4,289
Views
155
CrossRef citations to date
0
Altmetric
Reviews

Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products

, &

References

  • Alahakoon, A. U., D. D. Jayasena, S. Ramachandra, and C. Jo. 2015. Alternatives to nitrite in processed meat: Up to date. Trends in Food Science & Technology 45 (1):37–49. doi: 10.1016/j.tifs.2015.05.008.
  • Antolak, H., A. Czyzowska, M. Sakač, A. Mišan, O. Đuragić, and D. Kregiel. 2017. Phenolic compounds contained in little-known wild fruits as antiadhesive agents against the beverage-spoiling bacteria Asaia spp. Molecules 22 (8):1256–18. doi: 10.3390/molecules22081256.
  • Aouidi, F., A. Okba, and M. Hamdi. 2017. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. Journal of the Science of Food and Agriculture 97 (10):3195–203. doi: 10.1002/jsfa.8164.
  • Bancirova, M. 2010. Comparison of the antioxidant capacity and the antimicrobial activity of black and green tea. Food Research International 43 (5):1379–82. doi: 10.1016/j.foodres.2010.04.020.
  • Bastos, D. H., L. A. Saldanha, R. R. Catharino, A. Sawaya, I. B. Cunha, P. O. Carvalho, and M. N. Eberlin. 2007. Phenolic antioxidants identified by ESI-MS from yerba maté (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. Molecules 12 (3):423–32. doi: 10.3390/12030423.
  • Bazzaz, B. S. F., S. Sarabandi, B. Khameneh, and H. Hosseinzadeh. 2016. Effect of catechins, green tea extract and methylxanthines in combination with gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa:-combination therapy against resistant bacteria. Journal of Pharmacopuncture 19 (4):312–8. doi: 10.3831/KPI.2016.19.032.
  • Belkhir, M., O. Rebai, K. Dhaouadi, B. Sioud, M. Amri, and S. Fattouch. 2013. Antioxidant and antimicrobial activities of Tunisian azarole (Crataegus azarolus L.) leaves and fruit pulp/peel polyphenolic extracts. International Journal of Food Properties 16 (6):1380–93. doi: 10.1080/10942912.2011.586080.
  • Bhattacharya, D., D. Ghosh, S. Bhattacharya, S. Sarkar, P. Karmakar, H. Koley, and R. Gachhui. 2018. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: Targeting cell membrane. Letters in Applied Microbiology 66 (2):145–52. doi: 10.1111/lam.12829.
  • Biswas, A. K., M. K. Chatli, and J. Sahoo. 2012. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chemistry 133 (2):467–72. doi: 10.1016/j.foodchem.2012.01.073.
  • Borges, G., A. Degeneve, W. Mullen, and A. Crozier. 2010. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Journal of Agricultural and Food Chemistry 58 (7):3901–9. doi: 10.1021/jf902263n.
  • Bouvard, V., D. Loomis, K. Z. Guyton, Y. Grosse, F. E. Ghissassi, L. Benbrahim-Tallaa, N. Guha, H. Mattock, and K. Straif. 2015. Carcinogenicity of consumption of red and processed meat. The Lancet Oncology 16 (16):1599–600. doi: 10.1016/S1470-2045(15)00444-1.
  • Brodowska, M., Guzek, D. Godziszewska, J. Górska‐Horczyczak, E. Pogorzelska, E. Sakowska, A. Wojtasik-Kalinowska, I. Gantne, M. and A. Wierzbicka. 2017. Cherry (Prunus cerasus cv Montmorency) extract with standardised antioxidant potential as preservative for refrigerated storage of ground pork. International Journal of Food Science & Technology 52 (12):2555–63. doi: 10.1111/ijfs.13541.
  • Brudzynski, K., K. Abubaker, and D. Miotto. 2012. Unraveling a mechanism of honey antibacterial action: Polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chemistry 133 (2):329–36. doi: 10.1016/j.foodchem.2012.01.035.
  • Brudzynski, K., and R. Lannigan. 2012. Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Frontiers in Microbiology 3:1–8. doi: 10.3389/fmicb.2012.00036.
  • Cantwell, M., and C. Elliott. 2017. Nitrates, nitrites and nitrosamines from processed meat intake and colorectal cancer risk. Journal of Clinical Nutrition & Dietics 3 (4):27. doi: 10.4172/2472-1921.100061.
