941
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Lignanamides: sources, biosynthesis and potential health benefits – a minireview

, ORCID Icon, & ORCID Icon

6. References

  • Bradley, J. R. 2008. TNF-mediated inflammatory disease. The Journal of Pathology 214 (2):149–60. doi: 10.1002/path.2287.
  • Cardullo, N., L. Pulvirenti, C. Spatafora, N. Musso, V. Barresi, D. F. Condorelli, and C. Tringali. 2016. Dihydrobenzofuran neolignanamides: Laccase-mediated biomimetic synthesis and antiproliferative activity. Journal of Natural Products 79 (8):2122–34. doi: 10.1021/acs.jnatprod.6b00577.
  • Chaves, M. H., and N. F. Roque. 1997. Amides and lignanamides from Porcelia macrocarpa. Phytochemistry 46 (5):879–81. doi: 10.1016/S0031-9422(97)00364-6.
  • Chen, T., J. Hao, J. He, J. Zhang, Y. Li, R. Liu, and L. Li. 2013. Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells. Food Chemistry 138 (2-3):1034–41. doi: 10.1016/j.foodchem.2012.11.102.
  • Chen, T., J. He, J. Zhang, X. Li, H. Zhang, J. Hao, and L. Li. 2012. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chemistry 134 (2):1030–7. doi: 10.1016/j.foodchem.2012.03.009.
  • Chen, F., X. Huang, Q. Liang, Y. Huang, T. Lan, and G. Zhou. 2019. Three new lignanamides from the root of Lycium chinense with anti-inflammatory activity. Natural Product Research 33 (23):3378–82. doi: 10.1080/14786419.2018.1478830.
  • Chen, H., Y. Li, Y. Sun, J. Gong, K. Du, Y. Zhang, C. Su, Q. Han, X. Zheng, and W. Feng. 2017. Lignanamides with potent antihyperlipidemic activities from the root bark of Lycium chinense. Fitoterapia 122:119–25. doi: 10.1016/j.fitote.2017.09.004.
  • Davin, L. B., H. B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin, S. Sarkanen, and N. G. Lewis. 1997. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275 (5298):362–6. doi: 10.1126/science.275.5298.362.
  • DellaGreca, M., L. Previtera, R. Purcaro, and A. Zarrelli. 2006. Cinnamic acid amides and lignanamides from Aptenia cordifolia. Tetrahedron 62 (12):2877–82. doi: 10.1016/j.tet.2006.01.019.
  • Facchini, P. J., J. Hagel, and K. G. Zulak. 2002. Hydroxycinnamic acid amide metabolism: Physiology and biochemistry. Canadian Journal of Botany 80 (6):577–89. doi: 10.1139/b02-065.
  • Flores-Sanchez, I. J., and R. Verpoorte. 2008. Secondary metabolism in cannabis. Phytochemistry Reviews 7 (3):615–39. doi: 10.1007/s11101-008-9094-4.
  • Gao, K., D. Ma, Y. Cheng, X. Tian, Y. Lu, X. Du, H. Tang, and J. Chen. 2015. Three new dimers and two monomers of phenolic amides from the fruits of Lycium barbarum and their antioxidant activities. Journal of Agricultural and Food Chemistry 63 (4):1067–75. doi: 10.1021/jf5049222.
  • Gasper, R., I. Effenberger, P. Kolesinski, B. Terlecka, E. Hofmann, and A. Schaller. 2016. Dirigent protein mode of action revealed by the crystal structure of AtDIR6. Plant Physiology 172 (4):2165–75. doi: 10.1104/pp.16.01281.
  • Ge, F., C. P. Tang, and Y. Ye. 2008. Lignanamides and sesquiterpenoids from stems of Mitrephora thorelii. Helvetica Chimica Acta 91 (6):1023–30. doi: 10.1002/hlca.200890109.
  • Guntern, A., J. R. Ioset, E. F. Queiroz, P. Sándor, C. M. Foggin, and K. Hostettman. 2003. Heliotropamide, a novel oxopyrrolidine-3-carboxamide from Heliotropium ovalifolium. Journal of Natural Products 66 (12):1550–3. doi: 10.1021/np0302495.
  • Henrici, A., M. Kaloga, and E. Eich. 1994. Jacpaniculines, the first lignanamide alkaloids from the Convolvulaceae. Phytochemistry 37 (6):1637–40. doi: 10.1016/S0031-9422(00)89582-5.
  • Huang, W., C. Li, Y. Wang, X. Yi, and X. He. 2017. Anti-inflammatory lignanamides and monoindoles from Alocasia macrorrhiza. Fitoterapia 117:126–32. doi: 10.1016/j.fitote.2017.01.014.
