1,055
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Functionalization of water as a nonthermal approach for ensuring safety and quality of meat and seafood products

, &

References

  • Al-Holy, M. A., and Rasco, B. A. (2015). The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control 54, 317–321. doi: 10.1016/j.foodcont.2015.02.017.
  • Al-Qadiri, H. M., Al-Holy, M. A., Shiroodi, S. G., Ovissipour, M., Govindan, B. N., Al-Alami, N., Sablani, S. S., and Rasco, B. (2016). Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis). International Journal of Food Microbiology 231, 48–53. doi: 10.1016/j.ijfoodmicro.2016.05.012.
  • Alvarez, V., Feas, X., Barros-Velazquez, J., and Aubourg, S. P. (2009). Quality changes of farmed blackspot seabream (Pagellus bogaraveo) subjected to slaughtering and storage under flow ice and ozonised flow ice. International Journal of Food Science and Technology 44, 1561–1571. doi: 10.1111/j.1365-2621.2008.01836.x.
  • Arya, R., Bryant, M., Degala, H. L., Mahapatra, A. K., and Kannan, G. (2018). Effectiveness of a low-cost household electrolyzed water generator in reducing the populations of Escherichia coli K12 on inoculated beef, chevon, and pork surfaces. Journal of Food Processing and Preservation 42, e13636. doi: 10.1111/jfpp.13636.
  • Athayde, D. R., Flores, D. R. M., da Silva, J. S., Genro, A. L. G., Silva, M. S., Klein, B., Mello, R., Campagnol, P. C. B., Wagner, R., de Menezes, C. R., Barin, J. S., and Cichoski, A. J. (2017). Application of electrolyzed water for improving pork meat quality. Food Research International 100, 757–763. doi: 10.1016/j.foodres.2017.08.009.
  • Aubourg, S. P., Testi, S., Sanxuas, M., Gil, C., and Barros-Velazquez, J. (2009). Improved quality and shelf life of farmed trout (Oncorhynchus mykiss) by whole processing in a combined ozonised flow ice refrigeration system. International Journal of Food Science and Technology 44(8), 1595–1601. doi: 10.1111/j.1365-2621.2008.01889.x.
  • Bono, G., and Badalucco, C. (2012). Combining ozone and modified atmosphere packaging (MAP) to maximize shelf-life and quality of striped red mullet (Mullus surmuletus). LWT - Food Science and Technology 47(2), 500–504. doi: 10.1016/j.lwt.2012.02.014.
  • Bono, G., Okpala, C. O. R., Vitale, S., Ferrantelli, V., Di Noto, A., Costa, A., Bella, C. D., and Lo Monaco, D. (2017). Effects of different ozonized slurry-ice treatments and superchilling storage (−1 °C) on microbial spoilage of two important pelagic fish species. Food Science and Nutrition, (6), 1049–1056. doi: 10.1002/fsn3.486.
  • Bosilevac, J. M., Shackelford, S. D., Brichta, D. M., and Koohmaraie, M. (2005). Efficacy of ozonated and electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. Journal of Food Protection 68(7), 1393–1398. doi: 10.4315/0362-028X-68.7.1393.
  • Botta, C., Ferrocino, I., Cavallero, M. C., Riva, S., Giordano, M., Luca Cocolin, L. (2018). Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. International Journal of Food Microbiology 266, 337–345. doi: 10.1016/j.ijfoodmicro.2017.10.012.
  • Brodowska, A. J., Nowak, A., and Smigielski, K. (2018). Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: an overview. Critical Reviews in Food Science and Nutrition 58(13), 2176–2201. doi: 10.1080/10408398.2017.1308313.
  • Brychcy, E., Krol, Z., Kulig, D., and Jarmoluk, A. (2016). The effect of carrageenan and gelatine hydrosols incorporated with acidic electrolyzed water on surface microbiota and quality changes on pork meat. International Journal of Food Science and Technology 51(7), 1618–1629. doi: 10.1111/ijfs.13132.
  • Brychcy, E., Malik, M., Drozdzewski, P., Ulbin-Figlewicz, N., and Jarmoluk, A. (2015). Low-concentrated acidic electrolyzed water treatment of pork: Inactivation of surface microbiota and changes in product quality. International Journal of Food Science and Technology 50(11), 2340–2350. doi: 10.1111/ijfs.12899.
  • Campos, C. A., Rodriguez, O., Losada, V., Aubourg, S. P., Barros-Velazquez, J. (2005). Effects of storage in ozonised slurry ice on the sensory and microbial quality of sardine (Sardina pilchardus). International Journal of Food Microbiology 103, 121–130. doi: 10.1016/j.ijfoodmicro.2004.11.039.
