1,084
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Recent developments on rapid detection of main constituents in milk: a review

ORCID Icon & ORCID Icon

References

  • Abegao, L. M. G., A. A. C. Pagani, S. C. Zlio, M. Alencar, and J. J. Rodrigues. 2016. Measuring milk fat content by random laser emission. Scientific Reports 6:35119. doi: 10.1038/srep35119.
  • Aernouts, B., E. Polshin, J. Lammertyn, and W. Saeys. 2011. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? Journal of Dairy Science 94 (11):5315–29. doi: 10.3168/jds.2011-4354.
  • Agranovich, D., I. Renhart, P. Ben Ishai, G. Katz, D. Bezman, and Y. Feldman. 2016. A microwave sensor for the characterization of bovine milk. Food Control 63:195–200. doi: 10.1016/j.foodcont.2015.11.032.
  • Aleixo, P. C., and J. A. Nóbrega. 2003. Direct determination of iron and selenium in bovine milk by graphite furnace atomic absorption spectrometry. Food Chemistry 83 (3):457–62. doi: 10.1016/S0308-8146(03)00224-3.
  • Amer, B., C. Nebel, H. C. Bertram, G. Mortensen, K. Hermansen, and T. K. Dalsgaard. 2013. Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography-mass spectrometry. International Dairy Journal 32 (2):199–203. doi: 10.1016/j.idairyj.2013.05.016.
  • Ammam, M., and J. Fransaer. 2010. Two-enzyme lactose biosensor based on β-galactosidase and glucose oxidase deposited by ac-electrophoresis: Characteristics and performance for lactose determination in milk. Sensors and Actuators B: Chemical 148 (2):583–9. doi: 10.1016/j.snb.2010.05.027.
  • Asada, A., K. Yoshikawa, A. Sakuragawa, and H. Nagashima. 2017. Simultaneous determination of potassium, magnesium and calcium in milk by ion chromatography. Bunseki Kagaku 66 (2):67–72. (In Japanese) doi: 10.2116/bunsekikagaku.66.67.
  • Asfaw, A., and G. Wibetoe. 2005. Simultaneous determination of hydride (Se) and non-hydride-forming (Ca, Mg, K, P, S and Zn) elements in various beverages (beer, coffee, and milk), with minimum sample preparation, by ICP-AES and use of a dual-mode sample-introduction system. Analytical and Bioanalytical Chemistry 382 (1):173–9. doi: 10.1007/s00216-005-3188-2.
  • Avila, H. E. L., R. R. Antayhua, S. Verrruck, G. R. Liz, L. C. Pereira, E. S. Prudencio, F. R. Sousa, and D. J. Pagano. 2016. Determination of solids and fat contents in bovine milk using a phase-locked resonant cavity sensor. 2016 1st Symposium on Instrumentation Systems, Circuits and Transducers, Belo Horizonte, Brazil 1–4.
  • Ball, G. F. M. 2006. Vitamins in foods: Analysis, bioavailability and stability. Boca Raton, FL: CRC Press LLC.
  • Barba, F. J., M. J. Esteve, and A. Frigola. 2011. Determination of vitamins E (alpha-, gamma- and delta-tocopherol) and D (cholecalciferol and ergocalciferol) by liquid chromatography in milk, fruit juice and vegetable beverage. European Food Research and Technology 232 (5):829–36. doi: 10.1007/s00217-011-1450-8.
  • Beccaria, M., G. Sullini, F. Cacciola, P. Donato, P. Dugo, and L. Mondello. 2014. High performance characterization of triacylglycerols in milk and milk-related samples by liquid chromatography and mass spectrometry. Journal of Chromatography A 1360:172–87. doi: 10.1016/j.chroma.2014.07.073.
  • Bhandari, D., and G. J. Van Berkel. 2012. Evaluation of flow-injection tandem mass spectrometry for rapid and high-throughput quantitative determination of B vitamins in nutritional supplements. Journal of Agricultural and Food Chemistry 60 (34):8356–62. doi: 10.1021/jf302653d.
