2,566
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi)

, , , &

References

  • Abhilash, P. C., and N. Singh. 2009. Pesticide use and application: An Indian scenario. Journal of Hazardous Materials 165 (1-3):1–12. doi: 10.1016/j.jhazmat.2008.10.061.
  • Akkaya, O., H. I. Guvenc, S. Yuksekkaya, A. Opus, A. Guzelant, M. Kaya, M. G. Kurtoglu, and N. Kaya. 2017. Real-time PCR detection of the most common bacteria and viruses causing meningitis. Clinical Laboratory 63 (04/2017):827–32. doi: 10.7754/Clin.Lab.2016.160912.
  • Anastassiades, M., S. J. Lehotay, D. Štajnbaher, and F. J. Schenck. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International 86 (2):412–31. doi: 10.1093/jaoac/86.2.412.
  • Anonym. 2020. Biggest companies in the Sushi Restaurants industry in the US. Accessed March 22, 2020. https://www.ibisworld.com/united-states/market-research-reports/sushi-restaurants-industry/
  • Arai, T. 2014a. Salmon migration patterns revealed the temporal and spatial fluctuations of the radiocesium levels in terrestrial and ocean environments. PLoS One 9 (6):e100779. doi: 10.1371/journal.pone.0100779.
  • Arai, T. 2014b. Radioactive cesium accumulation in freshwater fishes after the Fukushima nuclear accident. SpringerPlus 3 (1):479–13. doi: 10.1186/2193-1801-3-479.
  • Ardini, F., G. Dan, and M. Grotti. 2020. Arsenic speciation analysis of environmental samples. Journal of Analytical Atomic Spectrometry 35 (2):215–37. doi: 10.1039/C9JA00333A.
  • Aristoy, M. A. C., L. Mora, A. S. Hernández-Cázares, and F. Toldrá. 2009. Lipid compounds. In Handbook of seafood and seafood products analysis, 77–88. Boca Raton, USA: CRC Press.
  • Arizono, N., M. Yamada, F. Nakamura-Uchiyama, and K. Ohnishi. 2009. Diphyllobothriasis associated with eating raw pacific salmon. Emerging Infectious Diseases 15 (6):866–70. doi: 10.3201/eid1506.090132.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 2007. Toxicological profile for arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 1999. Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 2000. Toxicological profile for polychlorinated biphenyls (PCBs). Atlanta, GA. U.S. Department of Health and Human Services, Public Health Service.ATSDR (Agency for Toxic Substances and Disease Registry). 2012. Toxicological profile of chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • Bakshi, A., and A. K. Panigrahi. 2018. A comprehensive review on chromium induced alterations in fresh water fishes. Toxicology Reports 5:440–7.
  • Blackburn, C. D. W. 2006. Food spoilage microorganisms. In Woodhead publishing Series in food science, technology and nutrition, 695–712. Cambridge, UK: Woodhead Publishing.
  • Boada, L. D., M. Zumbado, O. P. Luzardo, M. Almeida-González, S. M. Plakas, H. R. Granade, A. Abraham, E. L. E. Jester, and R. W. Dickey. 2010. Ciguatera fish poisoning on the West Africa coast: An emerging risk in the canary islands. Toxicon 56 (8):1516–9. doi: 10.1016/j.toxicon.2010.07.021.
  • Böhme, K., C. F. N. Inmaculada, J. Barros-Velázquez, J. M. Gallardo, B. Canãs, and P. Calo-Mata. 2012. Species identification of food spoilage and pathogenic bacteria by MALDI-TOF mass fingerprinting. In Food quality, ed. K. Kapiris. Rijeka, Croatia: InTech. Accessed September 10, 2018. http://www.intechopen.com/books/food-quality/species-identification-of-food-spoilage-and-pathogenic-bacteria-by-maldi-tof-mass-fingerprinting. ISBN: 978-953-51-0560-2
  • Brett, M. M. 2003. Food poisoning associated with biotoxins in fish and shellfish. Current Opinion in Infectious Diseases 16 (5):461–5.
  • Brighton and Hove City Council. 2008. Safe production of sushi, sashimi and other raw fish products. Accessed November 13, 2018. https://www.brighton-hove.gov.uk/sites/brighton-hove.gov.uk/files/downloads/food_safety_team/Fguide54_-_Safe_Production_of_Sushi_and_Sashimi.pdf
  • Brittain, J. E., and J. E. Gjerseth. 2010. Long-term trends and variation in 137Cs activity concentrations in brown trout (Salmo trutta) from Øvre Heimdalsvatn, a Norwegian subalpine lake. Hydrobiologia 642 (1):107–13. doi: 10.1007/s10750-010-0155-5.
  • Buchmann, K., and F. Mehrdana. 2016. Effects of anisakid nematodes Anisakis simplex (s.l), Pseudoterranova decipiens (s.l) and Contracaecum osculatum (s.l) on fish and consumer health. Food and Waterborne Parasitology 4:13–7. doi: 10.1016/j.fawpar.2016.07.003.
  • Buesseler, K. O., S. R. Jayne, N. S. Fisher, I. I. Rypina, H. Baumann, Z. Baumann, C. F. Breier, E. M. Douglass, J. George, A. M. Macdonald, et al. 2012. Fukushima-derived radionuclides in the ocean and biota off Japan. Proceedings of the National Academy of Sciences of Sciences 109 (16):5984–8. doi: 10.1073/pnas.1120794109.
  • Cao, H., J. Chen, J. Zhang, H. Zhang, L. Qiao, and Y. Men. 2010. Heavy metals in rice and garden vegetables and their potential health risks to inhabitant in the vicinity of an industrial zone in Jiangsu. Journal of Environmental Sciences 22 (11):1792–9. doi: 10.1016/S1001-0742(09)60321-1.
