1,661
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems

, ORCID Icon, &

References

  • Adams, A., and K. D. Thompson. 2011. Development of diagnostics for aquaculture: Challenges and opportunities. Aquaculture Research 42 (s1):93–102. doi: 10.1111/j.1365-2109.2010.02663.x.
  • Albuquerque, P., N. Ribeiro, A. Almeida, I. Panschin, A. Porfirio, M. Vales, F. Diniz, H. Madeira, and F. Tavares. 2017. Application of a dot blot hybridization platform to assess Streptococcus uberis population structure in dairy herds. Frontiers in Microbiology 8:54.
  • Amiri, M., A. Bezaatpour, H. Jafari, R. Boukherroub, and S. Szunerits. 2018. Electrochemical methodologies for the detection of pathogens. ACS Sensors 3 (6):1069–86.
  • Anupama, K. P., A. Chakraborty, I. Karunasagar, I. Karunasagar, and B. Maiti. 2019. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: Recent developments and improvements. Expert Review of Molecular Diagnostics 19 (3):229–39.
  • Aruety, T., T. Brunner, Z. Ronen, A. Gross, K. Sowers, and D. Zilberg. 2016. Decreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS). Aquaculture 450:335–41. doi: 10.1016/j.aquaculture.2015.08.002.
  • Assis, G. B. N., F. L. Pereira, A. U. Zegarra, G. C. Tavares, C. A. Leal, and H. C. P. Figueiredo. 2017. Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Frontiers in Microbiology 8:1492.
  • Augustine, R., A. R. Abraham, N. Kalarikkal, and S. Thomas. 2016. Monitoring and separation of food-borne pathogens using magnetic nanoparticles. In Novel approaches of nanotechnology in food, ed. A. Grumezescu, vol. 1, 271–312. Oxford: Academic Press.
  • Badiola, M., D. Mendiola, and J. Bostock. 2012. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering 51:26–35. doi: 10.1016/j.aquaeng.2012.07.004.
  • Bakke, I., A. L. Åm, J. Kolarevic, T. Ytrestøyl, O. Vadstein, K. J. K. Attramadal, and B. F. Terjesen. 2017. Microbial community dynamics in semi-commercial RAS for production of Atlantic salmon post-smolts at different salinities. Aquacultural Engineering 78:42–49. doi: 10.1016/j.aquaeng.2016.10.002.
  • Ballyaya, A. P., M. Mondal, S. M. Kalkuli, and S. B. P. Purayil. 2018. Development of a simple and rapid monoclonal antibody-based flow through immunogold assay (FIA) for detection of Aeromonas hydrophila. Aquaculture International 26 (5):1171–86. doi: 10.1007/s10499-018-0278-7.
  • Bauer, J., F. Teitge, L. Neffe, M. Adamek, A. Jung, C. Peppler, D. Steinhagen, and V. Jung-Schroers. 2018. Recommendations for identifying pathogenic Vibrio spp. as part of disease surveillance programmes in recirculating aquaculture systems for Pacific white shrimps (Litopenaeus vannamei). Journal of Fish Diseases 41 (12):1877–97.
  • Bentzon-Tilia, M., E. C. Sonnenschein, and L. Gram. 2016. Monitoring and managing microbes in aquaculture - Towards a sustainable industry. Microbial Biotechnology 9 (5):576–84.
  • Bertão, A. R., N. Pires, A. M. Fonseca, O. S. G. P. Soares, M. F. R. Pereira, T. Dong, and I. C. Neves. 2018. Modification of microfluidic paper-based devices with dye nanomaterials obtained by encapsulation of compounds in Y and ZSM5 zeolites. Sensors and Actuators B: Chemical 261:66–74. doi: 10.1016/j.snb.2018.01.071.
  • Besser, J., H. A. Carleton, P. Gerner-Smidt, R. L. Lindsey, and E. Trees. 2018. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection 24 (4):335–41.
  • Bhardwaj, J., S. Devarakonda, S. Kumar, and J. Jang. 2017. Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors and Actuators B: Chemical 253:115–23. doi: 10.1016/j.snb.2017.06.108.
  • Bian, X., F. Jing, G. Li, X. Fan, C. Jia, H. Zhou, Q. Jin, and J. Zhao. 2015. A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes. Biosensors & Bioelectronics 74:770–7.
  • Blancheton, J. P., K. J. K. Attramadal, L. Michaud, E. Roque D’orbcastel, and O. Vadstein. 2013. Insight into bacterial population in aquaculture systems and its implication. Aquacultural Engineering 53:30–39. doi: 10.1016/j.aquaeng.2012.11.009.
  • Böhme, K., I. C. Fernández-No, J. Barros-Velázquez, J. M. Gallardo, P. Calo-Mata, and B. Cañas. 2010. Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. Journal of Proteome Research 9 (6):3169–83.
  • Bregnballe, J. 2015. A guide to recirculation aquaculture—an introduction to the new environmentally friendly and highly productive closed fish farming systems. Report No. I4626E, Eurofish/FAO Subregional Office for Central and Eastern Europe, Copenhagen, Denmark.
  • Brummett, R. E., A. Alvial, F. Kibenge, J. Forster, J. M. Burgos, R. Ibarra, and S. St-Hilaire. 2014. Reducing disease risk in aquaculture. Report No. 88257-GLB, World Bank Group, Washington, DC.
  • Cai, W., and C. R. Arias. 2017. Biofilm formation on aquaculture substrates by selected bacterial fish pathogens. Journal of Aquatic Animal Health 29 (2):95–104.