  • Bibi, F., M. Villain, C. Guillaume, B. Sorli, and N. Gontard. 2016. A review: Origins of the dielectric properties of proteins and potential development as bio-sensors. Sensors 16 (8):1232. doi: 10.3390/s16081232.
  • Birghila, S., S. Dobrinas, G. Stanciu, and A. Soceanu. 2008. Determination of major and minor elements in milk through ICP-AES. Environmental Engineering and Management Journal 7 (6):805–8. doi: 10.30638/eemj.2008.107.
  • Bogomolov, A., V. Belikova, V. Galyanin, A. Melenteva, and H. Meyer. 2017. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000 nm using spatially resolved diffuse reflectance fiber probe. Talanta 167:563–72. doi: 10.1016/j.talanta.2017.02.047.
  • Bogomolov, A., B. Boldrini, S. Dietrich, and R. W. Kessler. 2012. Quantitative determination of fat and total protein in milk based on visible light scatter. Food Chemistry 134 (1):412–8. doi: 10.1016/j.foodchem.2012.02.077.
  • Bogomolov, A., and A. Melenteva. 2013. Scatter-based quantitative spectroscopic analysis of milk fat and total protein in the region 400–1100nm in the presence of fat globule size variability. Chemometrics and Intelligent Laboratory Systems 126:129–39. doi: 10.1016/j.chemolab.2013.02.006.
  • Bonfatti, V., G. D. Martino, and P. Carnier. 2011. Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of simmental cows. Journal of Dairy Science 94 (12):5776–85. doi: 10.3168/jds.2011-4401.
  • Bonincontro, A., and G. Risuleo. 2003. Dielectric spectroscopy as a probe for the investigation of conformational properties of proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59 (12):2677–84. doi: 10.1016/S1386-1425(03)00085-4.
  • Conzuelo, F., M. Gamella, S. Campuzano, M. A. Ruiz, A. J. Reviejo, and J. M. Pingarrón. 2010. An integrated amperometric biosensor for the determination of lactose in milk and dairy products. Journal of Agricultural and Food Chemistry 58 (12):7141–8. doi: 10.1021/jf101173e.
  • Coronel, P., J. Simunovic, and K. P. Sandeep. 2003. Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. Journal of Food Science 68 (6):1976–81. doi: 10.1111/j.1365-2621.2003.tb07004.x.
  • da Silva, D. C., J. V. Visentainer, N. E. de Souza, and C. C. Oliveira. 2013. Micellar electrokinetic chromatography method for determination of the ten water-soluble vitamins in food supplements. Food Analytical Methods 6 (6):1592–606. doi: 10.1007/s12161-013-9576-x.
  • De Marchi, M., M. Penasa, A. Cecchinato, M. Mele, P. Secchiari, and G. Bittante. 2011. Effectiveness of mid-infrared spectroscopy to predict fatty acid composition of brown Swiss bovine milk. Animal 5 (10):1653–8. doi: 10.1017/S1751731111000747.
  • Dugo, P., T. Kumm, P. M. Lo, B. Chiofalo, E. Salimei, A. Fazio, A. Cotroneo, and L. Mondello. 2005. Determination of triacylglycerols in donkey milk by using high performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. Journal of Separation Science 28 (9–10):1023–30. doi: 10.1002/jssc.200500025.
  • El-Abassy, R. M., P. J. Eravuchira, P. Donfack, B. von der Kammer, and A. Materny. 2011. Fast determination of milk fat content using raman spectroscopy. Vibrational Spectroscopy 56 (1):3–8. doi: 10.1016/j.vibspec.2010.07.001.
  • Erich, S., T. Anzmann, and L. Fischer. 2012. Quantification of lactose using ion-pair RP-HPLC during enzymatic lactose hydrolysis of skim milk. Food Chemistry 135 (4):2393–6. doi: 10.1016/j.foodchem.2012.07.059.