  • Carvalho, F. P. 2017. Pesticides, environment, and food safety. Food and Energy Security 6 (2):48–60. doi: 10.1002/fes3.108.
  • Centers for Disease Control and Prevention. 2015. Norovirus. [website] URL: https://www.cdc.gov/norovirus/about/transmission.html. Accessed: 2nd July 2018
  • Chai, J., M. K. Darwin, and A. Lymbery. 2005. Fish-borne parasitic zoonoses: Status and issues. International Journal for Parasitology 35 (11-12):1233–54. doi: 10.1016/j.ijpara.2005.07.013.
  • Chai, J. Y., E. H. Shin, S. H. Lee, and H. J. Rim. 2009. Foodborne intestinal flukes in Southeast Asia. Korean Journal for Parasitology 47:70–90.
  • Chen, H.-C., Y.-R. Huang, H.-H. Hsu, C.-S. Lin, W.-C. Chen, C.-M. Lin, and Y.-H. Tsai. 2010. Determination of histamine and biogenic amines in fish cubes implicated in a food-borne poisoning. Food Control 21 (1):13–8. doi: 10.1016/j.foodcont.2009.03.014.
  • Chen, H.-C., H.-F. Kung, W.-C. Chen, W.-F. Lin, D.-F. Hwang, Y.-C. Lee, and Y.-H. Tsai. 2008. Determination of histamine and histamine-forming bacteria in tuna dumpling implicated in a food-borne poisoning. Food Chemistry 106 (2):612–8. doi: 10.1016/j.foodchem.2007.06.020.
  • Chernova, E. N., and E. V. Lysenko. 2019. The content of metals in organisms of various trophic levels in freshwater and brackish lakes on the coast of the sea of Japan. Environmental Science and Pollution Research 26 (20):20428–38. doi: 10.1007/s11356-019-05198-8.
  • Choppala, G., N. Bolan, and J. H. Park. 2013. Chapter two - Chromium contamination and its risk management in complex environmental settings. Advances in Agronomy 120:129–72.
  • Chou, J. C. H. S., and M. Williams-Johnson. 1998. Health effects classification and its role in the derivation of minimal risk levels: Neurological effects. Toxicology and Industrial Health 14 (3):455–71. doi: 10.1177/074823379801400305.
  • Clarke, R., L. Connolly, C. Frizzell, and C. T. Elliott. 2015. Challenging conventional risk assessment with respect to human exposure to multiple food contaminants in food: A case study using maize. Toxicology Letters 238 (1):54–64. doi: 10.1016/j.toxlet.2015.07.006.
  • Codex Alimentarius. 2018. Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods Cx/MRL 2-1018. Accessed November 13, 2018. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandar*ds%252FCAC%2BMRL%2B2%252FMRL2e.pdf.
  • Coetzee, J. J., N. Bansal, and E. M. N. Chirwa. 2020. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremedication. Exposure and Health 12 (1):51–62. doi: 10.1007/s12403-018-0284-z.
  • Commission Decision. 2002. No. 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and their interpretation of results. Official Journal of the European Union L 221:8–36.
  • Commission Regulation. 2004a. No 852/2004 of the European Parliament and the Council of 29 April 2004 on the hygiene of foodstuffs. Official Journal of the European Union L 139:1.
  • Commission Regulation. 2004b. No 853/2004 of the European Parliament and the Council of 29 April 2004 laying down specific hygiene rules for the hygiene of foodstuffs. Official Journal of the European Union L 139:55.
  • Commission Regulation. 2004c. No 854/2004 of the European parliament and of the council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Official Journal of the European Union L 226:83–127.
  • Commission Regulation. 2005. No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the European Union L 338:1–26.
  • Commission Regulation. 2006. No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union L 364:5–24.
  • Commission Regulation. 2015. No. 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Official Journal of the European Union L 161:14–6.
  • Commission Regulation. 2016. Implementing Regulation (EU) No. 2016/6 of 5 January 2016 imposing special conditions governing the import of feed and food originating in or consigned from Japan following the accident at the Fukushima nuclear power station and repealing Implementing Regulation (EU) No 322/2014. Official Journal of the European Union L 3:5–15.
  • Cooper, K. M., C. McMahon, I. Fairweather, and C. T. Elliott. 2015. Potential impacts of climate change on veterinary medicinal residues in livestock produce: An island of Ireland perspective. Trends in Food Science & Technology 44 (1):21–35. doi: 10.1016/j.tifs.2014.03.007.
  • Costa, F. N., M. G. A. Korn, G. B. Brito, S. Ferlin, and A. H. Fostier. 2016. Preliminary results of mercury levels in raw and cooked seafood and their public health impact. Food Chemistry 192:837–841.
  • Daranas, A. H., M. Norte, and J. J. Fernandez. 2001. Toxic marine microalgae. Toxicon 39:1101–1132.
  • Daschner, A. 2016. Chapter 31: Risks and possible health effects of raw fish intake. In: Fish and fish oil in health and disease prevention, 341–53. Cambridge, USA: Academic Press. doi: 10.1016/B978-0-12-802844-5.00031-2.
  • Dayan, A. D., and A. J. Paine. 2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Human & Experimental Toxicology 20 (9):439–51. doi: 10.1191/096032701682693062.
  • Diaz, J. H. 2013. Paragonimiasis acquired in the United States: Native and nonnative species. Clinical Microbiology Reviews 26 (3):493–504. doi: 10.1128/CMR.00103-12.
  • Dorny, P., N. Praet, N. Deckers, and S. Gabriel. 2009. Emerging food-borne parasites. Veterinary Parasitology 163 (3):196–206. doi: 10.1016/j.vetpar.2009.05.026.