  • Khatkar, A., and K. K. Sharma. 2019. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries. Critical Reviews in Food Science and Nutrition :1–21. doi: 10.1080/10408398.2019.1653822.
  • Kim, K. H., E. Moon, S. Y. Kim, and K. R. Lee. 2010. Lignans from the tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogenic activity. Journal of Agricultural and Food Chemistry 58 (8):4779–85. doi: 10.1021/jf100323q.
  • King, R. R., and L. A. Calhoun. 2005. Characterization of crosslinked hydroxycinnamic acid amides isolated from potato common scab lesions. Phytochemistry 66:2468–73. doi: 10.1016/j.phytochem.2005.07.014.
  • Lajide, L., P. Escoubas, and J. Mizutani. 1995. Termite antifeedant activity in Xylopia aethiopica. Phytochemistry 40 (4):1105–12. doi: 10.1016/0031-9422(95)92653-P.
  • Lesma, G., R. Consonni, V. Gambaro, C. Remuzzi, G. Roda, A. Silvani, V. Vece, and G. L. Visconti. 2014. Cannabinoid-free Cannabis sativa L. grown in the Po valley: Evaluation of fatty acid profile, antioxidant capacity and metabolic content. Natural Product Research 28 (21):1801–7. doi: 10.1080/14786419.2014.926354.
  • Li, W., Q. Liu, H. Liu, P. Chen, X. Yang, and Y. Liu. 2015. Regioselective oxidation approaches to concise synthesis of (+/-)-cannabisin D. Chinese Journal of Chemistry 33 (7):717–22. doi: 10.1002/cjoc.201500054.
  • Li, D., W. Li, Q. Wang, Z. Yang, and Z. Hou. 2010. Concise synthesis of Cannabisin G. Bioorganic & Medicinal Chemistry Letters 20 (17):5095–8. doi: 10.1016/j.bmcl.2010.07.028.
  • Li, J., Q. Shi, Q. Xiong, J. K. Prasain, Y. Tezuka, T. Hareyama, Z. Wang, K. Tanaka, T. Namba, and S. Kadota. 1998. Tribulusamide A and B, new hepatoprotective lignanamides from the fruits of Tribulus terrestris: Indications of Cytoprotective Activity in Murine Hepatocyte Culture. Planta Medica 64 (07):628–31. doi: 10.1055/s-2006-957535.
  • Li, C., X. Song, W. Zhao, G. Yao, B. Lin, X. Huang, L. Li, and S. Song. 2019. Characterization of enantiomeric lignanamides from Solanum nigrum L. and their neuroprotective effects against MPP+-induced SH-SY5Y cells injury. Phytochemistry 161:163–71. doi: 10.1016/j.phytochem.2019.01.001.
  • Li, Y., A. Tong, and J. Huang. 2012. Two new norlignans and a new lignanamide from Peperomia tetraphylla. Chemistry & Biodiversity 9 (4):769–76. doi: 10.1002/cbdv.201100138.
  • Lu, H., X. Weng, B. Zhu, H. Li, Y. Yin, Y. Zhang, D. W. Haas, and Y. Tang. 2003. Major outbreak of toxic shock-like syndrome caused by Streptococcus mitis. Journal of Clinical Microbiology 41 (7):3051–5. doi: 10.1128/JCM.41.7.3051–3055.2003.
  • Luo, Q., X. Yan, L. Bobrovskaya, M. Ji, H. Yuan, H. Lou, and P. Fan. 2017. Anti-neuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Molecular and Cellular Biochemistry 428 (1–2):129–37. doi: 10.1007/s11010-016-2923-7.
  • Ma, C., W. K. Liu, and C. Che. 2002. Lignanamides and nonalkaloidal components of Hyoscyamus niger seeds. Journal of Natural Products 65 (2):206–9. doi: 10.1021/np010073b.
  • Magoulas, G. E., A. Rigopoulos, Z. Piperigkou, C. Gialeli, N. K. Karamanos, P. G. Takis, A. N. Troganis, A. Chrissanthopoulos, G. Maroulis, and D. Papaioannou. 2016. Synthesis and antiproliferative activity of two diastereomeric lignan amides serving as dimeric caffeic acid-l-DOPA hybrids. Bioorganic Chemistry 66:132–44. doi: 10.1016/j.bioorg.2016.04.003.
  • Mattila, P. H., J. Pihlava, J. Hellström, M. Nurmi, M. Eurola, S. Mäkinen, T. Jalava, and A. Pihlanto. 2018. Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Quality & Safety 2:213–9. doi: 10.1093/fqsafe/fyy021.
  • Meerungrueang, W., and P. Panichayupakaranant. 2016. A new antibacterial tetrahydronaphthalene lignanamide, foveolatamide, from the stems of Ficus foveolata. Natural Product Communications 11 (1):1934578X1601100. 91-94. doi: 10.1177/127.