  • Castillo, A., McKenzie, K. S., Lucia, L. M., and Acuff, G. R. (2003). Ozone treatment for reduction of Escherichia coli O157:H7 and Salmonella serotype Typhimurium on beef carcass surfaces. Journal of Food Protection 66(5), 775–775. doi: 10.4315/0362-028X-66.5.775.
  • CDC, (2014). NIOSH Pocket Guide to Chemical Hazards. Available at http://www.cdc.gov/niosh/npg/npgd0476.html (accessed on 24 February 2020).
  • Chawla, A. M. S., Bell, J. W., and Janes, M. E. (2007). Optimization of ozonated water treatment of wild-caught and mechanically peeled shrimp meat. Journal of Aquatic Food Product Technology 16(2), 41–56. doi: 10.1300/J030v16n02_05.
  • Chen, H., Wang, M., Chen, S., Chen, T., and Huang, N. (2014). Effects of ozonated water treatment on the microbial population, quality, and shelf life of shucked oysters (Crassostrea plicatula). Journal of Aquatic Food Product Technology 23(2), 175–185. doi: 10.1080/10498850.2012.707761.
  • Chen, J., Huang, J., Deng, S., and Huang, Y. (2016a). Combining ozone and slurry ice to maximize shelf-life and quality of bighead croaker (Collichthys niveatus). Journal of Food Science and Technology 53(10), 3651–3660. doi: 10.1007/s13197-016-2331-8.
  • Chen, J., Xu, B., Deng, S., and Huang, Y. (2016b). Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of Bombay duck (Harpadon nehereus). Journal of Food Quality 39(2), 116–125. doi: 10.1111/jfq.12182.
  • Chen, Y.-Q., J.-H. Cheng, and D.-W. Sun. 2019. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2019.1654429.
  • Cheng, J.-H., Sun, D.-W., Qu, J.-H., Pu, H.-B, Zhang, X.-C., Song, Z., Chen, X., and Zhang, H. (2016). Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. Journal of Food Engineering 182, 9–17.
  • Cichoski, A. J., Flores, D. R. M., De Menezes, C. R., Jacob-Lopes, E., Zepka, L. Q., Wagner, R., Barin, J. S., de Moraes Flores, E. M., da Cruz Fernandes, M., and Campagnol, P. C. B. (2019). Ultrasound and slightly acid electrolyzed water application: An efficient combination to reduce the bacterial counts of chicken breast during pre-chilling. International Journal of Food Microbiology 301, 27–33. doi: 10.1016/j.ijfoodmicro.2019.05.004.
  • Crowe, K. M., Skonberg, D., Bushway, A., and Baxter, S. (2012). Application of ozone sprays as a strategy to improve the microbial safety and quality of salmon fillets. Food Control 25(2), 464–468. doi: 10.1016/j.foodcont.2011.11.021.
  • Cullen, P. J., Lalor, J., Scally, L., Boehm, D., Milosavljevic, V., Bourke, P., Keener, K. (2018). Translation of plasma technology from the lab to the food industry. Plasma Process and Polymers 15, e1700085. doi: 10.1002/ppap.201700085.
  • de Mendonca Silva, A. M., and Goncalves, A. A. (2017). Effect of aqueous ozone on microbial and physicochemical quality of Nile tilapia processing. Journal of Food Processing and Preservation 41, e13298. doi: 10.1111/jfpp.13298.
  • Degala, H. L., Scott, J. R., Nakkiran, P., Mahapatra, A. K., and Kannan, G. (2016). Inactivation of E. coli O157:H7 on goat meat surface using ozonated water alone and in combination with electrolyzed oxidizing water. ASABE Paper No. 162462209. doi: 10.13031/aim.20162462209.
  • Ding, T., and Liao, X. (2019). Decontamination efficacy and principles of electrolyzed water. In Electrolyzed Water in Food: Fundamental and Applications, ed. T. Ding, D.-W. Oh, and D. Liu, 17–38. Hangzhou: Springer and Zhejiang University Press.
  • Ding, T., Rahman, S. M. E., Purev, U., and Oh, D.-H. (2010). Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. Journal of Food Engineering, 7(4), 497–503. doi: 10.1016/j.jfoodeng.2009.11.007.
  • Du, S., Zhang, Z., Xiao, L., Lou, Y., Pan, Y., and Zhao, Y. (2016). Acidic electrolyzed water as a novel transmitting medium for high hydrostatic pressure reduction of bacterial loads on shelled fresh shrimp. Frontiers in Microbiology 7, 305. doi: 10.3389/fmicb.2016.00305.