  • EC (European Commission). 2016. Policy guideline on tetrodotoxin in live bivalve molluscs. Notification 2016/0277/NL. Accessed October 15, 2018. http://ec.europa.eu/growth/tools-databases/tris/en/search/?trisaction=search.detail&year=2016&num=277.pdf.
  • Edin, A., S. Granholm, S. Koskiniemi, A. Allard, A. Sjöstedt, and A. Johansson. 2015. Development and laboratory evaluation of a Real-Time PCR assay for detecting viruses and bacteria of relevance for community-acquired Pneumonia. The Journal of Molecular Diagnostics 17 (3):315–24. doi: 10.1016/j.jmoldx.2015.01.005.
  • EFSA (European Food Safety Authority). 2009. Scientific opinion on arsenic in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal 7:1351.
  • EFSA (European Food Safety Authority). 2010a. Results of the monitoring of dioxin levels in food and feed. EFSA Journal 8 (3):1385.
  • EFSA (European Food Safety Authority). 2010b. Scientific opinion on marine biotoxins in shellfish – ciguatoxin group. EFSA Journal 8 (6):1627.
  • EFSA (European Food Safety Authority). 2012. Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal 10 (12):2985.
  • EFSA (European Food Safety Agency). 2014a. Scientific opinion on dietary reference values for chromium. EFSA Journal 12 (10):3845.
  • EFSA (European Food Safety Agency). 2014b. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal 12 (3):3595.
  • EFSA (European Food Safety Authority). 2015. Scientific statement on the health-based guidance values for dioxins and dioxin-like PCBs. EFSA Journal 13 (5):4124.
  • EFSA (European Food Safety Authority). 2017. The 2015 European Union report on pesticide residues in food. EFSA Journal 15 (4):4791.
  • EFSA (European Food Safety Authority). 2018a. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA Journal 16 (11):5333.
  • EFSA (European Food Safety Authority). 2018b. Summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal 16 (12):5500.
  • FAO (Food and Agriculture Organisation). 2017. FAO-WHO work on ciguatera and current challenges. Accessed November 2, 2018. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-11%252FCRDs%252FCiguatera.pdf.
  • FDA (Food and Drug Administration). 2018a. Environmental chemical contaminants and pesticides. U.S. Department of Health and Human Services, Food Guidance Documents. Accessed September 12, 2018. https://www.fda.gov/downloads/food/guidanceregulation/ucm252404.pdf.
  • FDA (Food and Drug Administration). 2018b. FDA voices on consumer safety and enforcement. [Website.]. Accessed September 5, 2018. https://www.fda.gov/NewsEvents/Newsroom/FDAVoices/ucm613783.htm.
  • FEHD (Food and Environmental Hygiene Department). 2018. Food safety. [Website.]. Accessed September 5, 2018. https://www.fehd.gov.hk/english/food_safety/index.html.
  • Food Safety Authority of Ireland. 2009. Mercury, lead, cadmium, tin and arsenic in food. Toxicology Factsheets Series 1:1.
  • Fiamegkos, I., F. Cordeiro, V. Devesa, D. Vélez, P. Robouch, H. Emteborg, H. Leys, A. Cizek-Stroh, and B. de la Calle. 2015. Determination of inorganic arsenic in food by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). Joint Research Centre Technical report. IMEP-41: Determination of inorganic as in food. European Union, Belgium. JR94325. https://ec.europa.eu/jrc/sites/jrcsh/files/IMEP-41%20Final%20report1.pdf.
  • Francesconi, K. A., and D. Kuehnelt. 2004. Determination of arsenic species: A critical review of methods and applications, 2000–2003. The Analyst 129 (5):373–95. doi: 10.1039/B401321M.
  • Gall, B. G., A. N. Stokes, S. S. French, E. A. Schlepphorst, E. D. Brodie, and E. D. Jr. Brodie. 2011. Tetrodotoxin levels in larval and metamorphosed newts and palatability to predatory dragonflies. Toxicon 57 (7-8):978–83. doi: 10.1016/j.toxicon.2011.03.020
  • Ghaly, A. E., D. Dave, S. Budge, and M. Brooks. 2010. Fish spoilage mechanisms and preservation techniques: Review. American Journal of Applied Sciences 7:859–77. doi: 10.3844/ajassp.2010.859.877.
  • Gibson, M. 2018. Fish and shellfish. In Food science and the culinary arts, 240–3. London: Academic Press.
  • Gram, L., and H. H. Huss. 1996. Microbiological spoilage of fish and fish products. International Journal of Food Microbiology 33 (1):121–-37. doi: 10.1016/0168-1605(96)01134-8.
  • Gupta, N., D. K. Khan, and S. C. Santra. 2008. An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology 80 (2):115–8. doi: 10.1007/s00128-007-9327-z.
  • Habibi, B. I., Ghorbel-Abid, R. Lahsini, D. C. B. Hassen, and M. Trabelsi-Ayadi. 2019. Development and validation of a rapid HPLC method for multiresidue determination of erythromycin, clarithromycin, and azithromycin in aquaculture fish muscles. Acta Chromatographica 31 (2):109–12. doi: 10.1556/1326.2017.00376.
  • Han, F., X. Huang, and G. K. Mahunu. 2017. Exploratory review on safety of edible raw fish per the hazard factors and their detection methods. Trends in Food Science & Technology 59:37–48. doi: 10.1016/j.tifs.2016.11.004.
  • Hasan, M. R., H. Al Mana, V. Young, P. Tang, E. Thomas, R. Tan, and P. Tilley. 2019. A novel real-time PCR assay panel for detection of common respiratory pathogens in a convenient, strip-tube array format. Journal of Virological Methods 265:42–8. doi: 10.1016/j.jviromet.2018.12.013.