  • Eskildsen, C. E., M. A. Rasmussen, S. B. Engelsen, L. B. Larsen, N. A. Poulsen, and T. Skov. 2014. Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions of highly collinear reference variables. Journal of Dairy Science 97 (12):7940–51. doi: 10.3168/jds.2014-8337.
  • Etzion, Y., R. Linker, U. Cogan, and I. Shmulevich. 2004. Determination of protein concentration in raw milk by mid-infrared Fourier transform infrared/attenuated total reflectance spectroscopy. Journal of Dairy Science 87 (9):2779–88. doi: 10.3168/jds.S0022-0302(04)73405-0.
  • FAOSTAT. 2018. Food and agriculture organization of the United Nations statistics division. http://www.fao.org/faostat/en/#home.
  • Farrell, H. M., R. Jimenez-Flores, G. T. Bleck, E. M. Brown, J. E. Butler, L. K. Creamer, C. L. Hicks, C. M. Hollar, K. F. Ng-Kwai-Hang, and H. E. Swaisgood. 2004. Nomenclature of the proteins of cows’ milk—sixth revision. Journal of Dairy Science 87 (6):1641–74. doi: 10.3168/jds.S0022-0302(04)73319-6.
  • Ferrand-Calmels, M., I. Palhière, M. Brochard, O. Leray, J.M. Astruc, M.R. Aurel, S. Barbey, F. Bouvier, P. Brunschwig, H. Caillat, et al. 2014. Prediction of fatty acid profiles in cow, ewe,-and goat milk by mid-infrared spectrometry. Journal of Dairy Science 97 (1):17–35. doi: 10.3168/jds.2013-6648.
  • Fleming, A., F. S. Schenkel, J. Chen, F. Malchiodi, V. Bonfatti, R. A. Ali, B. Mallard, M. Corredig, and F. Miglior. 2017. Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets. Journal of Dairy Science 100 (6):5073–81. doi: 10.3168/jds.2016-12102.
  • Fox, P. F., T. Uniacke-Lowe, P. L. H. Mcsweeney, and J. A. O’Mahony. 2015. Dairy chemistry and biochemistry. 2nd ed. Cham: Springer International Publishing.
  • Fuquay, J. W. 2011. Encyclopedia of dairy sciences. 2nd ed. San Diego: Academic Press.
  • Fusch, G., A. Choi, N. Rochow, and C. Fusch. 2011. Quantification of lactose content in human and cow’s milk using UPLC–tandem mass spectrometry. Journal of Chromatography B 879 (31):3759–62. doi: 10.1016/j.jchromb.2011.09.053.
  • Galyanin, V., A. Melenteva, and A. Bogomolov. 2015. Selecting optimal wavelength intervals for an optical sensor: A case study of milk fat and total protein analysis in the region 400-1100 nm. Sensors and Actuators B: Chemical 218:97–104. doi: 10.1016/j.snb.2015.03.101.
  • Gangidi, R. R., and L. E. Metzger. 2006. Ionic calcium determination in skim milk with molecular probes and front-face fluorescence spectroscopy: Simple linear regression. Journal of Dairy Science 89 (11):4105–13. doi: 10.3168/jds.S0022-0302(06)72456-0.
  • Garballo-Rubio, A., J. Soto-Chinchilla, A. Moreno, and A. Zafra-Gomez. 2018. Determination of residual lactose in lactose-free cow milk by hydrophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry. Journal of Food Composition and Analysis 66:39–45. doi: 10.1016/j.jfca.2017.11.006.
  • Gomes, F. P., P. N. Shaw, K. Whitfield, and A. K. Hewavitharana. 2015. Simultaneous quantitative analysis of eight vitamin d analogues in milk using liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta 891:211–20. doi: 10.1016/j.aca.2015.08.017.