  • Caipang, C. M. A., M. F. S. Muegue, and J. S. Geduspan. 2015. Utilization of the loop-mediated isothermal amplification (LAMP) for the detection of pathogens in shrimp and fish aquaculture in the Philippines. In Biotechnological advances in shrimp health management in the Philippines, ed. C. M. A. Caipang, M. B. I. Bacano-Maningas, and F. F. Fagutao, 149–63. Kerala: Research Signpost.
  • Castro, N., A. E. Toranzo, J. L. Barja, S. Núñez, and B. Magariños. 2006. Characterization of Edwardsiella tarda strains isolated from turbot, Psetta maxima (L.). Journal of Fish Diseases 29 (9):541–7.
  • Chatterjee, S., and S. Haldar. 2012. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. Journal of Marine Science: Research and Development S1:002.
  • Chen, P.-H C., S.-Y. Ho, P.-L. Chen, T.-C. Hung, A.-J. Liang, T.-F. Kuo, H.-C. Huang, and T.-S A. Wang. 2017. Selective targeting of vibrios by fluorescent siderophore-based probes. ACS Chemical Biology 12 (11):2720–4.
  • Chen, R., X.-B. Gao, M.-Z. Mei, Y.-Y. Duan, Z.-L. Liu, W.-C. Weng, and J. Yang. 2019. A novel multiplex xMAP assay for generic detection of avian, fish, and ruminant DNA in feed and feedstuffs. Applied Microbiology and Biotechnology 103 (11):4575–84.
  • Coscelli, G. A., R. Bermúdez, A. P. Losada, L. D. Faílde, Y. Santos, and M. I. Quiroga. 2014. Acute Aeromonas salmonicida infection in turbot (Scophthalmus maximus L.). Histopathological and immunohistochemical studies. Aquaculture 430:79–85. doi: 10.1016/j.aquaculture.2014.04.002.
  • Cozar, I. B., A. Colniţă, T. Szöke-Nagy, A. M. R. Gherman, and N. E. Dina. 2019. Label-free detection of bacteria using surface-enhanced Raman scattering and principal component analysis. Analytical Letters 52 (1):177–89. doi: 10.1080/00032719.2018.1445747.
  • Da Silva, L. F. B. A., Z. Yang, N. M. M. Pires, T. Dong, H.-C. Teien, T. Storebakken, and B. Salbu. 2018. Monitoring aquaculture water quality: Design of an early warning sensor with Aliivibrio fischeri and predictive models. Sensors 18 (9):2848. doi: 10.3390/s18092848.
  • Das, R., A. Dhiman, A. Kapil, V. Bansal, and T. K. Sharma. 2019. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Analytical and Bioanalytical Chemistry 411 (6):1229–38.
  • Da-Silva, E., L. Barthelmebs, and J. Baudart. 2017. Development of a PCR-free DNA-based assay for the specific detection of Vibrio species in environmental samples by targeting the 16S rRNA. Environmental Science and Pollution Research International 24 (6):5690–700.
  • Dong, T., and N. M. M. Pires. 2017. Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C70 organic photodetectors. Biosensors & Bioelectronics 94:321–7.
  • Dong, T., Q. Su, Z. Yang, Y. Zhang, E. B. Egeland, D. D. Gu, P. Calabrese, M. J. Kapiris, F. Karlsen, N. T. Minh, et al. 2010. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation. Journal of Micromechanics and Microengineering 20 (11):115021. doi: 10.1088/0960-1317/20/11/115021.
  • Dong, T., and X. Zhao. 2015. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy. Analytical Chemistry 87 (4):2410–8.
  • Duan, N., S. Wu, J. Wang, Y. Zou, and Z. Wang. 2019. Quantum dot based F0F1-ATPase aptasensor for Vibrio parahaemolyticus detection. Food Analytical Methods 12 (8):1849–57. doi: 10.1007/s12161-019-01531-6.
  • Duan, N., Y. Yan, S. Wu, and Z. Wang. 2016. Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering. Food Control 63:122–7. doi: 10.1016/j.foodcont.2015.11.031.
  • Elsheshtawy, A., N. Yehia, M. Elkemary, and H. Soliman. 2019. Direct detection of unamplified Aeromonas hydrophila DNA in clinical fish samples using gold nanoparticle probe-based assay. Aquaculture 500:451–7. doi: 10.1016/j.aquaculture.2018.10.046.
  • Eryilmaz, M., E. A. Soykut, D. Çetin, I. H. Boyaci, Z. Suludere, and U. Tamer. 2019. SERS-based rapid assay for sensitive detection of Group A Streptococcus by evaluation of the swab sampling technique. The Analyst 144 (11):3573–80.
  • Evans, O., P. Hick, and R. J. Whittington. 2016. Distribution of Ostreid herpesvirus-1 (OsHV-1) microvariant in seawater in a recirculating aquaculture system. Aquaculture 458:21–28. doi: 10.1016/j.aquaculture.2016.02.027.
  • Fang, H.-M., K. Y.-H. Gin, B. Viswanath, M. Petre, and M. Ghandehari. 2018. Sensing water-borne pathogens by intrinsic fluorescence. In Optical phenomenology and applications. Smart sensors, measurement and instrumentation, ed. M. Ghandehari, 133–47. Cham: Springer.
  • [FAO] Food and Agriculture Organization of the United Nations. (2018). 2018 The State of World Fisheries and Aquaculture 2018—meeting the sustainable development goals. Rome: FAO.
  • Fernández-Álvarez, C., Y. Torres-Corral, N. Saltos-Rosero, and Y. Santos. 2017. MALDI-TOF mass spectrometry for rapid differentiation of Tenacibaculum species pathogenic for fish. Applied Microbiology and Biotechnology 101 (13):5377–90.