  • Has-Schön, E., I. Bogut, and I. Strelec. 2006. Heavy metal profile in five species included in humans diet, domiciled in the end flow of River Neretva (Croatia). Archives of Environmental Contamination and Toxicology 50 (4):545–51. doi: 10.1007/s00244-005-0047-2.
  • HELCOM. 2018. Radioactive substances HELCOM core indicator report. Accessed March 19, 2020. https://helcom.fi/media/core%20indicators/Radioactive-substances-HELCOM-core-indicator-2018.pdf
  • Henry, T. B. 2015. Ecotoxicology of polychlorinated biphenyls in fish–a critical review. Critical Reviews in Toxicology 45 (8):643–61. doi: 10.3109/10408444.2015.1038498.
  • Herrman, J. L., and M. Younes. 1999. Background to the ADI/TDI/PTWI. Regulatory Toxicology and Pharmacology 30 (2):S109–S113. doi: 10.1006/rtph.1999.1335.
  • Hess, P., S. Gallacher, L. A. Bates, and N. Brown. 2001. Determination and confirmation of the amnesic shellfish poisoning toxin, domoic acid, in shellfish from Scotland by liquid chromatography and mass spectrometry. Journal of Association of Official Analytical Chemists International 84:657––1667.
  • How, C. K., C. H. Chern, Y. C. Huang, L. M. Wang, and C. H. Lee. 2003. Tetrodotoxin poisoning. The American Journal of Emergency Medicine 21 (1):51–4. doi: 10.1053/ajem.2003.50008.
  • Hsin-I Feng, C. 2012. The tale of sushi: History and regulations. Comprehensive Reviews in Food Science and Food Safety 11 (2):205–10. doi: 10.1111/j.1541-4337.2011.00180.x.
  • Hungerford, J. M. 2010. Scombroid poisoning: A review. Toxicon 56 (2):231–43. doi: 10.1016/j.toxicon.2010.02.006.
  • Hwang, D. F., and T. Noguchi. 2007. Tetrodotoxin poisoning. Advances in Food and Nutrition Research 52:141–236.
  • Imamoglu, H., and E. O. Olgun. 2016. Analysis of veterinary drug and pesticide residues using the ethyl acetate multiclass/multiresidue method in milk by liquid chromatography-tandem mass spectrometry. Journal of Analytical Methods in Chemistry 2016:1–17. Article ID 2170165
  • IPCS (International Programme on Chemical Safety). 2001. Arsenic - Environmental aspects; Environmental health criteria. Geneva: World Health Organization.
  • IPCS (International Programme on Chemical Safety). 1986. Mercury - Environmental aspects; Environmental health criteria. Geneva: World Health Organization.
  • IPCS (International Programme on Chemical Safety). 2003. Elemental mercury and inorganic mercury compounds. Geneva: World Health Organization.
  • Isbister, G. K., and M. C. Kiernan. 2005. Neurotoxic marine poisoning. The Lancet Neurology 4 (4):219–28. doi: 10.1016/S1474-4422(05)70041-7.
  • James, K. J., A. Furey, M. Lehane, H. Ramstad, T. Aune, P. Hovgaard, S. Morris, W. Higman, M. Satake, and T. Yasumoto. 2002. First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon 40 (7):909–15. doi: 10.1016/S0041-0101(02)00082-X.
  • Jara-Marini, M. E., A. Molina-García, Á. Martínez-Durazo, and F. Páez-Osuna. 2020. Trace metal trophic transference and biomagnification in a semiarid coastal lagoon impacted by agriculture and shrimp aquaculture. Environmental Science and Pollution Research 27 (5):5323–36. doi: 10.1007/s11356-019-06788-2
  • JECFA. 2004. Position paper on dioxins and dioxin-like PCBs. Joint FAO/WHO Food Standards Programme. 33rd session of Codex Committee on Food Additives and Contaminants, CX/FAC 04/36/32 Rome
  • JECFA-776. 1989. Evaluation of certain food additives and contaminants, 33rd Report of Joint FAO/WHO Expert Committee on Food Additives, Technical report series 776. Geneva
  • JECFA-940. 2007. Evaluation of certain food additives and contaminants-Methylmercury, 67th Report of Joint FAO/WHO Expert Committee on Food Additives, Technical report series 940. Geneva
  • JECFA-959. 2011. Evaluation of certain food additives and contaminants-Arsenic and Mercury, 72nd Report of Joint FAO/WHO Expert Committee on Food Additives, Technical report series 959. Geneva
  • JECFA-960. 2010. Evaluation of certain food additives and contaminants-Lead, 73rd Report of Joint FAO/WHO Expert Committee on Food Additives, Technical report series 960. Geneva
  • JECFA-983. 2013. Evaluation of certain food additives and contaminants-Cadmium, 77th Report of Joint FAO/WHO Expert Committee on Food Additives, Technical report series 983. Geneva
  • Jeong, S., H. Lee, Y.-T. Kim, and H.-O. Yoon. 2017. Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICP-MS: Arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and dimethylmonothioarsinic acid. Microchemical Journal 134:295–300. doi: 10.1016/j.microc.2017.06.011.
  • Jepson, P. D., and R. J. Law. 2016. Persistent pollutants, persistent threats. Science 352 (6292):1388–9. doi: 10.1126/science.aaf9075.
  • Joshi, P., and V. S. Bhoir. 2011. Study of histamine forming bacteria in commercial fish samples of Kalyan city. Intennational Journal of Current Scientific Research 1:39–42.
  • Jung, J. Y., H. K. Yoon, S. An, J. W. Lee, E.-R. Ahn, Y.-J. Kim, H.-C. Park, K. Lee, J. H. Hwang, and S.-K. Lim. 2018. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Scientific Reports 8 (1):10852–10. doi: 10.1038/s41598-018-29264-2.