  • Moss, G. P. 2000. Nomenclature of lignans and neolignans (IUPAC Recommendations 2000). Pure and Applied Chemistry 72 (8):1493–523. doi: 10.1351/pac200072081493.
  • Okazaki, Y., A. Ishihara, T. Nishioka, and H. Iwamura. 2004. Identification of a dehydrodimer of avenanthramide phytoalexin in oats. Tetrahedron 60:4765–71. doi: 10.1016/j.tet.2004.04.008.
  • Pickel, B., and A. Schaller. 2013. Dirigent proteins: Molecular characteristics and potential biotechnological applications. Applied Microbiology and Biotechnology 97 (19):8427–38. doi: 10.1007/s00253-013-5167-4.
  • Pojic, M., A. Misan, M. Sakac, T. D. Hadnadev, B. Saric, I. Milovanovic, and M. Hadnadev. 2014. Characterization of byproducts originating from hemp oil processing. Journal of Agricultural and Food Chemistry 62:12436–42. doi: 10.1021/jf5044426.
  • Postal, M., and S. Appenzeller. 2015. The importance of cytokines and autoantibodies in depression. Autoimmunity Reviews 14 (1):30–5. doi: 10.1016/j.autrev.2014.09.001.
  • Qin, N. B., C. Jia, J. Xu, D. Li, F. Xu, J. Bai, Z. Li, and H. Hua. 2017. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities. Fitoterapia 119:83–9. doi: 10.1016/j.fitote.2017.04.008.
  • Sakakibara, I., Y. Ikeya, K. Hayashi, and H. Mitsuhashi. 1992. Three phenyldihydronaphthalene lignanamides from fruits of Cannabis sativa. Phytochemistry 31 (9):3219–23. doi: 10.1016/0031-9422(92)83479-I.
  • Sakakibara, I., Y. Ikeya, K. Hayashi, M. Okada, and M. Maruno. 1995. Three acyclic bis-phenylpropane lignanamides from fruits of Cannabis sativa. Phytochemistry 38 (4):1003–7. doi: 10.1016/0031-9422(94)00773-M.
  • Sakakibara, I., T. Katsuhara, Y. Ikeya, K. Hayashi, and H. Mitsuhashi. 1991. Cannabisin A, an arylphenylpropane lignanamide from fruits of Cannabis sativa. Phytochemistry 30 (9):3013–6. doi: 10.1016/S0031-9422(00)98242-6.
  • Sakushima, A., M. Coşkun, T. Maoka, and S. Nishibe. 1996. Dihydrobenzofuran lignans from Boreava orientalis. Phytochemistry 43 (6):1349–54. doi: 10.1016/S0031-9422(96)00497-9.
  • Seca, A. M. L., A. M. S. Silva, A. J. D. Silvestre, J. A. S. Cavaleiro, F. M. J. Domingues, and C. Pascoal-Neto. 2001. Lignanamides and other phenolic constituents from the bark of kenaf (Hibiscus cannabinus). Phytochemistry 58 (8):1219–23. doi: 10.1016/S0031-9422(01)00311-9.
  • Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – a review. Journal of Functional Foods 18:820–97. doi: 10.1016/j.jff.2015.06.018.
  • Stoessl, A. 1967. The antifungal factors in barley. IV. Isolation, structure, and synthesis of the hordatines. Canadian Journal of Chemistry 45 (15):1745–60. doi: 10.1139/v67-283.
  • Sun, J., Y. Gu, X. Su, M. Li, H. Huo, J. Zhang, K. Zeng, Q. Zhang, Y. Zhao, J. Li, et al. 2014. Anti-inflammatory lignanamides from the roots of Solanum melongena L. Fitoterapia 98:110–6. doi: 10.1016/j.fitote.2014.07.012.
  • Sun, J., Y. Song, J. Zhang, Z. Huang, H. Huo, J. Zheng, Q. Zhang, Y. Zhao, J. Li, and P. Tu. 2015. Characterization and quantitative analysis of phenylpropanoid amides in eggplant (Solanum melongena L.) by high performance liquid chromatography coupled with diode array detection and hybrid ion trap time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry 63 (13):3426–36. doi: 10.1021/acs.jafc.5b00023.
  • Wang, S., Q. Luo, and P. Fan. 2019. Cannabisin F from hemp (Cannabis sativa) seed suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia as sirt1 modulator. International Journal of Molecular Sciences 20 (3):507. doi: 10.3390/ijms20030507.
  • Wang, L., Y. Wang, S. Gao, L. Zhu, F. Wang, H. Li, and L. Chen. 2017. Phenolic amides with anti-parkinson’s disease (PD) effects from Nicandra physaloides. Journal of Functional Foods 31:229–36. doi: 10.1016/j.jff.2017.01.045.