  • Florio, W., A. Tavanti, S. Barnini, E. Ghelardi, and A. Lupetti. 2018. Recent advances and ongoing challenges in the diagnosis of microbial infections by MALDI-TOF mass spectrometry. Frontiers in Microbiology 9:1097.
  • Frickmann, H., A. E. Zautner, A. Moter, J. Kikhney, R. M. Hagen, H. Stender, and S. Poppert. 2017. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review. Critical Reviews in Microbiology 43 (3):263–93.
  • Gao, R., Z. Zhong, X. Gao, and J. Jia. 2018. Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa in food samples. Journal of Agricultural and Food Chemistry 66 (41):10898–905.
  • Gardy, J. L., and N. J. Loman. 2018. Towards a genomics-informed, real-time, global pathogen surveillance system. Nature Reviews Genetics 19 (1):9–20.
  • Gjessing, M. C., E. Thoen, T. Tengs, S. A. Skotheim, and O. B. Dale. 2017. Salmon gill poxvirus, a recently characterized infectious agent of multifactorial gill disease in freshwater- and seawater-reared Atlantic salmon. Journal of Fish Diseases 40 (10):1253–65.
  • Good, C., J. Davidson, G. D. Wiens, T. J. Welch, and S. Summerfelt. 2015. Flavobacterium branchiophilum and F. succinicans associated with bacterial gill disease in rainbow trout Oncorhynchus mykiss (Walbaum) in water recirculation aquaculture systems. Journal of Fish Diseases 38 (4):409–13.
  • Gotesman, M., S. Menanteau-Ledouble, M. Saleh, S. M. Bergmann, and M. El-Matbouli. 2018. A new age in AquaMedicine: Unconventional approach in studying aquatic diseases. BMC Veterinary Research 14 (1):178. doi: 10.1186/s12917-018-1501-5.
  • Granger, J. H., N. E. Schlotter, A. C. Crawford, and M. D. Porter. 2016. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chemical Society Reviews 45 (14):3865–82.
  • Gu, L., W. Yan, H. Wu, S. Fan, W. Ren, S. Wang, M. Lyu, and J. Liu. 2019. Selection of DNAzymes for sensing aquatic bacteria: Vibrio anguillarum. Analytical Chemistry 91 (12):7887–93.
  • Habimana, J. D., J. Ji, and X. Sun. 2018. Minireview: Trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Analytical Letters 51 (18):2933–66. doi: 10.1080/00032719.2018.1458104.
  • Haldar, S., S. B. Neogi, K. Kogure, S. Chatterjee, N. Chowdhury, A. Hinenoya, M. Asakura, and S. Yamasaki. 2010. Development of a haemolysin gene-based multiplex PCR for simultaneous detection of Vibrio campbellii, Vibrio harveyi and Vibrio parahaemolyticus. Letters in Applied Microbiology 50 (2):146–52.
  • Hameed, S., L. Xie, and Y. Ying. 2018. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science and Technology 81:61–73. doi: 10.1016/j.tifs.2018.05.020.
  • Han, Y.-J., A. Jo, S.-W. Kim, H.-E. Lee, Y. C. Kim, H. D. Jeong, Y. H. Choi, S. Kim, H.-J. Cha, and H.-S. Kim. 2019. Multiplex PCR using YeaD and 16S rRNA gene to identify major pathogens in vibriosis of Litopenaeus vannamei. Genes & Genomics 41 (1):35–42.
  • Hasan, M. R., S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott. 2018. Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sensors Journal 18 (1):133–40. doi: 10.1109/JSEN.2017.2769720.
  • Heerthana, V. R., and R. Preetha. 2019. Biosensors: A potential tool for quality assurance and food safety pertaining to biogenic amines/volatile amines formation in aquaculture systems/products. Reviews in Aquaculture 11 (1):220–33. doi: 10.1111/raq.12236.
  • Heo, N. S., S. Y. Oh, M. Y. Ryu, S. H. Baek, T. J. Park, C. Choi, Y. S. Huh, and J. P. Park. 2019. Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus. Biotechnology and Bioprocess Engineering 24 (2):318–25. doi: 10.1007/s12257-018-0410-6.
  • Hoare, R., K. D. Thompson, T. Herath, B. Collet, J. E. Bron, and A. Adams. 2016. Development, characterisation and application of monoclonal antibodies for the detection and quantification of infectious salmon anaemia virus in plasma samples using luminex bead array technology. PLoS One 11 (7):e0159155.
  • Hu, J., M. Ghosh, M. J. Miller, and P. W. Bohn. 2019. Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. Analytical Methods 11 (3):296–302.
  • Izumiya, H., M. Morita, E. Arakawa, T. C. Ngo, H. T. Nguyen, D. T. Nguyen, and M. Ohnishi. 2019. Development of a loop-mediated isothermal amplification assay for Vibrio cholerae O1 and O139. Molecular and Cellular Probes 45:65–67.
  • Jafari, S., F. Faridbod, P. Norouzi, A. S. Dezfuli, D. Ajloo, F. Mohammadipanah, and M. R. Ganjali. 2015. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Analytica Chimica Acta 895:80–88.
  • Jeffery, K. R., D. Stone, S. W. Feist, and D. W. Verner-Jeffreys. 2010. An outbreak of disease caused by Francisella sp. in Nile tilapia Oreochromis niloticus at a recirculation fish farm in the UK. Diseases of Aquatic Organisms 91 (2):161–5.
  • Jensen, H. E., L. K. Jensen, K. Barington, S. E. Pors, T. Bjarnsholt, and M. Boye. 2015. Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections. In Veterinary infection biology: Molecular diagnostics and high-throughput strategies, ed. M. Cunha and J. Inácio, vol. 1247, 219–34. New York, NY: Humana Press.