  • González-Córdova, A. F., and B. Vallejo-Cordoba. 2001. Quantitative determination of short-chain free fatty acids in milk using solid-phase microextraction and gas chromatography. Journal of Agricultural and Food Chemistry 49 (10):4603–8. doi: 10.1021/jf010108d.
  • Huang, Y. Z., J. M. Gu, G. Xiang, J. J. Xu, S. L. Fu, and H. Gong. 2016. Detection of total protein in milk using phosphomolybdic acid-mediated surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy 47 (3):277–82. doi: 10.1002/jrs.4812.
  • Idda, I., N. Spano, M. Ciulu, V. M. Nurchi, A. Panzanelli, M. I. Pilo, and G. Sanna. 2016. Gas chromatography analysis of major free mono- and disaccharides in milk: Method assessment, validation, and application to real samples. Journal of Separation Science 39 (23):4577–84. doi: 10.1002/jssc.201600583.
  • Inacio, M. R. C., M. D. V. de Moura, and K. M. G. de Lima. 2011. Classification and determination of total protein in milk powder using near infrared reflectance spectrometry and the successive projections algorithm for variable selection. Vibrational Spectroscopy 57 (2):342–5. doi: 10.1016/j.vibspec.2011.07.002.
  • Jasti, L. S., S. R. Dola, N. W. Fadnavis, U. Addepally, S. Daniels, and S. Ponrathnam. 2014. Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymer as a biosensor for lactose determination in milk. Enzyme and Microbial Technology 64–65:67–73. doi: 10.1016/j.enzmictec.2014.07.005.
  • Jha, S. N., P. Jaiswal, M. K. Grewal, M. Gupta, and R. Bhardwaj. 2016. Detection of adulterants and contaminants in liquid foods - a review. Critical Reviews in Food Science and Nutrition 56 (10):1662–84. doi: 10.1080/10408398.2013.798257.
  • Kailasapathy, K. 2008. Chemical composition, physical, and functional properties of milk and milk ingredients. In Dairy processing and quality assurance, ed. R. C. Chandan, A. Kilara, and N. P. Shah, 75–103. Hoboken, New Jersey: Blackwell Publishing.
  • Kawasaki, M., S. Kawamura, M. Tsukahara, S. Morita, M. Komiya, and M. Natsuga. 2008. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Computers and Electronics in Agriculture 63 (1):22–7. doi: 10.1016/j.compag.2008.01.006.
  • Kučerová, P., P. Komenská, H. Tomková, J. Skopalová, and P. Barták. 2017. Determination of lactose in milk products: A comparison of three-enzyme amperometric biosensor and gas chromatography/tandem mass spectrometry. Monatshefte Für Chemie - Chemical Monthly 148 (3):517–24. doi: 10.1007/s00706-016-1903-7.
  • Kucheryavskiy, S., A. Melenteva, and A. Bogomolov. 2014. Determination of fat and total protein content in milk using conventional digital imaging. Talanta 121:144–52. doi: 10.1016/j.talanta.2013.12.055.
  • Lin, M. J., M. J. Lewis, and A. S. Grandison. 2006. Measurement of ionic calcium in milk. International Journal of Dairy Technology 59 (3):192–9. doi: 10.1111/j.1471-0307.2006.00263.x.
  • Lindgren, A., T. Ruzgas, L. Gorton, E. Csöregi, G. Bautista Ardila, I. Y. Sakharov, and I. G. Gazaryan. 2000. Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosensors and Bioelectronics 15 (9–10):491–7. doi: 10.1016/S0956-5663(00)00110-X.
  • Linker, R., and Y. Etzion. 2009. Potential and limitation of mid-infrared attenuated total reflectance spectroscopy for real time analysis of raw milk in milking lines. Journal of Dairy Research 76 (1):42–8. doi: 10.1017/S0022029908003580.