  • Duan, D., Wang, H., Xue, S., Li, M., and Xu, X. (2017). Application of disinfectant sprays after chilling to reduce the initial microbial load and extend the shelf-life of chilled chicken carcasses. Food Control 75, 70–77. doi: 10.1016/j.foodcont.2016.12.017.
  • Ekezie, F.-G. C., Cheng, J.-H., and Sun, D.-W. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology 69:46–58. doi: 10.1016/j.tifs.2017.08.007.
  • Ekezie, F.-G. C., J.-H. Cheng, and D.-W. Sun. 2018. Effects of mild oxidative and structural modifications induced by argon-plasma on physicochemical properties of actomyosin from king prawn (Litopenaeus Vannamei). Journal of Agricultural and Food Chemistry 66 (50):13285–13294. doi: 10.1021/acs.jafc.8b05178.
  • Ekezie, F.-G. C., J.-H. Cheng, and D.-W. Sun. 2019. Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei). Food Chemistry 276:147–156. doi: 10.1016/j.foodchem.2018.09.113.
  • Ekezie, F.-G. C., D.-W. Sun, and J.-H. Cheng. 2019. Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chemistry 300:125143. doi: 10.1016/j.foodchem.2019.125143.
  • Esua, O. J., Chin, N. L., Yusof, Y. A., and Sukor, R. (2019). Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chemistry 270, 113–122. doi: 10.1016/j.foodchem.2018.07.031.
  • Feng, L., Jiang, T., Wang, Y., and Li, J. (2012). Effects of tea polyphenol coating combined with ozone water washing on the storage quality of black sea bream (Sparus macrocephalus). Food Chemistry 135(4), 2915–2921. doi: 10.1016/j.foodchem.2012.07.078.
  • FAO. (2018). FAO Yearbook. Fishery and Aquaculture Statistics 2016. 104. Rome.
  • FAO/WHO. (2000). Codex Alimentarius Commission: Twenty-fourth Session of the Codex Committee on Fish and Fishery Products. Discussion paper on the use of chlorinated water (Rep. No. Agenda Item 13)
  • FAOSTAT. (2019). Food & Agriculture Organization of the United Nations Statistics Division. FAO Stat: Agriculture Data. Accessed February 24, 2020 http://www.fao.org/faostat/en/#home.
  • Forghani, F., Park, J. H., and Oh, D.-H. (2015). Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiology 48, 28–34. doi: 10.1016/j.fm.2014.11.020.
  • Gackowska, A., Przybylek, M., Studzinski, W., and Gaca, J. (2016). Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite. Environmental Science and Pollution Research 26, 1886–1897. doi: 10.1007/s11356-015-5444-0.
  • Goncalves, A. A. (2016). Ozone as a safe and environmentally friendly tool for the seafood industry. Journal of Aquatic Food Product Technology 25, 210–229.
  • Goncalves, A. A., and Santos, T. C. L. (2019). Improving quality and shelf-life of whole chilled Pacific white shrimp (Litopenaeus vannamei) by ozone technology combined with modified atmosphere packaging. LWT - Food Science and Technology 99, 568–575.
  • Govari, M., and Pexara, A. (2015). Nitrates and nitrites in meat products. Journal of the Hellenic Veterinary Medical Society 66, 127–140.
  • Guo, M., Jin, T. Z., Yang, R., Antenucci, R., Mills, B., Cassidy, J., Scullen, O. J., Sites, J. E., Rajkowski, K., T., and Sommers, C. H. (2013). Inactivation of natural microflora and inoculated Listeria innocua on whole raw shrimp by ozonated water, antimicrobial coatings, and cryogenic freezing. Food Control 34(1), 24–30. doi: 10.1016/j.foodcont.2013.04.009.
  • Han, D., Hung, Y.-C., and Wang, L. (2018). Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiology 73, 227–236. doi: 10.1016/j.fm.2018.01.023.
  • Han, Y.-X., J.-H. Cheng, and D.-W. Sun. 2019. Activities and conformation changes of food enzymes induced by cold plasma: A review. Critical Reviews in Food Science and Nutrition 59 (5):794–811. doi: 10.1080/10408398.2018.1555131.
  • He, H., Zheng, L., Li, Y., and Song, W. (2015). Research on the feasibility of spraying micro/nano bubble ozonated water for airborne disease prevention. Ozone: Science & Engineering 37, 78–84. doi: 10.1080/01919512.2014.913473.