  • Jeon, J.-W., J.-H. Kim, J.-M. Lee, W.-H. Lee, D.-Y. Lee, and S.-H. Paek. 2014. Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens. Biosensors & Bioelectronics 52:384–90.
  • Jørgensen, T. R., T. B. Larsen, and K. Buchmann. 2009. Parasite infections in recirculated rainbow trout (Oncorhynchus mykiss) farms. Aquaculture 289 (1–2):91–94. doi: 10.1016/j.aquaculture.2008.12.030.
  • Kampeera, J., P. Pasakon, C. Karuwan, N. Arunrut, A. Sappat, S. Sirithammajak, N. Dechokiattawan, T. Sumranwanich, P. Chaivisuthangkura, P. Ounjai, et al. 2019. Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosensors & Bioelectronics 132:271–8.
  • Kang, C.-Y., H.-W. Yu, R.-F. Guo, J.-X. Tan, and Y.-M. Jia. 2016. Genetic diversity of isolates of foodborne Listeria monocytogenes by RAPD-PCR. Annals of Microbiology 66 (3):1057–64. doi: 10.1007/s13213-015-1186-y.
  • Kaushik, S., U. K. Tiwari, S. S. Pal, and R. K. Sinha. 2019. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized molybdenum disulfide (MoS2) nanosheets. Biosensors & Bioelectronics 126:501–9.
  • King, R. K., G. J. Flick, C. W. Jr., D. Pierson, S. A. Smith, and G. D. Boardman, Coale. Jr, 2004. Identification of bacterial pathogens in biofilms of recirculating aquaculture systems. Journal of Aquatic Food Product Technology 13 (1):125–33. doi: 10.1300/J030v13n01_11.
  • Kongrueng, J., N. Tansila, P. Mitraparp-Arthorn, M. Nishibuchi, G. J. Vora, and V. Vuddhakul. 2015. LAMP assay to detect Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in shrimp. Aquaculture International 23 (5):1179–88. doi: 10.1007/s10499-014-9874-3.
  • Kumar, Y., S. Bansal, and P. Jaiswal. 2017. Loop-mediated isothermal amplication (LAMP): A rapid and sensitive tool for quality assessment of meat products. Comprehensive Reviews in Food Science and Food Safety 16 (6):1359–78. doi: 10.1111/1541-4337.12309.
  • Kwon, K., H. Gwak, K.-A. Hyun, B.-S. Kwak, and H.-I. Jung. 2019. High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sensors and Actuators B: Chemical 294:62–68. doi: 10.1016/j.snb.2019.05.007.
  • Laczka, O., L. Skillman, W. G. Ditcham, B. Hamdorf, D. K. Y. Wong, P. Bergquist, and A. Sunna. 2013. Application of an ELISA-type screen printed electrode-based potentiometric assay to the detection of Cryptosporidium parvum oocysts. Journal of Microbiological Methods 95 (2):182–5.
  • Leonard, N., J. P. Blancheton, and J. P. Guiraud. 2000. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering 22 (1–2):109–20. doi: 10.1016/S0144-8609(00)00035-2.
  • Leung, T. L. F., and A. E. Bates. 2013. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. Journal of Applied Ecology 50 (1):215–22. doi: 10.1111/1365-2644.12017.
  • Li, H., J. Xiao, Y. Zhou, Q. Wang, and Y. Zhang. 2017. Sensitivity improvement of rapid Vibrio harveyi detection with an enhanced chemiluminescent-based dot blot. Letters in Applied Microbiology 65 (3):206–12.
  • Li, J., Q. Liu, Y. Wan, X. Wu, Y. Yang, R. Zhao, and E. Chen. 2019. Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay. Analytical and Bioanalytical Chemistry 411 (23):6067–6080.
  • Lin, Q., Z. Jian, M. Xu, F. Zetian, C. Wei, and Z. Xiaoshuan. 2011. Developing WSN-based traceability system for recirculation aquaculture. Mathematical and Computer Modeling 53 (11–12):2162–72. doi: 10.1016/j.mcm.2010.08.023.
  • Lipiäinen, T., J. Pessi, P. Movahedi, J. Koivistoinen, L. Kurki, M. Tenhunen, J. Yliruusi, A. M. Juppo, J. Heikkonen, T. Pahikkala, et al. 2018. Time-gated Raman spectroscopy for quantitative determination of solid-state forms of fluorescent pharmaceuticals. Analytical Chemistry 90 (7):4832–9. https://pubs.acs.org/doi/abs/10.1021/acs.analchem.8b00298.
  • Liu, C., C. Shi, M. Li, M. Wang, C. Ma, and Z. Wang. 2019. Rapid and simple detection of viable foodborne pathogen Staphylococcus aureus. Frontiers in Chemistry 7:124.
  • Liu, H., H. Dong, Z. Chen, L. Lin, H. Chen, S. Li, and Y. Deng. 2017. Magnetic nanoparticles enhanced microarray detection of foodborne pathogens. Journal of Biomedical Nanotechnology 13 (10):1333–43. doi: 10.1166/jbn.2017.2418.
  • Liu, H., Y. Wang, J. Xiao, Q. Wang, and Q. Liu. 2015. An immunochromatographic test strip for rapid detection of fish pathogen Edwardsiella tarda. Bioresources and Bioprocessing 2:20.