  • Cao, Y. D., Qian, H. L. C. M. Feng, T. Wang, T. Z. Y. Guo, X. K. Wu, and S. H. Zhang. 2019. Study on the Mechanism of Epigallocatechin Gallate (EGCG) to the Cell Membrane of Escherichia coli. Science of Advanced Materials 11 (2):262–8. doi: 10.1166/sam.2019.3458.
  • Casaburi, A., V. D. Martino, D. Ercolini, E. Parente, and F. Villani. 2015. Antimicrobial activity of Myrtus communis L. water-ethanol extract against meat spoilage strains of Brochothrix thermosphacta and Pseudomonas fragiin vitro and in meat. Annals of Microbiology 65 (2):841–50. doi: 10.1007/s13213-014-0925-9.
  • Cavaliere, C., P. Foglia, R. Gubbiotti, P. Sacchetti, R. Samperi, and A. Lagana. 2008. Rapid‐resolution liquid chromatography/mass spectrometry for determination and quantitation of polyphenols in grape berries. Rapid Communications in Mass Spectrometry 22 (20):3089–99. doi: 10.1002/rcm.3705.
  • Chinnam, N., P. K. Dadi, S. A. Sabri, M. Ahmad, M. A. Kabir, and Z. Ahmad. 2010. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. International Journal of Biological Macromolecules 46 (5):478–86. doi: 10.1016/j.ijbiomac.2010.03.009.
  • Cho, Y. S., J. J. Oh, and K. H. Oh. 2010. Antimicrobial activity and biofilm formation inhibition of green tea polyphenols on human teeth. Biotechnology and Bioprocess Engineering 15 (2):359–64. doi: 10.1007/s12257-009-0195-8.
  • Cho, Y. S., N. L. Schiller, and K. H. Oh. 2008. Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Current Microbiology 57 (6):542–6. doi: 10.1007/s00284-008-9239-0.
  • Cho, Y. S., N. L. Schiller, H. Y. Kahng, and K. H. Oh. 2007. Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols. Current Microbiology 55 (6):501–6. doi: 10.1007/s00284-007-9021-8.
  • Chrzanowski, G., B. Leszczyński, P. Czerniewicz, H. Sytykiewicz, H. Matok, R. Krzyżanowski, and C. Sempruch. 2012. Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae F.) development. Crop Protection 35:71–7. doi: 10.1016/j.cropro.2012.01.005.
  • Coman, M. M., A. M. Oancea, M. C. Verdenelli, C. Cecchini, G. E. Bahrim, C. Orpianesi, A. Cresci, and S. Silvi. 2017. Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. European Food Research and Technology 244 (4):1–11. doi: 10.1007/s00217-017-2997-9.
  • Cory, H., S. Passarelli, J. Szeto, M. Tamez, and J. Mattei. 2018. The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition 5:1–9. doi: 10.3389/fnut.2018.00087.
  • Cui, Y., Y. J. Oh, J. Lim, M. Youn, I. Lee, H. K. Pak, W. Park, W. Jo, and S. Park. 2012. AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiology 29 (1):80–7. doi: 10.1016/j.fm.2011.08.019.
  • Dadi, P. K., M. Ahmad, and Z. Ahmad. 2009. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. International Journal of Biological Macromolecules 45 (1):72–9. doi: 10.1016/j.ijbiomac.2009.04.004.
  • Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23 (2):174–81. doi: 10.1016/j.copbio.2011.08.007.
  • Dent, M., V. Dragović-Uzelac, M. Penić, M. Brnčić, T. Bosiljkov, and B. Levaj. 2013. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology 51 (1):84–91.
  • Dhiman, R., N. Aggarwal, K. R. Aneja, and M. Kaur. 2016. In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. International Journal of Microbiology 2016:1–9. doi: 10.1155/2016/9015802.
  • Dolan, A., C. M. Burgess, T. B. Barry, S. Fanning, and G. Duffy. 2009. A novel quantitative reverse-transcription PCR (qRT-PCR) for the enumeration of total bacteria, using meat micro-flora as a model. Journal of Microbiological Methods 77 (1):1–7. doi: 10.1016/j.mimet.2008.10.013.