  • Kalendar, R. A., Muterko, M. Shamekora, and K. Zhambakin. 2017. In silicon PCR tools for a fast primer, probe, and advanced searching. In PCR: Methods and protocols, 1–31. New-York, Spring Nature.
  • Koo, I. 2018. Infectious diseases associated with eating sushi and sashimi. Accessed November 13, 2018. https://www.verywellhealth.com/diseases-associated-with-eating-sushi-1958814.
  • Krska, R., A. Becalski, E. Braekevelt, T. Koerner, X. Cao, R. Dabeka, S. Godefroy, B. Lau, J. Moisey, D. F. K. Rawn, et al. 2012. Challenges and trends in the determination of selected chemical contaminants and allergens in food. Analytical and Bioanalytical Chemistry 402 (1):139–62. doi: 10.1007/s00216-011-5237-3.
  • Laczay, P. 2014. Contaminants of biological origin, control of the chemical contamination of foods. In Food hygiene: food chain safety. General food hygiene, 102–17. Budapest: A/3 Printing and Publishing Ltd.
  • Lauby-Secretan, B., D. Loomis, Y. Grosse, F. E. Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, R. Baan, H. Mattock, and K. Straif. 2013. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncology 14 (4):287––8. doi: 10.1016/S1470-2045(13)70104-9.
  • Lech, T., and W. Turek. 2019. Application of TDA AAS to direct mercury determination in postmortem material in forensic toxicology examinations. Journal of Analytical Toxicology 43 (5):385–91. doi: 10.1093/jat/bky107.
  • Ledoux, M. 2011. Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. Journal of Chromatography A 1218 (8):1021–36. doi: 10.1016/j.chroma.2010.12.097.
  • Lee, S. Y., H. J. Chung, J. H. Shin, R. H. Dougherty, and D. H. Kang. 2006. Survival and growth of foodborne pathogens during cooking and storage of oriental style rice cakes. Journal of Food Protection 69 (12):3037–40. –doi: 10.4315/0362-028X-69.12.3037.
  • Lee, H.-m., S.-S. Park, M. S. Lim, H.-S. Lee, H.-J. Park, H. S. Hwang, S. Y. Park, D. H. Cho. 2013. Multiresidue Analysis of Pesticides in Agricultural Products by a Liquid Chromatography/Tandem Mass Spectrometry Based Method. Food Science and Biotechnology 22 (5):1205–16.
  • Lehel, J., A. Bartha, D. Dankó, K. Lányi, and P. Laczay. 2018. Heavy metals in seafood purchased from a fishery market in Hungary. Food Additives & Contaminants: Part B 11 (4):302–8. doi: 10.1080/19393210.2018.1505781.
  • Lehel, J., K. Lányi, and P. Laczay. 2017a. Food toxicological importance of marine and freshwater biotoxins. Part I: Live bivalves. Magyar Állatorvosok Lapja 139:225–34.
  • Lehel, J., K. Lányi, and P. Laczay. 2017b. Food toxicological importance of marine and freshwater biotoxins. Part II: Fish and fishery products. Magyar Állatorvosok Lapja 139:567–75.
  • Lehotay, S. J. 2007. Pesticide Residues in Food by Acetonitrile extraction and Partitioning with Magnesium Sulfate GC–MS and LC–MS/MS, AOAC Official Method 2007.01. Journal of AOAC International 90:485–520.
  • Leita, L., A. Margon, A. Pastrello, I. Arčon, M. Contin, D. Mosetti, and A. Kodre. 2009. Soil humic acids may favour the persistence of hexavalent chromium in soil. Environmental Pollution 157 (6):1862–6. doi: 10.1016/j.envpol.2009.01.020.
  • Leroy, J., M. Cornu, A. S. Deleplancque, S. Loridant, E. Dutoit, and B. Sendid. 2017. Sushi, ceviche and gnathostomiasis- A case report and review of imported infections. Travel Medicine and Infectious Disease 20:26–7. doi: 10.1016/j.tmaid.2017.10.010.
  • Leufroy, A., L. Noël, V. Dufailly, D. Beauchemin, and T. Guérin. 2011. Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: Method validation and occurrence data. Talanta 83 (3):770–9. doi: 10.1016/j.talanta.2010.10.050.
  • Lewis, R. J. 2006. Ciguatera: Australian perspectives on a global problem. Toxicon 48 (7):799–809. doi: 10.1016/j.toxicon.2006.07.019.
  • Lischka, A., C. J. Pook, K. S. R. Bolstad, J. L. Pannell, and H. E. Braid. 2019. Metal composition of arrow squid (Nototodarus sloanii [Gray 1849]) from the Chatham Rise, New Zealand: Implications for human consumption. Environmental Science and Pollution Research 26 (12):11975–87. doi: 10.1007/s11356-019-04510-w.
  • Liu, Q., F. Wei, W. Liu, S. Yang, and X. Zhang. 2008. Paragonimiasis: An important food-borne zoonosis in China. Trends in Parasitology 24 (7):318–23. doi: 10.1016/j.pt.2008.03.014.
  • Liu, Z., H. Zhang, M. Tao, Y. Shaobin, L. Wang, Y. Liu, D. Ma, and Z. He. 2010. Organochlorine pesticides in consumer fish and mollusks of Liaoning province, China: Distribution and human exposure implications. Archives of Environmental Contamination and Toxicology 59 (3):444–53. doi: 10.1007/s00244-010-9504-7.