  • Liu, H., Y. Xiu, Y. Xu, M. Tang, S. Li, W. Gu, Q. Meng, and W. Wang. 2017. Development of a colloidal gold immunochromatographic assay (GICA) for the rapid detection of Spiroplasma eriocheiris in commercially exploited crustaceans from China. Journal of Fish Diseases 40 (12):1839–47.
  • Liu, H.-B, X.-J. Du, Y.-X. Zang, P. Li, and S. Wang. 2017. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. Journal of Agricultural and Food Chemistry 65 (47):10290–9.
  • Liu, N., D. Zou, D. Dong, Z. Yang, D. Ao, W. Liu, and L. Huang. 2017. Development of a multiplex loop mediated isothermal amplifcation method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Scientific Reports 7:45601.
  • Liu, W., S. Huang, N. Liu, D. Dong, Z. Yang, Y. Tang, W. Ma, X. He, D. Ao, Y. Xu, et al. 2017. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay. Scientific Reports 7:40125. doi: 10.1038/srep40125.
  • Liu-Stratton, Y., S. Roy, and C. K. Sen. 2004. DNA microarray technology in nutraceutical and food safety. Toxicology Letters 150 (1):29–42.
  • López-Luna, J., M. A. Ibáñez, and M. Villarroel. 2013. Using multivariate analysis of water quality in RAS with Nile tilapia (Oreochromis niloticus) to model the evolution of macronutrients. Aquacultural Engineering 54:22–28. doi: 10.1016/j.aquaeng.2012.10.005.
  • Lu, M. W., S. Y. Yang, H. E. Horng, C. C. Yang, J. J. Chieh, Y. W. Hong, C. Y. Hong, H. C. Yang, and J. L. Wu. 2012. Immunomagnetic reduction assay for nervous necrosis virus extracted from groupers. Journal of Virological Methods 181 (1):68–72.
  • Malakar, A. K., K. V. Singh, and S. Srivastava. 2013. A Review on DNA Microarrays: A novel tool for identification and exploitation of fish conservation in aquaculture. World Journal of Fish and Marine Sciences 5 (1):26–34.
  • Martins, P., D. F. R. Cleary, A. C. C. Pires, A. M. Rodrigues, V. Quintino, R. Calado, and N. C. M. Gomes. 2013. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis. PLoS One 8 (11):e80847.
  • McGrath, K. P., N. L. Pelletier, and P. H. Tyedmers. 2015. Life cycle assessment of a novel closed-containment salmon aquaculture technology. Environmental Science and Technology 49 (9):5628–36.
  • Mei, X., X. Zhai, C. Lei, X. Ye, Z. Kang, X. Wu, R. Xiang, Y. Wang, and H. Wang. 2019. Development and application of a visual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD) method for rapid detection of Salmonella strains in food samples. Food Control 104:9–19. doi: 10.1016/j.foodcont.2019.04.014.
  • Menanteau-Ledouble, S., A. Karsi, and M. L. Lawrence. 2011. Importance of skin abrasion as a primary site of adhesion for Edwardsiella ictaluri and impact on invasion and systematic infection in channel catfish Ictalurus punctatus. Veterinary Microbiology 148 (2–4):425–30.
  • Meng, X., H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, Y. Su, and Y. He. 2018. A graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Analytical Chemistry 90 (9):5646–53.
  • Michaud, L., A. Lo Giudice, M. Troussellier, F. Smedile, V. Bruni, and J. P. Blancheton. 2009. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system. Journal of Applied Microbiology 107 (6):1935–46.
  • Mishra, S. S., D. Rakesh, M. Dhiman, P. Choudhary, J. Debbarma, S. N. Sahoo, and A. Barua. 2017. Present status of fish disease management in freshwater aquaculture in India: State-of-the-art-review. Journal of Aquaculture and Fisheries 1:003.
  • Møretrø, T., M. A. Normann, H. R. Saebø, and S. Langsrud. 2019. Evaluation of ATP bioluminescence-based methods for hygienic assessment in fish industry. Journal of Applied Microbiology 127 (1):186–95. doi: 10.1111/jam.14292.
  • Muniandy, S., J. D. Dinshaw, S. J. Teh, C. W. Lai, F. Ibrahim, K. L. Thong, and B. F. Leo. 2017. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen. Analytical and Bioanalytical Chemistry 409 (29):6893–905.
  • Mycometer A/S. 2020. Bactiquant-water-Sampling-Mycometer. Accessed April 10, 2020. https://www.mycometer.com/products/bactiquant-water/sampling-and-analysis/.
  • Najian, A. B. N., E. A. E. N. Syafirah, N. Ismail, M. Mohamed, and C. Y. Yean. 2016. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Analytica Chimica Acta 903:142–8.
  • Natarajan, A., K. S. S. Devi, S. Raja, and A. S. Kumar. 2017. An elegant analysis of white spot syndrome virus using a graphene oxide/methylene blue based electrochemical immunosensor platform. Scientific Reports 7:46169. doi: 10.1038/srep46169.
  • Ninawe, A. S., A. S. S. Hameed, and J. Selvin. 2017. Advancements in diagnosis and control measures of viral pathogens in aquaculture: An Indian perspective. Aquaculture International 25 (1):251–64. doi: 10.1007/s10499-016-0026-9.
  • Nordin, N., N. A. Yusof, J. Abdullah, S. Radu, and R. Hushiarian. 2017. A simple, portable, electrochemical biosensor to screen shellfish for Vibrio parahaemolyticus. AMB Express 7 (1):41.
  • Nosrati, R., S. Dehghani, B. Karimi, M. Yousefi, S. M. Taghdisi, K. Abnous, M. Alibolandi, and M. Ramezani. 2018. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosensors and Bioelectronics 117:1–14.