  • Ma, L., Y. X. Yang, J. T. Chen, J. Q. Wang, and D. P. Bu. 2017. A rapid analytical method of major milk proteins by reversed-phase high-performance liquid chromatography. Animal Science Journal 88 (10):1623–8. doi: 10.1111/asj.12804.
  • Mabrook, M. F., and M. C. Petty. 2003. Effect of composition on the electrical conductance of milk. Journal of Food Engineering 60 (3):321–5. doi: 10.1016/S0260-8774(03)00054-2.
  • Malekbala, M. R., S. M. Soltani, S. Hosseini, F. E. Babadi, N. Darajeh, and R. Malekbala. 2017. Current technologies in the extraction, enrichment and analytical detection of tocopherols and tocotrienols: A review. Critical Reviews in Food Science and Nutrition 57 (14):2935–42. doi: 10.1080/10408398.2015.1020532.
  • Márquez-Sillero, I., S. Cárdenas, and M. Valcárcel. 2013. Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector. Journal of Chromatography A 1313:253–8. doi: 10.1016/j.chroma.2013.05.015.
  • Marrakchi, M., S. V. Dzyadevych, F. Lagarde, C. Martelet, and N. Jaffrezic-Renault. 2008. Conductometric biosensor based on glucose oxidase and beta-galactosidase for specific lactose determination in milk. Materials Science and Engineering: C 28 (5–6):872–5. doi: 10.1016/j.msec.2007.10.046.
  • Maurice-Van Eijndhoven, M. H., H. Soyeurt, F. Dehareng, and M. P. Calus. 2013. Validation of fatty acid predictions in milk using mid-infrared spectrometry across cattle breeds. Animal 7 (2):348–54. doi: 10.1017/S1751731112001218.
  • Mazurek, S., R. Szostak, T. Czaja, and A. Zachwieja. 2015. Analysis of milk by FT-Raman spectroscopy. Talanta 138:285–9. doi: 10.1016/j.talanta.2015.03.024.
  • Melenteva, A., V. Galyanin, E. Savenkova, and A. Bogomolov. 2016. Building global models for fat and total protein content in raw milk based on historical spectroscopic data in the visible and short-wave near infrared range. Food Chemistry 203:190–8. doi: 10.1016/j.foodchem.2016.01.127.
  • Melfsen, A., E. Hartung, and A. Haeussermann. 2012. Accuracy of milk composition analysis with near infrared spectroscopy in diffuse reflection mode. Biosystems Engineering 112 (3):210–7. doi: 10.1016/j.biosystemseng.2012.04.003.
  • Melichercik, J., L. Szijarto, and A. R. Hill. 2006. Comparison of ion-specific electrode and high performance liquid chromatography methods for the determination of iodide in milk. Journal of Dairy Science 89 (3):934–7. doi: 10.3168/jds.S0022-0302(06)72158-0.
  • Mottram, H. R., and R. P. Evershed. 2001. Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography A 926 (2):239–53. doi: 10.1016/S0021-9673(01)01048-2.
  • Nelson, S. O. 1999. Dielectric properties measurement techniques and applications. Transactions of the ASAE 42 (2):523–9.
  • Nelson, S. O., and P. G. Bartley. 2000. Measuring frequency- and temperature-dependent dielectric properties of food materials. Transactions of the ASAE 43 (6):1733–6.
  • Neumann, C., D. M. Harris, and L. M. Rogers. 2002. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutrition Research 22 (1–2):193–220. doi: 10.1016/S0271-5317(01)00374-8.
  • Nguyen, B. H., B. T. Nguyen, H. Van Vu, C. Van Nguyen, D. T. Nguyen, L. T. Nguyen, T. T. Vu, and L. D. Tran. 2016. Development of label-free electrochemical lactose biosensor based on graphene/poly(1,5-diaminonaphthalene) film. Current Applied Physics 16 (2):135–40. doi: 10.1016/j.cap.2015.11.004.
