports 6 (1):20127. doi: 10.1038/srep20127.
  • Mukherji, A., A. Kobiita, T. Ye, and P. Chambon. 2013. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153 (4):812–27. doi: 10.1016/j.cell.2013.04.020.
  • Murakami, M.,. P. Tognini, Y. Liu, K. L. Eckel-Mahan, P. Baldi, and P. Sassone-Corsi. 2016. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Reports 17 (9):1292–303. doi: 10.15252/embr.201642463.
  • Musiek, E. S., M. Bhimasani, M. A. Zangrilli, J. C. Morris, D. M. Holtzman, and Y. S. Ju. 2018. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurology 75 (5):582–90. doi: 10.1001/jamaneurol.2017.4719.
  • Nobs, S. P., T. Tuganbaev, and E. Elinav. 2019. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Reports 20 (4):e47129. doi:10.15252/embr.201847129.
  • Noya, S. B., D. Colameo, F. Brüning, A. Spinnler, D. Mircsof, L. Opitz, M. Mann, S. K. Tyagarajan, M. S. Robles, and S. A. Brown. 2019. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366 (6462):eaav2642. doi: 10.1126/science.aav2642.
  • Palmer, C., E. M. Bik, D. B. Digiulio, D. A. Relman, and P. O. Brown. 2007. Development of the human infant intestinal microbiota. PLoS Biology 5 (7):e177. doi: 10.1371/journal.pbio.
  • Pan, X., Y. Zhang, L. Wang, and M. M. Hussain. 2010. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metabolism 12 (2):174–86. doi: 10.1016/j.cmet.2010.05.014.
  • Panda, S. 2016. Circadian physiology of metabolism. Science 354 (6315):1008–15. doi: 10.1126/science.aah4967.
  • Paschos, G. K., and G. A. Fitzgerald. 2017. Circadian clocks and metabolism: Implications for microbiome and aging. Trends in Genetics 33 (10):760–9. doi: 10.1016/j.tig.2017.07.010.
  • Qi, G., Y. Mi, R. Fan, B. Zhao, B. Ren, and X. Liu. 2017. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1. Food and Chemical Toxicology 110:189–99. doi: 10.1016/j.fct.2017.10.031.
  • Qi, G., Y. Mi, Z. Liu, R. Fan, Q. Qiao, Y. Sun, B. Ren, and X. Liu. 2017. Dietary tea polyphenols ameliorate metabolic syndrome and memory impairment via circadian clock related mechanisms. Journal of Functional Foods 34:168–80. doi: 10.1016/j.jff.2017.04.031.
  • Qing, F., C. W. Dong, and W. Y. Dong. 2018. Gut microbiota: An integral moderator in health and disease. Frontiers in Microbiology 9:151. doi: 10.3389/fmicb.2018.00151.
  • Rath, C. M., and P. C. Dorrestein. 2012. The bacterial chemical repertoire mediates metabolic exchange within gut microbiomes. Current Opinion in Microbiology 15 (2):147–54. doi: 10.1016/j.mib.2011.12.009.
  • Reddy, A. B., N. A. Karp, E. S. Maywood, E. A. Sage, M. Deery, J. S. O'Neill, G. K.Y. Wong, J. Chesham, M. Odell, K. S. Lilley, et al. 2006. Circadian orchestration of the hepatic proteome. Current Biology 16 (11):1107–15. doi: 10.1016/j.cub.2006.04.026.
  • Ribas, L. A., L. B. Escudero, E. Casanova, A. A. Arnal, M. Salvadó, B. Cinta, and L. Arola. 2015. Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver. Scientific Reports 5:10954. doi: 10.1038/srep10954.
  • Rogers, G. B., D. J. Keating, R. L. Young, M. L. Wong, J. Licinio, and S. Wesselingh. 2016. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Molecular Psychiatry 21 (6):738–48. doi: 10.1038/mp.2016.50.
  • Serra, D., L. M. Almeida, and T. C. P. Dinis. 2019. The impact of chronic intestinal inflammation on brain disorders: The microbiota-gut-brain axis. Molecular Neurobiology 56 (10):6941–51. doi: 10.1007/s12035-019-1572-8.
  • Song, D., L. Cheng, X. Zhang, Z. Wu, and X. Zheng. 2019. The modulatory effect and the mechanism of flavonoids on obesity. Journal of Food Biochemistry 43 (8):12954. doi: 10.1111/jfbc.12954.
  • Summa, K. C., R. M. Voigt, C. B. Forsyth, M. Shaikh, K. Cavanaugh, Y. Tang, M. H. Vitaterna, S. Song, F. W. Turek, and A. Keshavarzian. 2013. Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One 8 (6):e67102. doi: 10.1371/journal.pone.0067102.
  • Tahara, Y., M. Yamazaki, H. Sukigara, H. Motohashi, H. Sasaki, H. Miyakawa, A. Haraguchi, Y. Ikeda, S. Fukuda, and S. Shibata. 2018. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Scientific Reports 8 (1):1395. doi: 10.1038/s41598-018-19836-7.
  • Teng, F., J. Goc, L. Zhou, C. Chu, M. A. Shah, G. Eberl, and G. F. Sonnenberg. 2019. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Science Immunology 4 (40):eaax1215. doi: 10.1126/sciimmunol.aax1215.