  • Ottinger, M., K. Clauss, and C. Kuenzer. 2016. Aquaculture: Relevance, distribution, impacts and spatial assessments-A review. Ocean & Coastal Management 119:244–66. doi: 10.1016/j.ocecoaman.2015.10.015.
  • Pandey, C. M., I. Tiwari, V. N. Singh, K. N. Sood, G. Sumana, and B. D. Malhotra. 2017. Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sensors and Actuators B: Chemical 238:1060–9. doi: 10.1016/j.snb.2016.07.121.
  • Parra, L., G. Lloret, J. Lloret, and M. Rodilla. 2018. Physical sensors for precision aquaculture: A review. IEEE Sensors Journal 18 (10):3915–23. doi: 10.1109/JSEN.2018.2817158.
  • Parra, L., S. Sendra, J. Lloret, and J. J. P. C. Rodrigues. 2017. Design and deployment of a smart system for data gathering in aquaculture tanks using wireless sensor networks. International Journal of Communication Systems 30 (16):e3335. doi: 10.1002/dac.3335.
  • Pedersen, P. B., Mv Ahnen, P. Fernandes, C. Naas, L. F. Pedersen, and J. Dalsgaard. 2017. Particle surface area and bacterial activity in recirculating aquaculture systems. Aquacultural Engineering 78:18–23. doi: 10.1016/j.aquaeng.2017.04.005.
  • Pires, N. M. M., and T. Dong. 2013a. Recovery of Cryptosporidium and Giardia organisms from surface water by counter-flow refining microfiltration. Environmental Technology 34 (17):2541–51. doi: 10.1080/09593330.2013.777126.
  • Pires, N. M. M., and T. Dong. 2013b. Microfluidic biosensor array with integrated poly(2,7-carbazole)/fullerene-based photodiodes for rapid multiplexed detection of pathogens. Sensors 13 (12):15898–911.
  • Pires, N. M. M., and T. Dong. 2014a. Ultrasensitive opto-microfluidic immunosensor integrating gold nanoparticle-enhanced chemiluminescence and highly stable organic photodetector. Journal of Biomedical Optics 19 (3):30504.
  • Pires, N. M. M., and T. Dong. 2014b. A cascade-like silicon filter for improved recovery of oocysts from environmental waters. Environmental Technology 35 (5–8):781–90.
  • Pires, N. M. M., T. Dong, U. Hanke, and N. Hoivik. 2014. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 14 (8):15458–79.
  • Pires, N. M. M., T. Dong, Z. Yang, N. Høivik, and X. Zhao. 2011. A mediator embedded micro-immunosensing unit for electrochemical detection on viruses within physiological saline media. Journal of Micromechanics and Microengineering 21 (11):115031. doi: 10.1088/0960-1317/21/11/115031.
  • Qi, X., T. Chen, D. Lu, and B. Chen. 2017. Graphene-Au nanoparticle based electrochemical immunosensor for fish pathogen Aphanomyces invadans detection. Fullerenes, Nanotubes and Carbon Nanostructures 25 (1):12–16. doi: 10.1080/1536383X.2016.1239080.
  • Ringø, E., L. Løvmo, M. Kristiansen, Y. Bakken, I. Salinas, R. Myklebust, R. E. Olsen, and T. M. Mayhew. 2010. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: A review. Aquaculture Research 41 (4):451–67. doi: 10.1111/j.1365-2109.2009.02339.x.
  • Rocha, R., J. M. Sousa, L. Cerqueira, M. J. Vieira, C. Almeida, and N. F. Azevedo. 2019. Development and application of peptide nucleic acid fluorescence in situ hybridization for the specific detection of Listeria monocytogenes. Food Microbiology 80:1–8.
  • Rohde, A., J. A. Hammerl, B. Appel, R. Dieckmann, and S. A. Dahouk. 2017. Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization. Food Microbiology 62:39–45.
  • Rojas-Tirado, P., B. Pedersen, and L.-F. Pedersen. 2017. Bacterial activity dynamics in the water phase during start-up of recirculating aquaculture systems. Aquacultural Engineering 78:24–31. doi: 10.1016/j.aquaeng.2016.09.004.
  • Rojas-Tirado, P. A., P. B. Pedersen, O. Vadstein, and L.-F. Pedersen. 2018. Changes in microbial water quality in RAS following altered feed loading. Aquacultural Engineering 81:80–88. doi: 10.1016/j.aquaeng.2018.03.002.
  • Roth-Konforti, M., O. Green, M. Hupfeld, L. Fieseler, N. Heinrich, J. Ihssen, R. Vorberg, L. Wick, U. Spitz, and D. Shabat. 2019. Ultrasensitive detection of Salmonella and Listeria monocytogenes by small‐molecule chemiluminescence probes. Angewandte Chemie 131 (30):10469–75. doi: 10.1002/ange.201904719.
  • Rud, I., J. Kolarevic, A. B. Holan, I. Berget, S. Calabrese, and B. F. Terjesen. 2017. Deep-sequencing of the bacterial microbiota in commercial-scale recirculating and semi-closed aquaculture systems for Atlantic salmon post-smolt production. Aquacultural Engineering 78:50–62. doi: 10.1016/j.aquaeng.2016.10.003.
  • Rupp, M., R. Knüsel, P.-D. Sindilariu, and H. Schmidt-Posthaus. 2019. Identification of important pathogens in European perch (Perca fluviatilis) culture in recirculating aquaculture systems. Aquaculture International 27 (4):1045–53. doi: 10.1007/s10499-019-00382-6.
  • Rurangwa, E., and M. C. J. Verdegem. 2015. Microorganisms in recirculating aquaculture systems and their management. Reviews in Aquaculture 7 (2):117–30. doi: 10.1111/raq.12057.