  • Huang, Y.-R., Hsieh, H.-S., Lin, S.-Y., Lin, S.-J., Hung, Y.-C., and Hwang, D.-F. (2006). Application of electrolyzed oxidizing water on the reduction of bacterial contamination for seafood. Food Control 17(12), 987–993. doi: 10.1016/j.foodcont.2005.07.003.
  • Jadeja, R., and Hung, Y.-C. (2014). Efficacy of near neutral and alkaline pH electrolyzed oxidizing waters to control Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 from beef hides. Food Control 41, 17–20. doi: 10.1016/j.foodcont.2013.12.030.
  • Jarvis, P., Parsons, S. A., and Smith, R. (2007). Modeling bromate formation during ozonation. Ozone: Science and Engineering 29, 429–442. doi: 10.1080/01919510701643732.
  • Jo, H.-Y., Tango, C. N., and Oh, D.-H. (2018). Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. LWT - Food Science and Technology 92, 187–194. doi: 10.1016/j.lwt.2018.02.028.
  • Jung, S., Kim, H. J., Park, S., Yong, H. I., Choe, J. H., Jeon, H.-J, Choe, W., and Jo, C. (2015a). Colour developing capacity of plasma-treated water as a source of nitrite for meat curing. Korean Journal of Food Science and Animal Resources 35(5), 703–706. doi: 10.5851/kosfa.2015.35.5.703.
  • Jung, S., Kim, H. J., Park, S., Yong, H. I., Choe, J. H., Jeon, H.-J., Choe, W., and Jo, C. (2015b). The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Science 108, 132–137. doi: 10.1016/j.meatsci.2015.06.009.
  • Kalchayanand, N., Arthur, T. M., Bosilevac, J. M., Brichta-Harhay, D. M., Guerini, M. N., Wheeler, T. L., and Koohmaraie, M. (2008). Evaluation of various antimicrobial interventions for the reduction of Escherichia coli O157:H7 on bovine heads during processing. Journal of Food Protection 71(3), 621–624. doi: 10.4315/0362-028X-71.3.621.
  • Kang, C., Xiang, Q., Zhao, D., Wang, W., Niu, L., and Bai, Y. (2019). Inactivation of Pseudomonas deceptionensis CM2 on chicken breasts using plasma-activated water. Journal of Food Science and Technology 56, 4938–4945.
  • Khazandi, M., Deo, P., Ferro, S., Venter, H., Pi, H., Crabb, S., Amorico, T., Ogunniyi, A. D., and Trott, D. J. (2017). Efficacy evaluation of a new water sanitizer for increasing the shelf life of Southern Australian King George Whiting and Tasmanian Atlantic salmon fillets. Food Microbiology 68, 51–60. doi: 10.1016/j.fm.2017.06.008.
  • Kim, H.-J, Sung, N.-K, Yong, H. I., Kim, H., Lim, Y., Ko, K. H., Yun, C.-H., and Jo, C. (2016). Mutagenicity and immune toxicity of emulsion-type sausage cured with plasma-treated water. Korean Journal of Food Science and Animal Resources 36(4), 494–498.
  • Korany, A. M., Hua, Z., Green, T., Hanrahan, I., El-Shinawy, S. H., El-kholy, A., Hassan, G., and Zhu, M.-J. (2018). Efficacy of ozonated water, chlorine, chlorine dioxide, quaternary ammonium compounds and peroxyacetic acid against Listeria monocytogenes biofilm on polystyrene surfaces. Frontiers in Microbiology 9, 2296. doi: 10.3389/fmicb.2018.02296.
  • Li, D., Z. Zhu, and D.-W. Sun. (2018). Effects of freezing on cell structure of fresh cellular food materials: A review. Trends In Food Science & Technology 75:46–55. doi: 10.1016/j.tifs.2018.02.019.
  • Liao, L. B., Chen, W. M., and Xiao, X. M. (2007). The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. Journal of Food Engineering 78, 1326–1332. doi: 10.1016/j.jfoodeng.2006.01.004.
  • Liao, X., Su, Y., Liu, D., Chen, S., Hu, Y., Ye, X., Wang, J., and Ding, T. (2018). Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control 94, 307–314.
  • Loan, H., N., B., Devlieghere, F., Hoeke, C., V., Bruno De Meulenaer, B. (2015). 3-Chlorotyrosine formation in gilthead seabream (Sparus aurata) and European plaice (Pleuronectes platessa) fillets treated with sodium hypochlorite. Food Research International 69, 164–169. doi: 10.1016/j.foodres.2014.12.024.