  • Wu, Y., C. Zheng, X. Deng, and L. Qin. 2013. Two new bis-alkaloids from the aerial part of Piper flaviflorum. Helvetica Chimica Acta 96 (5):951–5. doi: 10.1002/hlca.201200297.
  • Xia, Y., Y. Guo, and Y. Wen. 2010. The total synthesis of cannabisin G. Journal of the Serbian Chemical Society 75 (12):1617–23. doi: 10.2298/JSC091016128X.
  • Xia, Y., J. Xia, and C. Chai. 2014. Total synthesis of cannabisin F. Chemical Papers 68 (3):384–91. doi: 10.2478/s11696-013-0449-y.
  • Xia, Y., C. Li, H. Zhang, J. Lin, and C. Chai. 2015. Total synthesis of a lignanamide from Aptenia cordifolia. Journal of Chemical Research 39 (9):535–8. doi: 10.3184/174751915X14402591178530.
  • Xia, Y., H. Zhang, C. Li, G. Dong, and Z. Liu. 2015. Total synthesis of cannabisin B. Journal of Chemical Research 39 (10):606–8. doi: 10.3184/174751915X14425727961796.
  • Yan, X., J. Tang, C. dos Santos Passos, A. Nurisso, C. A. Simoes-Pires, M. Ji, H. Lou, and P. Fan. 2015. Characterization of Lignanamides from Hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. Journal of Agricultural and Food Chemistry 63 (49):10611–9. doi: 10.1021/acs.jafc.5b05282.
  • Yang, B.-Y., X. Yin, Y. Liu, H.-L. Ye, M.-L. Zhang, W. Guan, and H.-X. Kuang. 2019. Bioassay-guided isolation of lignanamides with potential anti-inflammatory effect from the roots of Solanum melongena L. Phytochemistry Letters 30:160–4. doi: 10.1016/j.phytol.2019.01.020.
  • Yoshihara, T., K. Yamaguchi, S. Takamatsu, and S. Sakamura. 1981. A new lignan Amide, grossamide, from bell pepper (Capsicum annuum var. grossurri). Agricultural and Biological Chemistry 45 (11):2593–8. doi: 10.1080/00021369.1981.10864909.
  • Younai, A., G. F. Chin, and J. T. Shaw. 2010. Diastereoselective synthesis of (±)-heliotropamide by a one-pot, four-component reaction. The Journal of Organic Chemistry 75 (23):8333–6. doi: 10.1021/jo1019317.
  • Yu, M., and P. J. Facchini. 1999. Purification, characterization, and immunolocalization of hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase from opium poppy. Planta 209:3–44. doi: 10.1007/s004250050604.
  • Zhang, J., S. Guan, R. Feng, Y. Wang, Z. Wu, Y. Zhang, X. Chen, K. Bi, and D. Guo. 2013. Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. Journal of Natural Products 76 (1):51–8. doi: 10.1021/np300655y.
  • Zhang, B., R. Huang, J. Hua, H. Liang, Y. Pan, L. Dai, D. Liang, and H. Wang. 2016. Antitumor lignanamides from the aerial parts of Corydalis saxicola. Phytomedicine 23 (13):1599–609. doi: 10.1016/j.phymed.2016.09.006.
  • Zhang, W., J. Luo, and L. Kong. 2012. Phytotoxicity of lignanamides isolated from the seeds of Hyoscyamus niger. Journal of Agricultural and Food Chemistry 60 (7):1682–7. doi: 10.1021/jf2046784.
  • Zhang, X., N. Wei, J. Huang, Y. Tan, and D. Jin. 2012. A new feruloyl amide derivative from the fruits of Tribulus terrestris. Natural Product Research 26 (20):1922–5. doi: 10.1080/14786419.2011.643886.
  • Zheng, X. H., Y. P. Huang, Q. P. Liang, W. Xu, T. Lan, and G. X. Zhou. 2018. A new lignanamide from the root of Lycium yunnanense kuang and its antioxidant activity. Molecules 23 (4):770. doi: 10.3390/molecules23040770.
  • Zhou, Y., S. Wang, J. Ji, H. Lou, and P. Fan. 2018. Hemp (Cannabis sativa L.) seed phenylpropionamides composition and effects on memory dysfunction and biomarkers of neuroinflammation induced by lipopolysaccharide in mice. ACS Omega. 3 (11):15988–95. doi: 10.1021/acsomega.8b02250.
  • Zhou, Y., S. Wang, H. Lou, and P. Fan. 2018. Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochemistry Letters 23:57–61. doi: 10.1016/j.phytol.2017.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.