  • Thaiss, C. A., D. Zeevi, M. Levy, G. Zilberman-Schapira, J. Suez, A. C. Tengeler, L. Abramson, M. N. Katz, T. Korem, N. Zmora, et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159 (3):514–29. doi: 10.1016/j.cell.2014.09.048.
  • Thaiss, C. A., D. Zeevi, M. Levy, E. Segal, and E. Elinav. 2015. A day in the life of the meta-organism: Diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6 (2):137–42. doi: 10.1080/19490976.2015.1016690.
  • Thaiss, C. A., M. Levy, T. Korem, L. Dohnalová, H. Shapiro, D. A. Jaitin, E. David, D. R. Winter, M. Gury-BenAri, E. Tatirovsky, et al. 2016. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167 (6):1495–510. doi: 10.1016/j.cell.2016.11.003.
  • Thompson, R. S., R. Roller, A. Mika, B. N. Greenwood, R. Knight, M. Chichlowski, B. M. Berg, and M. Fleshner. 2016. Dietary prebiotics and bioactive milk fractions improve NREM sleep, enhance REM sleep rebound and attenuate the stress-induced decrease in diurnal temperature and gut microbial alpha diversity. Frontiers in Behavioral Neuroscience 10:240. doi: 10.3389/fnbeh.2016.00240.
  • Tuohy, K. M., L. Conterno, M. Gasperotti, and R. Viola. 2012. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of Agricultural and Food Chemistry 60 (36):8776–82. doi: 10.1021/jf2053959.
  • Turek, F. W., C. A. Joshu, E. Kohsaka, G. Lin, E. Ivanova, A. McDearmon, S. Laposky, A. Losee-Olson, D. R. Easton, R. H. Jensen, et al. 2005. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308 (5724):1043–5. doi: 10.1126/science.1108750.
  • Van, E. J. J., J. A. Westerhuis, C. H. Grün, D. M. Jacobs, P. H. C. Eilers, T. P. Mulder, M. Foltz, U. Garczarek, R. Kemperman, E. E. Vaughan, et al. 2014. Population-based nutrikinetic modeling of polyphenol exposure. Metabolomics 10:1059–73. doi: 10.1007/s11306-014-0645-y.
  • Voigt, R. M., C. B. Forsyth, S. J. Green, M. Ece, E. Phillip, M. H. Vitaterna, F. W. Turek, and A. Keshavarzian. 2014. Circadian disorganization alters intestinal microbiota. PLoS One 9 (5):e97500. doi: 10.1371/journal.pone.0097500.
  • Voigt, R. M., C. B. Forsyth, S. J. Green, P. A. Engen, and A. Keshavarzian. 2016. Circadian rhythm and the gut microbiome. International Review of Neurobiology 131:193–205. doi: 10.1016/bs.irn.2016.07.002.
  • Voigt, R. M., K. C. Summa, C. B. Forsyth, S. J. Green, P. Engen, A. Naqib, M. H. Vitaterna, F. W. Turek, and A. Keshavarzian. 2016. The circadian Clock mutation promotes intestinal dysbiosis. Alcoholism: Clinical and Experimental Research 40 (2):335–47. doi: 10.1111/acer.12943.
  • Wang, Y., Z. Kuang, X. Yu, K. A. Ruhn, M. Kubo, and L. V. Hooper. 2017. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357 (6354):912–6. doi: 10.1126/science.aan0677.
  • Wang, J., D. Mauvoisin, E. Martin, F. Atger, A. N. Galindo, L. Dayon, F. Sizzano, A. Palini, M. Kussmann, P. Waridel, et al. 2017. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metabolism 25 (1):102–17. doi: 10.1016/j.cmet.2016.10.003.
  • Xu, T., and B. Lu. 2019. The effects of phytochemicals on circadian rhythm and related diseases. Critical Reviews in Food Science and Nutrition 59 (6):882–92. doi: 10.1080/10408398.2018.1493678.
  • Yang, C. S., and J. Zhang. 2019. Studies on the prevention of cancer and cardiometabolic diseases by tea: Issues on mechanisms, effective doses, and toxicities. Journal of Agricultural and Food Chemistry 67 (19):5446–56. doi: 10.1021/acs.jafc.8b05242.
  • Yang, C. S., J. Zhang, L. Zhang, J. Huang, and Y. Wang. 2016. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular Nutrition & Food Research 60 (1):160–74. doi: 10.1002/mnfr.201500428.
  • Zarrinpar, A., A. Chaix, S. Yooseph, and S. Panda. 2014. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metabolism 20 (6):1006–17. doi: 10.1016/j.cmet.2014.11.008.
  • Zhang, X., Y. Chen, J. Zhu, M. Zhang, C. T. Ho, Q. Huang, and J. Cao. 2018. Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (–)-epigallocatechin 3-O-(3-O-Methyl) gallate (EGCG3’’Me). Molecular Nutrition & Food Research 62 (13):e1800274. doi: 10.1002/mnfr.201800274.
  • Zhu, W., J. Li, and B. Wu. 2018. Gene expression profiling of the mouse gut: Effect of intestinal flora on intestinal health. Molecular Medicine Reports 17 (3):3667–73. doi: 10.3892/mmr.2017.8298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.