  • Do Thi, N., and E. S. Hwang. 2014. Bioactive compound contents and antioxidant activity in Aronia (Aronia melanocarpa) leaves collected at different growth stages. Preventive Nutrition and Food Science 19 (3):204–12. doi: 10.3746/pnf.2014.19.3.204.
  • Durling, N. E., O. J. Catchpole, J. B. Grey, R. F. Webby, K. A. Mitchell, L. Y. Foo, and N. B. Perry. 2007. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chemistry 101 (4):1417–24. doi: 10.1016/j.foodchem.2006.03.050.
  • Embuscado, M. E. 2015. Spices and herbs: Natural sources of antioxidants–A mini review. Journal of Functional Foods 18:811–9. doi: 10.1016/j.jff.2015.03.005.
  • Fernandes, R. P. P., M. A. Trindade, J. M. Lorenzo, P. E. S. Munekata, and M. P. De Melo. 2016. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 63:65–75. doi: 10.1016/j.foodcont.2015.11.027.
  • Friedman, M. 2007. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research 51 (1):116–34. doi: 10.1002/mnfr.200600173.
  • Ghasemzadeh, A., H. Z. Jaafar, and A. Rahmat. 2011. Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts. Journal of Medicinal Plants Research 5 (7):1147–54.
  • Ghouila, Z., S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. N. Muller, and A. Baaliouamer. 2017. Antioxidant, antibacterial and cell toxicity effects of polyphenols Fromahmeur bouamer grape seed extracts. Journal of Fundamental and Applied Sciences 9 (1):392–420. doi: 10.4314/jfas.v9i1.24.
  • Gorzynik-Debicka, M., P. Przychodzen, F. Cappello, A. Kuban-Jankowska, A. Marino Gammazza, N. Knap, M. Wozniak, and M. Gorska-Ponikowska. 2018. Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences 19 (3):686–13. doi: 10.3390/ijms19030686.
  • Govari, M., and A. Pexara. 2015. Nitrates and nitrites in meat products. Journal of the Hellenic Veterinary Medical Society 66 (3):127–40. doi: 10.12681/jhvms.15856.
  • Gradišar, H., P. Pristovšek, A. Plaper, and R. Jerala. 2007. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. Journal of Medicinal Chemistry 50 (2):264–71. doi: 10.1021/jm060817o.
  • Gyawali, R., and S. A. Ibrahim. 2014. Natural products as antimicrobial agents. Food Control 46:412–29. doi: 10.1016/j.foodcont.2014.05.047.
  • Hashimoto, T., S. Kumazawa, F. Nanjo, Y. Hara, and T. Nakayama. 1999. Interaction of tea catechins with lipid bilayers investigated with liposome systems. Bioscience, Biotechnology, and B2-Iochemistry 63 (12):2252–5. doi: 10.1271/bbb.63.2252.
  • Hassan, O., and L. S. Fan. 2005. The anti-oxidation potential of polyphenol extract from cocoa leaves on mechanically deboned chicken meat (MDCM). Lwt - Food Science and Technology 38 (4):315–21. doi: 10.1016/j.lwt.2004.06.013.
  • Jia, N., B. Kong, Q. Liu, X. Diao, and X. Xia. 2012. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Science 91 (4):533–9. doi: 10.1016/j.meatsci.2012.03.010.
  • Kajiya, K., H. Hojo, M. Suzuki, F. Nanjo, S. Kumazawa, and T. Nakayama. 2004. Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. Journal of Agricultural and Food Chemistry 52 (6):1514–9. doi: 10.1021/jf0350111.
  • Kamihira, M., H. Nakazawa, A. Kira, Y. Mizutani, M. Nakamura, and T. Nakayama. 2008. Interaction of tea catechins with lipid bilayers investigated by a quartz-crystal microbalance analysis. Bioscience, Biotechnology, and Biochemistry 72 (5):1372–5. doi: 10.1271/bbb.70786.
  • Karre, L., K. Lopez, and K. J. Getty. 2013. Natural antioxidants in meat and poultry products. Meat Science 94 (2):220–7. doi: 10.1016/j.meatsci.2013.01.007.