  • Ljubojevic, D., N. Novakov, V. Djordjevic, V. Radosavljevic, M. Pelic, and M. Cirkovic. 2015. Potential parasitic hazards for humans in fish meat. Procedia Food Science 5:172–5. doi: 10.1016/j.profoo.2015.09.049.
  • Lozano-Bilbao, E., R. Viñé, G. Lozano, A. Hardisson, C. Rubio, D. González-Weller, E. Matos-Perdomo, and Á. J. Gutiérrez. 2019. Metal content in Mullus surmuletus in the Canary Islands (North-West African Atlantic). Environmental Science and Pollution Research 26 (20):21044–51. doi: 10.1007/s11356-019-05365-x.
  • Machado, S. C., M. Landin-Silva, P. P. Maia, S. Rath, and I. Martins. 2013. QuEChERS-HPLC-DAD method for sulphonamides in chicken breast. Brazilian Journal of Pharmaceutical Sciences 49 (1):155–66. doi: 10.1590/S1984-82502013000100017.
  • Maldonado-Simán, E., C. C. González-Ariceaga, R. Rodríguez-de Lara, and M. Fallas-López. 2018. Potential hazards and biosecurity aspects associated on food safety. Handbook of Food Bioengeneering 2:25–61.
  • Malek, M. A., M. Nakahara, and R. Nakamura. 2004. Uptake, retention and organ/tissue distribution of 137Cs by Japanese catfish (Silurus asotus Linnaeus). Journal of Environmental Radioactivity 77 (2):191–204. doi: 10.1016/j.jenvrad.2004.03.006.
  • Malik, N., A. Biswas, T. Qureshi, K. Borana, and R. Virha. 2010. Bioaccumulation of heavy metals in fish tissues of freshwater lake of Bhopal. Environmental Monitoring and Assessment 160 (1-4):267–76. doi: 10.1007/s10661-008-0693-8.
  • Maury-Brachet, R., S. Gentes, E. P. Dassié, A. Feurtet-Mazel, R. Vigouroux, V. Laperche, P. Gonzalez, V. Hanquiez, N. Mesmer-Dudons, G. Durrieu, et al. 2020. Mercury contamination levels in the bioindicator piscivorous fish Hoplias aïmara in French Guiana rivers: Mapping for risk assessment. Environmental Science and Pollution Research 27 (4):3624–36. doi: 10.1007/s11356-018-3983-x.
  • McGee, H. 2004. Fish and shellfish. In On food and cooking: the science and lore of the kitchen, 179–242. New-York: Scribner.
  • Microbiology Society. 2018. Food poisoning. [Article]. Accessed November 13, 2018. https://microbiologyonline.org/about-microbiology/microbes-and-food/food-poisoning.
  • Mizuno, T., and H. Kubo. 2013. Overview of active cesium contamination of freshwater fish in Fukushima and Eastern Japan. Scientific Reports 3 (1):1742. doi: 10.1038/srep01742.
  • Mooney, D., C. Coxon, K. G. Richards, L. Gill, P.-E. Mellander, and M. Danaher. 2019. Development and optimisation of a multiresidue method for the determination of 40 anthelmintic compounds in environmental water samples by solid phase extraction (SPE) with LC-MS. Molecules 24 (10):1978–22. doi: 10.3390/molecules24101978.
  • Nasiri, A., M. Amirahmadi, Z. Mousavi, S. Shoeibi, A. Khajeamiri, and F. Kobarfard. 2016. A Multi Residue GC-MS Method for Determination of 12 Pesticides in Cucumber. Iranian Journal of Pharmaceutical Research 15 (4):809–816.
  • Nearing, M. M., I. Koch, and K. J. Reime. 2014. Complementary arsenic speciation methods: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 99:150–62. doi: 10.1016/j.sab.2014.07.001.
  • New South Wales Food Authority. 2007. Food safety guidelines for the preparation and display of sushi. Newington, Australia: NSW Food Authority. Accessed November 13, 2018. http://www.foodauthority.nsw.gov.au/_Documents/retail/sushi_preperation_display_guidelines.pdf.
  • Nielsen, S. P., P. Bengtson, R. Bojanowsky, P. Hagel, J. Herrmann, E. Ilus, E. Jakobson, S. Motiejunas, Y. Panteleev, A. Skujina, et al. 1999. The radiological exposure of man from radioactivity in the Baltic Sea. Science of the Total Environment 237-238:133–41. doi: 10.1016/S0048-9697(99)00130-8.
  • NRA (National Restaurant Association). 2017. Manage my restaurant. [website]. Accessed July 2, 2018. https://www.restaurant.org/Manage-My-Restaurant/Food-Nutrition/Food-Safety/A-high-price-to-pay-Costs-of-foodborne-illness
  • O'Connor, D., D. Hou, Y. S. Ok, J. Mulder, L. Duan, Q. Wu, S. Wang, F. M. G. Tack, and J. Rinklebe. 2019. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International 126:747–61. doi: 10.1016/j.envint.2019.03.019.
  • Papich, M. G. 2016. Saunders handbook of veterinary drugs small and large animals, 4th ed. St. Louis. Elsevier
  • Perryman, E. S., I. Lapong, A. Mustafa, R. Sabang, and A. M. Rimmer. 2017. Potential of metal contamination to affect the food safety of seaweed (Caulerpa spp.) cultured in coastal ponds in Sulawesi. Aquaculture Reports 5:27––33. doi: 10.1016/j.aqrep.2016.12.002.
  • Pimentel, D. 2009. Environmental and economic costs of the application of pesticides primarily in the United States. Environment Development and Sustainability 7 (2):89–111.
  • Pimentel, D., and M. Burgess. 2013. Environmental and economic costs of the application of pesticides primarily in the United States. Integrated Pest Management Reviews 3:47–71.