  • Nunes, A. C., X. Bohigas, and J. Tejada. 2006. Dielectric study of milk for frequencies between 1 and 20 GHz. Journal of Food Engineering 76 (2):250–5. doi: 10.1016/j.jfoodeng.2005.04.049.
  • O’Mahony, J. A., and P. F. Fox. 2014. Chapter 2 - milk: An overview. In Milk proteins, ed. H. Singh, M. Boland, and A. Thompson, 2nd ed., 145–239. San Diego: Academic Press.
  • Park, Y. W., and G. F. W. Haenlein. 2013. Milk and dairy products in human nutrition: Production, composition and health. Chichester: Wiley.
  • Plozza, T., V. C. Trenerry, and D. Caridi. 2012. The simultaneous determination of vitamins a, e and beta-carotene in bovine milk by high performance liquid chromatography-ion trap mass spectrometry (HPLC-MSn). Food Chemistry 134 (1):559–63. doi: 10.1016/j.foodchem.2012.02.121.
  • Portaccio, M., and M. Lepore. 2017. Determination of different saccharides concentration by means of a multienzymes amperometric biosensor. Journal of Sensors 2017:7498945. doi: 10.1155/2017/7498945.
  • Reis, M. G., M. M. D. Reis, S. Leath, and K. Stelwagen. 2011. Direct analysis of fatty acid profile from milk by thermochemolysis–gas chromatography–mass spectrometry. Journal of Chromatography A 1218 (2):316–23. doi: 10.1016/j.chroma.2010.11.011.
  • Ruprichova, L., M. Kralova, I. Borkovcova, L. Vorlova, and I. Bedanova. 2014. Determination of whey proteins in different types of milk. Acta Veterinaria BRNO 83 (1):67–72.
  • Schmidt, A., M. G. Schreiner, and H. K. Mayer. 2017. Rapid determination of the various native forms of vitamin B-6 and B-2 in cow’s milk using ultra-high performance liquid chromatography. Journal of Chromatography A 1500:89–95. doi: 10.1016/j.chroma.2017.04.009.
  • Schuster-Wolff-Buhring, R., R. Michel, and J. Hinrichs. 2011. A new liquid chromatography method for the simultaneous and sensitive quantification of lactose and lactulose in milk. Dairy Science and Technology 91 (1):27–37.
  • Shaikh, S., and C. O’Donnell. 2017. Applications of fluorescence spectroscopy in dairy processing: A review. Current Opinion in Food Science 17:16–24. doi: 10.1016/j.cofs.2017.08.004.
  • Silveira, M. F., L. M. P. Masson, J. F. P. Martins, T. D. Alvares, V. M. F. Paschoalin, C. L. de la Torre, and C. A. Conte. 2015. Simultaneous determination of lactulose and lactose in conserved milk by HPLC-RID. Journal of Chemistry 2015, Article ID 185967. doi: 10.1155/2015/185967.
  • Simionato, J. I., J. C. Garcia, G. T. D. Santos, C. C. Oliveira, J. V. Visentainer, and N. E. D. Souza. 2010. Validation of the determination of fatty acids in milk by gas chromatography. Journal of the Brazilian Chemical Society 21 (3):520–4. doi: 10.1590/S0103-50532010000300018.
  • Skierucha, W., A. Wilczek, and A. Szypłowska. 2012. Dielectric spectroscopy in agrophysics. International Agrophysics 26 (2):187–97. doi: 10.2478/v10247-012-0027-5.
  • Soldatkin, O. O., V. M. Peshkova, O. Y. Saiapina, I. S. Kucherenko, O. Y. Dudchenko, V. G. Melnyk, O. D. Vasylenko, L. M. Semenycheva, A. P. Soldatkin, and S. V. Dzyadevych. 2013. Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose. Talanta 115 (17):200–7. doi: 10.1016/j.talanta.2013.04.065.