  • Katalinic, V., S. S. Mozina, I. Generalic, D. Skroza, I. Ljubenkov, and A. Klancnik. 2013. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. International Journal of Food Properties 16 (1):45–60. doi: 10.1080/10942912.2010.526274.
  • Katalinić, V., S. S. Možina, D. Skroza, I. Generalić, H. Abramovič, M. Miloš, I. Ljubenkov, S. Piskernik, I. Pezo, P. Terpinc, et al. 2010. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry 119 (2):715–23. doi: 10.1016/j.foodchem.2009.07.019.
  • Kähkönen, M. P., A. I. Hopia, and M. Heinonen. 2001. Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry 49 (8):4076–82. doi: 10.1021/jf010152t.
  • Kim, Y., K. L. Goodner, J. D. Park, J. Choi, and S. T. Talcott. 2011. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chemistry 129 (4):1331–42. doi: 10.1016/j.foodchem.2011.05.012.
  • Konaté, K., A. Hilou, J. Mavoungou, A. Lepengué, A. Souza, N. Barro, J. Y. Datté, B. M'Batchi, and O. Nacoulma. 2012. Antimicrobial activity of polyphenol-rich fractions from Sida alba L.(Malvaceae) against co-trimoxazol-resistant bacteria strains. Annals of Clinical Microbiology and Antimicrobials 11 (1):5–6. doi: 10.1186/1476-0711-11-5.
  • Kozlowska, M., A. E. Laudy, J. Przybyl, M. Ziarno, and E. Majewska. 2015. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Polonica Pharmaceutica 72 (4):757–67.
  • Lapornik, B., M. P. Rošek, and A. G. Wondra. 2005. Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering 71 (2):214–22. doi: 10.1016/j.jfoodeng.2004.10.036.
  • Lavola, A., R. Karjalainen, and R. Julkunen-Tiitto. 2012. Bioactive polyphenols in leaves, stems, and berries of Saskatoon (Amelanchier alnifolia Nutt.) cultivars. Journal of Agricultural and Food Chemistry 60 (4):1020–7. doi: 10.1021/jf204056s.
  • Lee, J. E., G. S. Kim, S. Park, Y. H. Kim, M. B. Kim, W. S. Lee, S. W. Jeong, S. J. Lee, J. S. Jin, and S. C. Shin. 2014. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chemistry 146:1–5. doi: 10.1016/j.foodchem.2013.09.029.
  • Liu, Y., L. C. McKeever, and N. S. Malik. 2017. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Frontiers in Microbiology 8:1–8. doi: 10.3389/fmicb.2017.00113.
  • Lorenzo, J. M., J. Sineiro, I. R. Amado, and D. Franco. 2014. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Science 96 (1):526–34. doi: 10.1016/j.meatsci.2013.08.007.
  • Lou, Z., H. Wang, S. Zhu, C. Ma, and Z. Wang. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science 76 (6):M398–M403. doi: 10.1111/j.1750-3841.2011.02213.x.
  • Ma, H., S. L. Johnson, W. Liu, N. A. DaSilva, S. Meschwitz, J. A. Dain, and N. P. Seeram. 2018. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences 19 (2):461. doi: 10.3390/ijms19020461.
  • Mennen, L. I., R. Walker, C. Bennetau-Pelissero, and A. Scalbert. 2005. Risks and safety of polyphenol consumption. The American Journal of Clinical Nutrition 81 (1):326S–9S. doi: 10.1016/j.fct.2014.06.009.
  • Mocan, A., G. Crișan, L. Vlase, O. Crișan, D. C. Vodnar, O. Raita, A.-M. Gheldiu, A. Toiu, R. Oprean, and I. Tilea. 2014. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra chinensis leaves and fruits. Molecules 19 (9):15162–79. doi: 10.3390/molecules190915162.
  • Nair, B. 2001. Final report on the safety assessment of benzyl alcohol, benzoic acid, and sodium benzoate. International Journal of Toxicology 20:23–50.
  • Nohynek, L. J., H. L. Alakomi, M. P. Kähkönen, M. Heinonen, I. M. Helander, K. M. Oksman-Caldentey, and R. H. Puupponen-Pimiä. 2006. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer 54 (1):18–32. doi: 10.1207/s15327914nc5401_4.