  • Piskorska-Pliszczynska, J., S. Maszewski, M. Warenik-Bany, S. Mikolajczyk, and L. Goraj. 2012. Survey of persistent organochlorine contaminants (PCDD, PCDF, and PCB) in fish collected from the Polish Baltic fishing areas. The Scientific World Journal 2012:1–7. doi: 10.1100/2012/973292.
  • Pizarro, I., M. Gómez, C. Cámara, and M. A. Palacios. 2003. Arsenic speciation in environmental and biological samples Extraction and stability studies. Analytica Chimica Acta 495 (1-2):85–98. doi: 10.1016/j.aca.2003.08.009.
  • Polak-Juszczak, L. 2018. Distribution of organic and inorganic mercury in the tissues and organs of fish from the southern Baltic Sea. Environmental Science and Pollution Research 25 (34):34181–9. doi: 10.1007/s11356-018-3336-9.
  • Quesada, S. P., J. A. R. Paschoal, and F. G. R. Reyes. 2013. Considerations on the aquaculture development and on the use of veterinary drugs: Special issue for fluoroquinolones-A review. Journal of Food Science 78 (9):R1321–333. doi: 10.1111/1750-3841.12222.
  • Rahmanikhah, Z., A. Esmaili-Sari, and N. Bahramifar. 2020. Total mercury and methylmercury concentrations in native and invasive fish species in Shadegan International Wetland, Iran, and health risk assessment. Environmental Science and Pollution Research 27 (7):6765–73. doi: 10.1007/s11356-019-07218-z.
  • Rajapaksha, P., A. Elbourne, S. Gangadoo, R. Brown, D. Cozzolino, and J. Chapman. 2019. A review of methods for the detection of pathogenic microorganisms. The Analyst 144 (2):396–411. doi: 10.1039/C8AN01488D.
  • Rajeshkumar, S., and X. Li. 2018. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports 5:288–95. doi: 10.1016/j.toxrep.2018.01.007.
  • Ruelas-Inzunza, J., Z. Šlejkovec, D. Mazej, V. Fajon, M. Horvat, and M. Ramos-Osuna. 2018. Bioaccumulation of As, Hg, and Se in tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific: Tissue distribution and As speciation. Environmental Science and Pollution Research 25 (20):19499–509. –doi: 10.1007/s11356-018-2166-0.
  • Rysavy, N. M., K. Maaetoft-Udsen, and H. Turner. 2013. Dioxins: Diagnostic and prognostic challenges arising from complex mechanisms. Journal of Applied Toxicology 33 (1):1–8. doi: 10.1002/jat.2759.
  • Scogging, A. 1998. Scombrotoxic (histamine) fish poisoning in the United Kingdom: 1987 to 1996. Communicable Disease and Public Health 1:204–5.
  • Sea-Liang, N., A. Sereemaspun, K. Patarakul, J. Gaywee, W. Rodkvamtook, N. Srisawat, S. Wacharaplusadee, and T. Hemachudha. 2019. Development of multiplex PCR for neglected infectious diseases. PLOS Neglected Tropical Diseases 13 (7):e0007440. doi: 10.1371/journal.pntd.0007440.
  • Senila, M., E. Covaci, O. Cadar, M. Ponta, M. Frentiu, and T. Frentiu. 2018. Mercury speciation in fish tissue by eco-scale thermal decomposition atomic absorption spectrometry: Method validation and risk exposure to methylmercury. Chemical Papers 72 (2):441–8. doi: 10.1007/s11696-017-0296-3.
  • Shankar, S., B. P. Bp, M. Prabhu, B. H. Bh, C. Chandan, S. S, R. Ranjith, D. Shivakumar, and V. V. 2010. Rapid methods for detection of veterinary drug residues in meat. Veterinary World 3 (5):241–6. doi: 10.5455/vetworld.2010.241-246.
  • Siow, W. T., E. S.-C. Koay, C. K. Lee, H. K. Lee, V. Ong, W. J. Ngerng, H. F. Lim, A. Tan, J. W.-T. Tang, and J. Phua. 2016. The use of Polymerase Chain Reaction Amplification for the detection of viruses and bacteria in severe community-acquired pneumonia. Respiration 92 (5):286–94. doi: 10.1159/000448555.
  • Smart, N. A. 2003. Fungicides. In Encyclopedia of food sciences and nutrition, 2nd ed. 2832–42. Baltimore. USA: Academic Press.
  • Spanopoulos-Zarco, P., J. R. Ruelas-Inzunza, M. M. Meza-Montenegro, H. Bojórquez-Leyva, and F. Páez-Osuna. 2019. Distribution and health risk assessment of Cd and Pb in two marine fishes (Haemulopsis axillaris and Diapterus peruvianus) from the Eastern Pacific. Environmental Science and Pollution Research 26 (17):17450–6. –doi: 10.1007/s11356-019-05136-8.
  • Štajnbaher, D., L. Zupaňcič-Kralj. 2003. Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A 1015:185–98.
  • Stoeppler, M. 2004. Arsenic. In Elements and their compounds in the environment: Occurrence, analysis and biological relevance, 2nd edition, Vol. 3: Nonmetals, Particular Aspects, 1321–64. Weinheim: Wiley-VCH
  • Stone, C. B., and J. B. Mahony. 2014. Molecular detection of bacterial and viral pathogens–Where do we go from here? Clinical Microbiology 3:1–7.
  • Tanchou, V. 2014. Review of methods for the rapid identification of pathogens in water samples. European Commission Joint Research Centre. JRC92395. European Union, Luxembourg: Publications Office of the European Union.
  • Taylor, V. F., B. P. Jackson, and C. Y. Chen. 2008. Mercury speciation and total trace element determination of low-biomass biological samples. Analytical and Bioanalytical Chemistry 392 (7-8):1283–90. doi: 10.1007/s00216-008-2403-3.