  • Soyeurt, H., F. Dehareng, N. Gengler, S. McParland, E. Wall, D.P. Berry, M. Coffey, and P. Dardenne. 2011. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science 94 (4):1657–67. doi: 10.3168/jds.2010-3408.
  • Stoica, L., R. Ludwig, D. Haltrich, and L. Gorton. 2006. Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Analytical Chemistry 78 (2):393–8. doi: 10.1021/ac050327o.
  • Tasca, F., R. Ludwig, L. Gorton, and R. Antiochia. 2013. Determination of lactose by a novel third generation biosensor based on a cellobiose dehydrogenase and aryl diazonium modified single wall carbon nanotubes electrode. Sensors and Actuators B: Chemical 177 (2):64–9. doi: 10.1016/j.snb.2012.10.114.
  • Terol, A., E. Paredes, S. E. Maestre, S. Prats, and J. L. Todoli. 2012. Rapid and sensitive determination of carbohydrates in foods using high temperature liquid chromatography with evaporative light scattering detection. Journal of Separation Science 35 (8):929–36. doi: 10.1002/jssc.201101072.
  • Trani, A., G. Gambacorta, P. Loizzo, A. Cassone, C. Fasciano, A.V. Zambrini, and M. Faccia. 2017. Comparison of HPLC-RI, LC/MS-MS and enzymatic assays for the analysis of residual lactose in lactose-free milk. Food Chemistry 233:385–90. doi: 10.1016/j.foodchem.2017.04.134.
  • Trenerry, V. C., T. Plozza, D. Caridi, and S. Murphy. 2011. The determination of vitamin D-3 in bovine milk by liquid chromatography mass spectrometry. Food Chemistry 125 (4):1314–9. doi: 10.1016/j.foodchem.2010.09.097.
  • Tu, A. Q., and Z. X. Du. 2017. Rapid determination of triacylglycerols in cow milk and goat milk using supercritical fluid chromatography-quadruple time-of-flight mass spectrometry. Journal of Chinese Mass Spectrometry Society 38 (2):217–26. (In Chinese)
  • van Scheppingen, W. B., P. H. van Hilten, M. P. Vijverberg, and A. L. L. Duchateau. 2017. Selective and sensitive determination of lactose in low-lactose dairy products with HPAEC-PAD. Journal of Chromatography B 1060:395–9. doi: 10.1016/j.jchromb.2017.06.024.
  • Vantasin, S., P. Pienpinijtham, K. Wongravee, C. Thammacharoen, and S. Ekgasit. 2013. Naked eye colorimetric quantification of protein content in milk using starch-stabilized gold nanoparticles. Sensors and Actuators B: Chemical 177:131–7. doi: 10.1016/j.snb.2012.10.104.
  • Villar, A., E. Gorritxategi, E. Aranzabe, S. Fernandez, D. Otaduy, and L. A. Fernandez. 2012. Low-cost visible-near infrared sensor for on-line monitoring of fat and fatty acids content during the manufacturing process of the milk. Food Chemistry 135 (4):2756–60. doi: 10.1016/j.foodchem.2012.07.074.
  • Vincent, D., A. Elkins, M. R. Condina, V. Ezernieks, and S. Rochfort. 2016. Quantitation and identification of intact major milk proteins for high-throughput LC-ESI-Q-TOF MS analyses. PLoS One 11 (10):e0163471. doi: 10.1371/journal.pone.0163471.
  • Vlaeminck, B., J. Harynuk, V. Fievez, and P. Marriott. 2007. Comprehensive two-dimensional gas chromatography for the separation of fatty acids in milk. European Journal of Lipid Science and Technology 109 (8):757–66. doi: 10.1002/ejlt.200700004.
  • Wei, D., X. Wang, N. N. Wang, and Y. Zhu. 2017. A rapid ion chromatography column-switching method for online sample pretreatment and determination of L-carnitine, choline and mineral ions in milk and powdered infant formula. RSC Advances 7 (10):5920–7. doi: 10.1039/C6RA25711A.