  • Lu, F., Liu, S.-L., Liu, R., Ding, Y.-C., and Ding, Y.-T. (2012). Combined effect of ozonized water pretreatment and ozonized flake ice on maintaining quality of Japanese sea bass (Lateolabrax japonicus). Journal of Aquatic Food Product Technology 21(2), 168–180.
  • Luan, L., Wu, C., Wang, L., Li, Y., Ishimura, G., Yuan, C., Ding, T., and Hu, Y. (2017). Protein denaturation and oxidation in chilled hairtail (Trichiutus haumela) as affected by electrolyzed oxidizing water and chitosan treatment. International Journal of Food Properties, 0(S3), S2696–S2707. doi: 10.1080/10942912.2017.1397693.
  • Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Science and Technology 23, 015019. doi: 10.1088/0963-0252/23/1/015019.
  • Luo, W., D.-W. Sun, Z. Zhu, Q.-J. Wang. (2018). Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality - A review of effective methods. Trends in Food Science & Technology 72:25–33. doi: 10.1016/j.tifs.2017.11.017.
  • Mahato, S., Z. Zhu, and D.-W. Sun. (2019). Glass Transitions as Affected by Food Compositions and by Conventional and Novel Freezing Technologies: A Review. Trends in Food Science & Technology 94:1–11. doi: 10.1016/j.tifs.2019.09.010.
  • Manousaridis, G., Nerantzaki, A., Paleologos, E. K., Tsiotsias, A., Savvaidis, I. N., and Kontominas, M. G. (2005). Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiology 22(1), 1–9. doi: 10.1016/j.fm.2004.06.003.
  • Mansur, A. R., Tango, C. N., Kim, G.-H., and Oh, D.-H. (2015). Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control 47, 277–284. doi: 10.1016/j.foodcont.2014.07.019.
  • McCarthy, S., and Burkhardt, W. (2012). Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces. Food Control 24(1–2), 214–219. doi: 10.1016/j.foodcont.2011.09.030.
  • Mc Donald, K., and D.-W. Sun. (2001). Effect of evacuation rate on the vacuum cooling process of a cooked beef product. Journal Of Food Engineering 48:195–202. doi: 10.1016/S0260-8774(00)00158-8.
  • Miks-Krajnik, M., Feng, L. X. J., Bang, W. S., and Yuk, H.-G. (2017). Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 74, 54–60. doi: 10.1016/j.foodcont.2016.11.033.
  • Nerantzaki, A., Tsiotsias, A., Paleologos, E. K., Savvaidis, I. N., Bezirtzoglou, E., and Kontominas, M. G. (2005). Effects of ozonation on microbiological, chemical and sensory attributes of vacuum-packaged rainbow trout stored at 4 ± 0.5 °C. European Food Research and Technology 221(5), 675–683. doi: 10.1007/s00217-005-0042-x.
  • Novak, J. S., and Yuan, J. T. C. (2003). Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous ozone treatment on beef followed by heat, alkali, or salt stress. Journal of Food Protection 66(3), 382–389. doi: 10.4315/0362-028X-66.3.382.
  • OECD-FAO. (2018). OECD-FAO Agricultural Outlook 2018-2027, OECD Publishing, Paris/FAO, Rome. Accessed February24, 2020. 10.1787/agr_outlook-2018-en.
  • Okpala, C. O. R. (2014). Investigation of quality attributes of ice-stored Pacific white shrimp (Litopenaeus vannamei) as affected by sequential minimal ozone treatment. LWT-Food Science and Technology 57, 538–547. doi: 10.1016/j.lwt.2014.02.007.
  • Okpala, C. O. R. (2015). Quality evaluation and shelf life of minimal ozone-treated Pacific white shrimp (Litopenaeus vannamei) stored on ice. Journal of Consumer Protection and Food Safety 10(1), 49–57. doi: 10.1007/s00003-014-0904-x.
  • Ovissipour, M., Shiroodi, S. G., Rasco, B., Tang, J., and Sablani, S. S. (2018). Electrolyzed water and mild-thermal processing of Atlantic salmon (Salmo salar): Reduction of Listeria monocytogenes and changes in protein structure. International Journal of Food Microbiology 276, 10–19. doi: 10.1016/j.ijfoodmicro.2018.04.005.
  • Pan, Y., J.-H. Cheng, and D.-W. Sun. 2019. Cold plasma-mediated treatments for shelf life extension of fresh produce: A review of recent research developments. Comprehensive Reviews in Food Science and Food Safety 18 (5):1312–1326. doi: 10.1111/1541-4337.12474.