  • Nour, V., I. Trandafir, and S. Cosmulescu. 2014. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Industrial Crops and Products 53:133–9. doi: 10.1016/j.indcrop.2013.12.022.
  • Nowak, A., A. Czyzowska, M. Efenberger, and L. Krala. 2016. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiology 59:142–9. doi: 10.1016/j.fm.2016.06.004.
  • Oh, J., H. Jo, A. R. Cho, S. J. Kim, and J. Han. 2013. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control 31 (2):403–9. doi: 10.1016/j.foodcont.2012.10.021.
  • Oliveira, B. D. A., Rodrigues, A. C. A. M. C. Bertoldi, J. G. Taylor, and U. M. Pinto. 2017. Microbial control and quorum sensing inhibition by phenolic compounds of acerola (Malpighia emarginata). International Food Research Journal 24 (5):2228–37.
  • Oliveira, D. A., A. A. Salvador, A. Smânia, E. F. Smânia, M. Maraschin, and S. R. Ferreira. 2013. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. Journal of Biotechnology 164 (3):423–32. doi: 10.1016/j.jbiotec.2012.09.014.
  • Pandey, K. B., and S. I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2 (5):270–8. doi: 10.4161/oxim.2.5.9498.
  • Papuc, C., G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan. 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16 (6):1243–68. doi: 10.1111/1541-4337.12298.
  • Pellegrini, M. C., and A. G. Ponce. 2019. Beet (Beta vulgaris) and leek (Allium porrum) leaves as a source of bioactive compounds with anti-quorum sensing and anti-biofilm activity. Waste and Biomass Valorization:1–9. doi: 10.1007/s12649-019-00775-x.
  • Pennacchia, C., D. Ercolini, and F. Villani. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology 28 (1):84–93. doi: 10.1016/j.fm.2010.08.010.
  • Pereira, A. P., I. C. Ferreira, F. Marcelino, P. Valentão, P. B. Andrade, R. Seabra, L. Estevinho, A. Bento, and J. A. Pereira. 2007. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 12 (5):1153–62. doi: 10.3390/12051153.
  • Pereira, J. A., I. Oliveira, A. Sousa, P. Valentão, P. B. Andrade, I. C. Ferreira, F. Ferreres, A. Bento, R. Seabra, and L. Estevinho. 2007. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology 45 (11):2287–95. doi: 10.1016/j.fct.2007.06.004.
  • Plaper, A., M. Golob, I. Hafner, M. Oblak, T. Šolmajer, and R. Jerala. 2003. Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications 306 (2):530–6. doi: 10.1016/S0006-291X(03)01006-4.
  • Plumed-Ferrer, C., K. Väkeväinen, H. Komulainen, M. Rautiainen, A. Smeds, J. E. Raitanen, P. Eklund, S. Willför, H.-L. Alakomi, M. Saarela, et al. 2013. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. International Journal of Food Microbiology 164 (1):99–107. doi: 10.1016/j.ijfoodmicro.2013.04.001.
  • Plyuta, V., J. Zaitseva, E. Lobakova, N. Zagoskina, A. Kuznetsov, and I. Khmel. 2013. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Apmis Journal Apmis 121 (11):1073–81. doi: 10.1111/apm.12083.
  • Polat Yemis, G., S. Bach, and P. Delaquis. 2019. Antibacterial activity of polyphenol-rich pomegranate peel extract against Cronobacter sakazakii. International Journal of Food Properties 22 (1):985–93. doi: 10.1080/10942912.2019.1622564.
  • Puupponen‐Pimiä, R., Nohynek, L. C. Meier, M. Kähkönen, M. Heinonen, A. Hopia, and K. M. Oksman‐Caldentey. 2001. Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology 90 (4):494–507. doi: 10.1046/j.1365-2672.2001.01271.x.
  • Radha Krishnan, K., S. Babuskin, P. A. S. Babu, M. Sasikala, K. Sabina, G. Archana, M. Sivarajan, and M. Sukumar. 2014. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. International Journal of Food Microbiology 171:32–40. doi: 10.1016/j.ijfoodmicro.2013.11.011.
  • Radovanović, B. C., S. M. Anđelković, A. B. Radovanović, and M. Z. Anđelković. 2013. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in southeast Serbia. Tropical Journal of Pharmaceutical Research 12 (5):813–9. doi: 10.4314/tjpr.v12i5.23.