  • Saleh, M., H. Soliman, and M. El-Matbouli. 2015. Gold nanoparticles as a potential tool for diagnosis of fish diseases. In Veterinary infection biology: Molecular diagnostics and high-throughput strategies, ed. M. Cunha and J. Inácio, vol. 1247, 245–52. New York, NY: Humana Press.
  • Santos-de-Souza, R., F. Souza-Silva, B. C. de Albuquerque-Melo, M. L. Ribeiro-Guimarães, L. M. de Castro Côrtes, B. A. S. Pereira, M. Silva-Almeida, L. Cysne-Finkelstein, F. O. R. de Oliveira Junior, M. C. d S. Pereira, et al. 2019. Insights into the tracking of the cysteine proteinase B COOH-terminal polypeptide of Leishmania (Leishmania) amazonensis by surface plasmon resonance. Parasitology Research 118 (4):1249–59.
  • Sawabe, T., A. Yoshizawa, Y. Kawanishi, E. Komatsu-Takeda, S. Nakagawa, T. Sawabe, M. Ootubo, M. Satomi, Y. Yano, K. Yamazaki, et al. 2009. Multi-probe-fluorescence in situ hybridization for the rapid enumeration of viable Vibrio parahaemolyticus. Microbes and Environments 24 (3):259–64.
  • Sayad, A. A., F. Ibrahim, S. M. Uddin, K. X. Pei, M. S. Mohktar, M. Madou, and K. L. Thong. 2016. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sensors and Actuators B: Chemical 227:600–9. doi: 10.1016/j.snb.2015.10.116.
  • Schneider, O., M. Chabrillon-Popelka, H. Smidt, O. Haenen, V. Sereti, E. H. Eding, and J. A. J. Verreth. 2007. HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents. FEMS Microbiology Ecology 60 (2):207–19.
  • Sha, Y., X. Zhang, W. Li, W. Wu, S. Wang, Z. Guo, J. Zhou, and X. Su. 2016. A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta 147:220–5.
  • Shridhar, P. B., I. R. Patel, J. Gangiredla, L. W. Noll, X. Shi, J. Bai, and T. G. Nagaraja. 2019. DNA microarray-based genomic characterization of the pathotypes of Escherichia coli O26, O45, O103, O111, and O145 isolated from feces of feedlot cattle. Journal of Food Protection 82 (3):395–404.
  • Siddique, M. P., W. J. Jang, J. M. Lee, M. T. Hasan, C.-H. Kim, and I.-S. Kong. 2019. Detection of Vibrio anguillarum and Vibrio alginolyticus by singleplex and duplex loop-mediated isothermal amplification (LAMP) assays targeted to groEL and fklB genes. International Microbiology: The Official Journal of the Spanish Society for Microbiology 22 (4):501–9.
  • Silva, N. F. D., C. M. R. Almeida, J. M. C. S. Magalhães, M. P. Gonçalves, C. Freire, and C. Delerue-Matos. 2019. Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosensors and Bioelectronics 141:111317. doi: 10.1016/j.bios.2019.111317.
  • Simões, J., and T. Dong. 2018. Continuous and real-time detection of drinking-water pathogens with a low-cost fluorescent optofluidic sensor. Sensors 18 (7):2210. doi: 10.3390/s18072210.
  • Singh, C., M. A. Ali, V. Kumar, R. Ahmad, and G. Sumana. 2018. Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sensors and Actuators B: Chemical 259:1090–8. doi: 10.1016/j.snb.2017.12.094.
  • Sitjà-Bobadilla, A., and B. Oidtmann. 2017. Integrated pathogen management strategies in fish farming. In Fish diseases: Prevention and control strategies, ed. G. Jeney, 119–44. Oxford: Academic Press.
  • Srisuk, C., P. Chaivisuthangkura, S. Rukpratanporn, S. Longyant, P. Sridulyakul, and P. Sithigorngul. 2010. Rapid and sensitive detection of Vibrio cholerae by loop-mediated isothermal amplification targeted to the gene of outer membrane protein ompW. Letters in Applied Microbiology 50 (1):36–42. doi: 10.1111/j.1472-765X.2009.02749.x.
  • Stentiford, G. D., Sritunyalucksana, K. Flegel, T. W. Williams, P. B. A. Withyachumnarnkul, B. Itsathitphaisarn, O., and D. Bass. 2017. New paradigms to help solve the global aquaculture disease crisis disease as a barrier to production. PLOS Pathogens 13 (2):e1006160. doi: 10.1371/journal.ppat.1006160.
  • Summerfelt, S. T., A. Zühlke, J. Kolarevic, B. Kristin, M. Reiten, R. Selset, and X. Gutierrez. 2015. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors. Aquacultural Engineering 65:46–54. doi: 10.1016/j.aquaeng.2014.11.002.
  • Sundaram, E., S. Kathiravan, A. Manna, A. Chinnaiah, and V. S. Vasantha. 2019. Designing of new optical immunosensors based on 2-amino-4-(anthracen-9-yl)-7-hydroxy-4H-chromene-3-carbonitrile for the detection of Aeromonas hydrophila in the organs of Oreochromis mossambicus fingerlings. ACS Omega 4 (3):4814–24. doi: 10.1021/acsomega.8b02467.
  • Svechkarev, D., M. R. Sadykov, K. W. Bayles, and A. M. Mohs. 2018. Ratiometric fluorescent sensor array as a versatile tool for bacterial pathogen identification and analysis. ACS Sensors 3 (3):700–8. doi: 10.1021/acssensors.8b00025.