  • Pan, Y., J.-H. Cheng, X. Lv, and D.-W. Sun. 2019. Assessing the inactivation efficiency of Ar/O2 plasma treatment against Listeria Monocytogenes cells: sublethal injury and inactivation kinetics, LWT - Food Science and Technology 111:318–327. doi: 10.1016/j.lwt.2019.05.041.
  • Pan, Y., Y. Zhang, J.-H. Cheng, and D.-W. Sun. 2020. Inactivation of Listeria Monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma. LWT - Food Science and Technology 118:108635. doi: 10.1016/j.lwt.2019.108635.
  • Pandiselvam, R., Sunoj, S., Manikantan, M. R., Kothakota, A., and Hebbar, K. B. (2017) Application and kinetics of ozone in food preservation. Ozone: Science & Engineering 39(2), 115–126, doi: 10.1080/01919512.2016.1268947.
  • Park, S. Y., Chung, M.-S., and Ha, S.-D. (2018). Combined effect of sodium hypochlorite and gamma-irradiation for the control of Vibrio vulnificus in fresh oyster and clam. LWT-Food Science and Technology 91, 568–572. doi: 10.1016/j.lwt.2018.01.087.
  • Park, H., Hung, Y.-C., and Brackett, R. E. (2002). Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. International Journal of Food Microbiology 72(1–2), 77–83. doi: 10.1016/S0168-1605(01)00622-5.
  • Park, S. Y., and Ha, S.-D. (2015). Reduction of Escherichia coli and Vibrio parahaemolyticus counts on freshly sliced shad (Konosirus punctatus) by combined treatment of slightly acidic electrolyzed water and ultrasound using response surface methodology. Food and Bioprocess Technology, (8), 1762–1770. doi: 10.1007/s11947-015-1512-1.
  • Phuvasate, S., and Su, Y.-C. (2010). Effects of electrolyzed oxidizing water and ice treatments on reducing histamine-producing bacteria on fish skin and food contact surface. Food Control 21(3), 286–291. doi: 10.1016/j.foodcont.2009.06.007.
  • Pohlman, F. W., Stivarius, M. R., McElyea, K. S., Johnson, Z. B., and Johnson, M. G. (2002). The effects of ozone, chlorine dioxide, cetylpyridinium chloride and trisodium phosphate as multiple antimicrobial interventions on microbiological, instrumental colour, and sensory colour and odour characteristics of ground beef. Meat Science 61(3), 307–313. doi: 10.1016/S0309-1740(01)00198-X.
  • Qian, J., Zhuang, H., Nasiru, M. M., Muhammad, U., Zhang, J., and Yan, W. (2019). Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella Enteritidis and quality of beef. Innovative Food Science and Emerging Technologies 57, 102196. doi: 10.1016/j.ifset.2019.102196.
  • Quan, Y., Choi, K.-D., Chung, D., and Shin, I.-S. (2010). Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. International Journal of Food Microbiology 136(3), 255–260. doi: 10.1016/j.ijfoodmicro.2009.11.005.
  • Rahman, S. M. E, Khan, I., and Oh, D.-H. (2016). Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Comprehensive Reviews in Food Science and Food Safety 15(3), 471–490. doi: 10.1111/1541-4337.12200.
  • Rahman, S. M. E., Park, J., Song, K. B, Al-Harbi, N. A., and Oh, D.-H. (2012). Effects of slightly acidic low concentration electrolyzed water on microbiological, physicochemical, and sensory quality of fresh chicken breast meat. Journal of Food Science 77(1), M35–M41. doi: 10.1111/j.1750-3841.2011.02454.x.
  • Rahman, S. M. E., Wang, J., and Oh, D.-H. (2013). Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control 30(1), 176–183. doi: 10.1016/j.foodcont.2012.06.041.
  • Ratana-Arporn, P., and Jommark, N. (2014). Efficacy of neutral electrolyzed water for reducing pathogenic bacteria contaminating shrimp. Journal of Food Protection 77(12), 2176–2180. doi: 10.4315/0362-028X.JFP-14-161.
  • Ren, T., and Su, Y. C. (2006). Effects of electrolyzed oxidizing water treatment on reducing Vibrio parahaemolyticus and Vibrio vulnificus in raw oysters. Journal of Food Protection 69(8), 1829–1834. doi: 10.4315/0362-028X-69.8.1829.
  • Rigdon, M., Hung, Y.-C., and Stelzleni, A. M. (2017). Evaluation of alkaline electrolyzed water to replace traditional phosphate enhancement solutions: Effects on water holding capacity, tenderness, and sensory characteristics. Meat Science 123, 211–218. doi: 10.1016/j.meatsci.2016.10.007.