  • Rosas‐Burgos, E. C., A. Burgos‐Hernández, L. Noguera‐Artiaga, M. Kačániová, F. Hernández‐García, J. L. Cárdenas‐López, and Á. A. Carbonell‐Barrachina. 2017. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. Journal of the Science of Food and Agriculture 97 (3):802–10. doi: 10.1002/jsfa.7799.
  • Sagdic, O., I. Ozturk, M. T. Yilmaz, and H. Yetim. 2011. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. Journal of Food Science 76 (7):M515–M521. doi: 10.1111/j.1750-3841.2011.02323.x.
  • Serra, A. T., A. A. Matias, A. V. Nunes, M. C. Leitão, D. Brito, R. Bronze, S. Silva, A. Pires, M. T. Crespo, M. V. San Romão, et al. 2008. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innovative Food Science & Emerging Technologies 9 (3):311–9. doi: 10.1016/j.ifset.2007.07.011.
  • Shan, B., Y. Z. Cai, J. D. Brooks, and H. Corke. 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology 117 (1):112–9. doi: 10.1016/j.ijfoodmicro.2007.03.003.
  • Shan, B., Y. Z. Cai, J. D. Brooks, and H. Corke. 2009. Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork. Journal of the Science of Food and Agriculture 89 (11):1879–85. doi: 10.1002/jsfa.3667.
  • Silva, M. M., and F. Lidon. 2016. Food preservatives–An overview on applications and side effects. Emirates Journal of Food and Agriculture 28 (6):366–73. doi: 10.9755/ejfa.2016-04-351.
  • Skupień, K., D. Kostrzewa-Nowak, J. Oszmiański, and J. Tarasiuk. 2008. In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliott) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytotherapy Research 22 (5):689–94. doi: 10.1002/ptr.2411.
  • Smeds, A. I., P. C. Eklund, and S. M. Willför. 2012. Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chemistry 134 (4):1991–8. doi: 10.1016/j.foodchem.2012.03.133.
  • Sreelatha, S., and P. R. Padma. 2009. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition 64 (4):303–11. doi: 10.1007/s11130-009-0141-0.
  • Stojković, D. S., J. Živković, M. Soković, J. Glamočlija, I. C. Ferreira, T. Janković, and Z. Maksimović. 2013. Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food and Chemical Toxicology 55:209–13. doi: 10.1016/j.fct.2013.01.005.
  • Stoops, J., S. Ruyters, P. Busschaert, R. Spaepen, C. Verreth, J. Claes, B. Lievens, and L. Van Campenhout. 2015. Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiology 48:192–9. doi: 10.1016/j.fm.2014.12.012.
  • Tabart, J., C. Kevers, J. Pincemail, J. O. Defraigne, and J. Dommes. 2006. Antioxidant capacity of black currant varies with organ, season, and cultivar. Journal of Agricultural and Food Chemistry 54 (17):6271–6. doi: 10.1021/jf061112y.
  • Tang, Q. L., A. R. Kang, and C. X. Lu. 2016. Phytochemical analysis, antibacterial activity and mode of action of the methanolic extract of Scutellaria barbata against various clinically important bacterial pathogens. International Journal of Pharmacology 12 (2):116–25. doi: 10.3923/ijp.2016.116.125.
  • Taylor, P. W., J. M. Hamilton-Miller, and P. D. Stapleton. 2005. Antimicrobial properties of green tea catechins. Food Science and Technology Bulletin: Functional Foods 2:71–81. doi: 10.1616/1476-2137.14184.
  • Teleszko, M., and A. Wojdyło. 2015. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. Journal of Functional Foods 14:736–46. doi: 10.1016/j.jff.2015.02.041.
  • Tiwari, B. K., V. P. Valdramidis, C. P. O’ Donnell, K. Muthukumarappan, P. Bourke, and P. J. Cullen. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57 (14):5987–6000. doi: 10.1021/jf900668n.
  • Ulrey, R. K., S. M. Barksdale, W. Zhou, and M. L. van Hoek. 2014. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine 14 (1):1–12. doi: 10.1186/1472-6882-14-499.