  • Wilt, T. J., A. Shaukat, T. Shamliyan, B. C. Taylor, R. MacDonald, J. Tacklind, I. Rutks, S. J. Schwarzenberg, R. L. Kane, and M. Levitt. 2010. Lactose intolerance and health. Rockville: AHRQ Publication.
  • Wojciechowski, K. L., and D. M. Barbano. 2016. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis. Journal of Dairy Science 99 (11):8561–70. doi: 10.3168/jds.2016-11248.
  • Xin, Q., H. Z. Ling, T. J. Long, and Y. Zhu. 2006. The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology. Optics and Lasers in Engineering 44 (8):858–69. doi: 10.1016/j.optlaseng.2005.02.007.
  • Xiong, S., B. Adhikari, X. D. Chen, and L. Che. 2016. Determination of ultra-low milk fat content using dual-wavelength ultraviolet spectroscopy. Journal of Dairy Science 99 (12):9652–8. doi: 10.3168/jds.2016-11640.
  • Yang, C., Z. Zhang, Z. Shi, P. Xue, P. Chang, and R. Yan. 2010. Application of a novel co-enzyme reactor in chemiluminescence flow-through biosensor for determination of lactose. Talanta 82 (1):319–24. doi: 10.1016/j.talanta.2010.04.042.
  • Zhou, Q., B. Gao, X. Zhang, Y. Xu, H. Shi, and L. L. Yu. 2014. Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time-of-flight mass spectrometry. Food Chemistry 143 (1):199–204. doi: 10.1016/j.foodchem.2013.07.114.
  • Zhu, X., W. Guo, F. Kang, F. Kong, and Q. Zhu. 2016. Determination of protein content of raw fresh cow’s milk using dielectric spectroscopy combined with chemometric methods. Food and Bioprocess Technology 9 (12):2092–102. doi: 10.1007/s11947-016-1791-1.
  • Zhu, X., W. Guo, Y. Jia, and F. Kang. 2015. Dielectric properties of raw milk as functions of protein content and temperature. Food and Bioprocess Technology 8 (3):670–80. doi: 10.1007/s11947-014-1440-5.
  • Zhu, X., W. Guo, and Z. Liang. 2015. Determination of the fat content in cow’s milk based on dielectric properties. Food and Bioprocess Technology 8 (7):1485–94. doi: 10.1007/s11947-015-1508-x.
  • Zhu, X. H., W. C. Guo, D. Y. Liu, and F. Kang. 2018. Determining the fat concentration of fresh raw cow milk using dielectric spectroscopy combined with chemometrics. Food Analytical Methods 11 (5):1528–37. doi: 10.1007/s12161-017-1140-7.
  • Zhu, X. Y., Z. M. Zhao, K. Qian, L. X. Wang, and X. F. Lan. 2016. A rapid method for measuring fat content in milk based on w-type optical fibre sensor system. Transactions of the Institute of Measurement and Control 38 (12):1471–9. doi: 10.1177/0142331215593994.
  • Zhu, X. Y., Z. M. Zhao, and W. J. Zhang. 2018. Determination of fat content in goat milk using annular photoelectric sensor system. Transactions of the Institute of Measurement and Control 40 (1):102–10. doi: 10.1177/0142331216652216.
  • Zironi, E., T. Gazzotti, A. Barbarossa, F. Farabegoli, A. Serraino, and G. Pagliuca. 2014. Determination of vitamin b12 in dairy products by ultra performance liquid chromatography-tandem mass spectrometry. Italian Journal of Food Safety 3 (4):4513. doi: 10.4081/ijfs.2014.4513.
  • Żywica, R., J. K. Banach, and K. Kiełczewska. 2012. An attempt of applying the electrical properties for the evaluation of milk fat content of raw milk. Journal of Food Engineering 111 (2):420–4. doi: 10.1016/j.jfoodeng.2012.01.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.