  • Teranishi, H., and K. Ouch. 2014. Detection of bacteria, fungi, and viruses by a real-timePCR assay using universal primers and probes from blood in patients with febrile neutropenia. Kawasaki Medical Journal 40 (1):1–11.
  • Torres, D. P., M. B. Martins-Teixeira, E. F. Silva, and H. M. Queiroz. 2012. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS). Food Additives & Contaminants: Part A 29 (4):625–32. –doi: 10.1080/19440049.2011.642310.
  • Uekusa, Y., S. Takatsuki, T. Tsutsumi, H. Akiyama, R. Matsuda, R. Teshima, A. Hachisuka, and T. Watanabe. 2017. Determination of polychlorinated biphenyls in marine fish obtained from tsunami-stricken areas of Japan. PLoS ONE 12 (4):e0174961. doi: 10.1371/journal.pone.0174961.
  • Urkude, R., S. Kochhar, and V. Dhurvey. 2015. QuEChERS method: A modern technique for analysis of pesticide in food. International Journal of Researches in Social Science and Information Studies I:142–47.
  • Varol, M., G. K. Kaya, and M. R. Sünbül. 2019. Evaluation of health risks from exposure to arsenic and heavy metals through consumption of ten fish species. Environmental Science and Pollution Research 26 (32):33311–20. doi: 10.1007/s11356-019-06450-x.
  • Vega-Sánchez, B., S. Ortega-García, J. Ruelas-Inzunza, M. Frías-Espericueta, O. Escobar-Sánchez, and M. Jara-Marini. 2020. Selenium and mercury in dolphinfish (Coryphaena hippurus) from the Gulf of California: Inter-annual variations and selenium health benefit value. Environmental Science and Pollution Research 27 (2):2311–8. doi: 10.1007/s11356-019-06795-3.
  • Villar-Pulido, M., B. Gilbert-López, J. F. García-Reyes, N. R. Martos, and A. Molina-Díaz. 2011. Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry. Talanta 85 (3):1419–27. doi: 10.1016/j.talanta.2011.06.036.
  • Vuylsteke, P., C. Bertrand, G. E. G. Verhoef, and P. Vandenberghe. 2004. Case of megaloblastic anaemia caused by intestinal taeniasis. Annals of Hematology 83 (7):487–8. doi: 10.1007/s00277-003-0839-2.
  • Wang, Z., J. Zuo, J. Gong, J. Hu, W. Jiang, R. Mi, Y. Huang, Z. Chen, V. Phouthapane, K. Qi, et al. 2019. Development of a multiplex PCR assay for the simultaneous and rapid detection of six pathogenic bacteria in poultry. AMB Express 9 (1):185–11. doi: 10.1186/s13568-019-0908-0.
  • Wen, Y., Y. Wang, and Y. Q. Feng. 2006. Simultaneous residue monitoring of four tetracycline antibiotics in fish muscle by in-tube solid-phase microextraction coupled with high performance liquid chromatography. Talanta 70 (1):153–9. doi: 10.1016/j.talanta.2005.11.049.
  • Wilkowska, A., and M. Biziuk. 2011. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry 125:803–12.
  • World Health Organization (WHO). 2002. Food-borne trematode infections in Asia. Joint WHO/FAO Workshop on Foodborne Trematode Infections in Asia, 1–58.
  • Yasumoto, T. 2001. The chemistry and biological function of natural marine toxins. The Chemical Record 1 (3):228–42. doi: 10.1002/tcr.1010.
  • Yasunari, T. J., A. Stohl, R. S. Hayano, J. F. Burkhart, S. Eckhardt, and T. Yasunari. 2011. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of USA 108 (49):19530–448. doi: 10.1073/pnas.1112058108.
  • Yo, H., S. G. Park, G. Y. Park, S. M. Choi, and M. Y. Kim. 2010. Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea. Food Additives and Contaminants, Part B: Surveillance 3 (1):7–13. doi: 10.1080/19440040903532079.
  • Yoshii, Y., K. Shimizu, M. Morozumi, N. Chiba, K. Ubukata, H. Uruga, S. Hanada, H. Wakui, S. Minagawa, H. Hara, et al. 2017. Detection of pathogens by real-time PCR in adult patients with acute exacerbation of bronchial asthma. BMC Pulmonary Medicine 17 (1):150. doi: 10.1186/s12890-017-0494-3.
  • Yu, H., H. Mun, and Y.-M. Hu. 2012. Determination of fluoroquinolones, sulfonamides, and tetracyclines multiresidues simultaneously in porcine tissue by MSPD and HPLC–DAD. Journal of Pharmaceutical Analysis 2 (1):76–81. doi: 10.1016/j.jpha.2011.09.007.
  • Yusà, V., T. Suelves, L. Ruiz-Atienza, M. Cervera, V. Benedito, and A. Pastor. 2008. Monitoring programme on cadmium, lead and mercury in fish and seafood from Valencia, Spain: Levels and estimated weekly intake. Food Additives and Contaminants: Part B 1 (1):22–31. doi: 10.1080/19393210802236935.
  • Zalewska, T., and M. Suplińska. 2013. Fish pollution with anthropogenic 137Cs in the southern Baltic Sea. Chemosphere 90 (6):1760–6. doi: 10.1016/j.chemosphere.2012.07.012.
  • Zauli, D. A. G. 2019. PCR and infectious diseases, synthetic biology - New interdisciplinary science. In: IntechOpen doi: 10.5772/intechopen.85630.Accessed March 23, 2020. https://www.intechopen.com/books/synthetic-biology-new-interdisciplinary-science/pcr-and-infectious-diseases

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.