  • Vagiri, M., A. Ekholm, S. C. Andersson, E. Johansson, and K. Rumpunen. 2012. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). Journal of Agricultural and Food Chemistry 60 (42):10501–10. doi: 10.1021/jf303398z.
  • Vallverdú-Queralt, A., J. Regueiro, M. Martínez-Huélamo, J. F. R. Alvarenga, L. N. Leal, and R. M. Lamuela-Raventos. 2014. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry 154:299–307. doi: 10.1016/j.foodchem.2013.12.106.
  • Vrhovsek, U., A. Rigo, D. Tonon, and F. Mattivi. 2004. Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry 52 (21):6532–8. doi: 10.1021/jf049317z.
  • Wang, Y., F. Li, H. Zhuang, X. Chen, L. Li, W. Qiao, and J. Zhang. 2015. Effects of plant polyphenols and α-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon. LWT - Food Science and Technology 60 (1):199–206. doi: 10.1016/j.lwt.2014.09.022.
  • Wojdyło, A., J. Oszmiański, and P. Bielicki. 2013. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. Journal of Agricultural and Food Chemistry 61 (11):2762–72. doi: 10.1021/jf304969b.
  • Wu, T., M. He, X. Zang, Y. Zhou, T. Qiu, S. Pan, and X. Xu. 2013. A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochimica et Biophysica Acta (Bba) - Biomembranes 1828 (11):2751–6. doi: 10.1016/j.bbamem.2013.07.029.
  • Wu, T., X. Zang, M. He, S. Pan, and X. Xu. 2013. Structure–activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. Journal of Agricultural and Food Chemistry 61 (34):8185–90. doi: 10.1021/jf402222v.
  • Xiong, L. G., Y. J. Chen, J. W. Tong, J. A. Huang, J. Li, Y. S. Gong, and Z. H. Liu. 2017. Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress. Food Chemistry 217:196–204. doi: 10.1016/j.foodchem.2016.08.098.
  • Yi, S., W. Wang, F. Bai, J. Zhu, J. Li, X. Li, Y. Xu, T. Sun, and Y. He. 2014. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens. World Journal of Microbiology and Biotechnology 30 (2):451–60. doi: 10.1007/s11274-013-1464-4.
  • Yi, S. M., J. L. Zhu, L. L. Fu, and J. R. Li. 2010. Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane. International Journal of Food Microbiology 144 (1):111–7. doi: 10.1016/j.ijfoodmicro.2010.09.005.
  • Yuan, W., and H. G. Yuk. 2018. Antimicrobial efficacy of Syzygium antisepticum plant extract against Staphylococcus aureus and methicillin-resistant S. aureus and its application potential with cooked chicken. Food Microbiology 72:176–84. doi: 10.1016/j.fm.2017.12.002.
  • Zhang, J., X. Rui, L. Wang, Y. Guan, X. Sun, and M. Dong. 2014. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control 42:125–31. doi: 10.1016/j.foodcont.2014.02.001.
  • Zhang, L., S. G. Xu, W. Liang, J. Mei, Y. Y. Di, H. H. Lan, Y. Yang, W. W. Wang, Y. Y. Luo, and H. Z. Wang. 2015. Antibacterial activity and mode of action of Mentha arvensis ethanol extract against multidrug-resistant Acinetobacter baumannii. Tropical Journal of Pharmaceutical Research 14 (11):2099–106. doi: 10.4314/tjpr.v14i11.21.
  • Zhang, Q. Q., Jiang, M. X. Rui, W. Li, X. H. Chen, M. S. and Dong, M. S. 2017. Effect of rose polyphenols on oxidation, biogenic amines and microbial diversity in naturally dry fermented sausages. Food Control 78:324–30. doi: 10.1016/j.foodcont.2017.02.054.
  • Zhang, Y. M., and Rock. C. O. 2004. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. Journal of Biological Chemistry 279 (30):30994–1001. doi: 10.1074/jbc.M403697200.
  • Zhu, H. L., G. Chen, S. N. Chen, Q. R. Wang, L. Wan, and S. P. Jian. 2019. Characterization of polyphenolic constituents from Sanguisorba officinalis L. and its antibacterial activity. European Food Research and Technology 245 (7):1487–98. doi: 10.1007/s00217-019-03276-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.