  • Rong, C., Qi, L., Bang-Zhong, Y., and Lan-Lan, Z. (2010). Combined effect of ozonated water and chitosan on the shelf-life of Pacific oyster (Crassostrea gigas). Innovative Food Science and Emerging Technologies, 1(1), 108–112. doi: 10.1016/j.ifset.2009.08.006.
  • Royintarat, T., Choi, E. H., Boonyawan, D., Seesuriyachan, P., and Wattanutchariya, W. (2020). Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Scientific Reports 10:1559. doi: 10.1038/s41598-020-58199-w.
  • Shen, J., Zhang, H., Xu, Z., Zhang, Z., Cheng, C., Ni, G., Lan, Y., Meng, Y., Xi, W., and Chu, P. K. (2019). Preferential production of reactive species and bactericidal efficacy of gas-liquid plasma discharge. Chemical Engineering Journal 362, 402–412. doi: 10.1016/j.cej.2019.01.018.
  • Shimamura, Y., Shinke, M., Hiraishi, M., Tsuchiya, Y., and Masuda, S. (2016). The application of alkaline and acidic electrolyzed water in the sterilization of chicken breasts and beef liver. Food Science and Nutrition, (3), 431–440.
  • Tango, C.-N., Mansur, A.-R., Kim, G.-H., and Oh, D.-H. (2014). Synergetic effect of combined fumaric acid and slightly acidic electrolyzed water on the inactivation of food-borne pathogens and extending the shelf life of fresh beef. Journal of Applied Microbiology 117(6), 1709–1720. doi: 10.1111/jam.12658.
  • Tantratian, S., and Kaephen, K. (2020). Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. LWT - Food Science and Technology 118, 108733. doi: 10.1016/j.lwt.2019.108733.
  • Tian, Y., Z. Zhu, and D.-W. Sun. (2020). Naturally Sourced Biosubstances for Regulating Freezing Points in Food Researches: Fundamentals, Current Applications and Future Trends. Trends in Food Science & Technology 95:131–140.
  • USDA-FSIS. (2019). FSIS Directive 7120.1, Revision 52. Safe and suitable ingredients used in the production of meat and poultry, and egg products. Washington, DC, USA: USDA-FSIS.
  • USFDA. (2001). Secondary direct food additives permitted in food for human consumption. Federal Register 66(123), 33829–33830.
  • USFDA. (2002). United States Food and Drug Administration. Food additives permitted for direct addition to food for human consumption, Part 172.170. Accessed February 24, 2020. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=172.
  • Veasey, S., and Muriana, P. M. (2016). Evaluation of electrolytically-generated hypochlorous acid (‘electrolyzed water’) for sanitation of meat and meat-contact surfaces. Foods 5(2), 1–15. doi: 10.3390/foods5020042.
  • Wang, H., Qi, J., Duan, D., Dong, Y., Xu, X., and Zhou, G. (2018). Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses. Food Control 86, 200–206. doi: 10.1016/j.foodcont.2017.11.027.
  • Wang, J. J., Lin, T., Li, J. B., Liao, C., Pan, Y. J., and Zhao, Y. (2014). Effect of acidic electrolyzed water ice on quality of shrimp in dark condition. Food Control 35(1), 207–212. doi: 10.1016/j.foodcont.2013.07.005.
  • Xiang, Q., Chaodi Kang, C., Zhao, D., Niu, L., Xiao Liu, X., and Bai, Y. (2019). Influence of organic matters on the inactivation efficacy of plasma-activated water against E. coli O157:H7 and S. aureus. Food Control 99, 28–33. doi: 10.1016/j.foodcont.2018.12.019.
  • Xie, J., Sun, X. H., Pan, Y. J., and Zhao, Y. (2012). Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp. Food Research International 47(2), 331–336. doi: 10.1016/j.foodres.2011.07.041.
  • Xie, A., D.-W. Sun, Z. Xu, and Z. Zhu. (2015). Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta 139:208–215. doi: 10.1016/j.talanta.2015.02.027.
  • Xinyu, L., Xiang, Q., Cullen, P. J., Su, Y., Chen, S., Ye, X., Liu, D., and Ding, T. (2020). Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT-Food Science and Technology 117, 108649. doi: 10.1016/j.lwt.2019.108649.
  • Xu, G., Tang, X., Tang, S., You, H., Shi, H., and Gu, R. (2014). Combined effect of electrolyzed oxidizing water and chitosan on the microbiological, physicochemical, and sensory attributes of American shad (Alosa sapidissima) during refrigerated storage. Food Control 46, 397–402. doi: 10.1016/j.foodcont.2014.06.010.
  • Xuan, X.-T., Fan, Y.-F., Ling, J.-G., Hu, Y.-Q., Liu, D.-H., Chen, S.-G., Ye, X.-Q., and Ding, T. (2017). Preservation of squid by slightly acidic electrolyzed water ice. Food Control 73, 1483–1489.
  • Yong, H. I., Park, J., Kim, H.-J., Jung, S., Park, S., Lee, H. J., Choe, W., and Jo, C. (2018). An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Processes and Polymers 15. doi: 10.1002/ppap.201700050.
  • Zhan, X., D.-W. Sun, Z. Zhu, and Q.-J. Wang. (2018). Improving the Quality and Safety of Frozen Muscle Foods by Emerging Freezing Technologies: A Review. Critical Reviews in Food Science and Nutrition 58 (17):2925–2938. doi: 10.1080/10408398.2017.1345854.
  • Zhan, X., Z. Zhu, and D.-W. Sun. (2019a). Effects of Extremely Low Frequency Electromagnetic Field on the Freezing Processes of Two Liquid Systems. LWT - Food Science and Technology 103:212–221. doi: 10.1016/j.lwt.2018.12.079.
  • Zhan, X., Z. Zhu, D.-W. Sun. (2019b). Effects of Pretreatments on Quality Attributes of Long-Term Deep Frozen Storage of Vegetables: A Review. Critical Reviews in Food Science and Nutrition 59(5):743–757. doi: 10.1080/10408398.2018.1496900.
  • Zhang, B., Ma, L.-K, Deng, S.-G, Xie, C., and Qiu, X.-H. (2015). Shelf-life of Pacific white shrimp (Litopenaeus vannamei) as affected by weakly acidic electrolyzed water ice-glazing and modified atmosphere packaging. Food Control 51, 114–121. doi: 10.1016/j.foodcont.2014.11.016.
  • Zhang, T., Xue, Y., Li, Z., Wang, Y., Yang, W., and Xue, C. (2016). Effects of ozone on the removal of geosmin and the physicochemical properties of fish meat from bighead carp (Hypophthalmichthys nobilis). Innovative Food Science and Emerging Technologies 34, 16–23.
  • Zhang, P., Z. Zhu, and D.-W. Sun. (2018). Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure. Critical Reviews in Food Science and Nutrition 58 (16):2842–2853. doi: 10.1080/10408398.2018.1482528.
  • Zhao, L., Zhang, Z., Wang, M., Sun, J., Li, H., Malakar, P. K., Liu, H., Pan, Y., and Zhao, Y. (2018). New insights into the changes of the proteome and microbiome of shrimp (Litopenaeus vannamei) stored in acidic electrolyzed water ice. Journal of Agricultural and Food Chemistry 66(19), 4966–4976.
  • Zhao, Y., Chen, R., Tian, E., Liu, D., Niu, J., Wang, W., Qi, Z., Xia, Y., Song, Y., and Zhao, Z. (2020). Plasma-activated water treatment of fresh beef: Bacterial inactivation and effects on quality attributes. IEEE Transactions on Radiation and Plasma Medical Sciences 4(1), 113–120. doi: 10.1109/TRPMS.2018.2883789.
  • Zhao, Y., Yang, X., Li, L., Hao, S., Wei, Y., Cen, J., and Lin, H. (2017). Chemical, microbiological, colour and textural changes in Nile tilapia (Oreochromis niloticus) fillets sterilized by ozonated water pretreatment during frozen storage. Journal of Food Processing and Preservation 41, e12746. doi: 10.1111/jfpp.12746.
  • Zhou, R., Liu, Y., Xie, J., and Wang, X. (2011). Effects of combined treatment of electrolyzed water and chitosan on the quality attributes and myofibril degradation in farmed obscure puffer fish (Takifugu obscurus) during refrigerated storage. Food Chemistry 129(4), 1660–1666. doi: 10.1016/j.foodchem.2011.06.028.
  • Zhu, Z., Y. Geng, and D.-W. Sun. (2019a). Effects of Operation Processes and Conditions on Enhancing Performances of Vacuum Cooling of Foods: A Review, Trends in Food Science & Technology, 85:67–77.
  • Zhu, Z., Y. Li, D.-W. Sun, and H.-W. Wang. (2019b). Developments of Mathematical Models for Simulating Vacuum Cooling Processes for Food Products – A Review. Critical Reviews in Food Science and Nutrition 59 (5):715–727. doi: 10.1080/10408398.2018.1490696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.