  • Taheri, R. A., A. H. Rezayan, F. Rahimi, J. Mohammadnejad, and M. Kamali. 2017. Evaluating the potential of an antibody against recombinant OmpW antigen in detection of Vibrio cholerae by surface plasmon resonance (SPR) biosensor. Plasmonics 12 (5):1493–504. doi: 10.1007/s11468-016-0411-2.
  • Tarasov, A., D. W. Gray, M.-Y. Tsai, N. Shields, A. Montrose, N. Creedon, P. Lovera, A. O’Riordan, M. H. Mooney, E. M. Vogel, et al. 2016. A potentiometric biosensor for rapid on-site disease diagnostics. Biosensors and Bioelectronics 79:669–78. doi: 10.1016/j.bios.2015.12.086.
  • Tengs, T., and E. Rimstad. 2017. Emerging pathogens in the fish farming industry and sequencing-based pathoge discovery. Developmental & Comparative Immunology 75:109–19. doi: 10.1016/j.dci.2017.01.025.
  • Terceti, M. S., A. Vences, X. M. Matanza, I. Dalsgaard, K. Pedersen, and C. R. Osorio. 2018. Molecular epidemiology of photobacterium damselae subsp. damselae outbreaks in marine rainbow trout farms reveals extensive horizontal gene transfer and high genetic diversity. Frontiers in Microbiology 9:2155. doi: 10.3389/fmicb.2018.02155.
  • Thongkao, K., S. Longyant, K. Silprasit, P. Sithigorngul, and P. Chaivisuthangkura. 2015. Rapid and sensitive detection of Vibrio harveyi by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to vhhP2 gene. Aquaculture Research 46 (5):1122–31. doi: 10.1111/are.12266.
  • Tian, F., J. Lyu, J. Shi, F. Tan, and M. Yang. 2016. A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sensors and Actuators B: Chemical 225:312–8. doi: 10.1016/j.snb.2015.11.059.
  • Umesha, S., and H. M. Manukumar. 2018. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Critical Reviews in Food Science and Nutrition 58 (1):84–104. doi: 10.1080/10408398.2015.1126701.
  • Vaisocherová-Lísalová, H., I. Víšová, M. L. Ermini, T. Špringer, X. C. Song, J. Mrázek, J. Lamačová, N. Scott Lynn, P. Šedivák, and J. Homola. 2016. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors & Bioelectronics 80:84–90. doi: 10.1016/j.bios.2016.01.040.
  • Vendramin, N., D. Kannimuthu, A. B. Olsen, A. Cuenca, L. H. Teige, Ø. Wessel, and T. M. Iburg. 2019. Piscine orthoreovirus subtype 3 (PRV-3) causes heart inflammation in rainbow trout (Oncorhynchus mykiss). BMC Veterinary Research 50:14.
  • Viswanath, K. B., N. Krithiga, A. Jayachitra, A. K. S. Mideen, A. J. Amali, and V. S. Vasantha. 2018. Enzyme-free multiplex detection of Pseudomonas aeruginosa and Aeromonas hydrophila with ferrocene and thionine-labeled antibodies using ZIF-8/Au NPs as a platform. ACS Omega 3 (12):17010–22.
  • Waiwijit, U., D. Phokaratkul, J. Kampeera, T. Lomas, A. Wisitsoraat, W. Kiatpathomchai, and A. Tuantranont. 2015. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection. Journal of Biotechnology 212:44–49. doi: 10.1016/j.jbiotec.2015.08.003.
  • Walsh, J. D., J. M. Hyman, L. Borzhemskaya, A. Bowen, C. McKellar, M. Ullery, E. Mathias, C. Ronsick, J. Link, M. Wilson, et al. 2013. Rapid intrinsic fluorescence method for direct identification of pathogens in blood bultures. mBio 4 (6):e00865-13. doi: 10.1128/mBio.00865-13.
  • Wang, C., K. Xing, G. Zhang, M. Yuan, S. Xu, D. Liu, W. Chen, J. Peng, S. Hu, W.-H. Lai, et al. 2019. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanocluster for detection E. coli O157:H7. Food Chemistry 281:91–96. doi: 10.1016/j.foodchem.2018.12.079.
  • Wang, T., X. Song, H. Lin, T. Hao, Y. Hu, S. Wang, X. Su, and Z. Guo. 2019. A Faraday cage-type immunosensor for dual-modal detection of Vibrio parahaemolyticus by electrochemiluminescence and anodic stripping voltammetry. Analytica Chimica Acta 1062:124–30. doi: 10.1016/j.aca.2019.02.032.
  • Wang, X., X. Wang, C. Shi, C. Ma, and L. Chen. 2020. Highly sensitive visual detection of nucleic acid based on a universal strand exchange amplification coupled with lateral flow assay chip. Talanta 216:120978. doi: 10.1016/j.talanta.2020.120978.
  • Wang, Y., Z. Ye, and Y. Ying. 2013. Detection of immunoglobulin E using an aptamer based dot-blot assay. Chinese Science Bulletin 58 (24):2938–43. doi: 10.1007/s11434-013-5702-9.
  • Warsen, A. E., M. J. Krug, S. LaFrentz, D. R. Stanek, F. J. Loge, and D. R. Call. 2004. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Applied and Environmental Microbiology 70 (7):4216–21. doi: 10.1128/AEM.70.7.4216-4221.2004.
  • Weerathunge, P., R. Ramanathan, V. A. Torok, K. Hodgson, Y. Xu, R. Goodacre, B. K. Behera, and V. Bansal. 2019. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Analytical Chemistry 91 (5):3270–6.
  • Wu, T.-F., Y.-C. Chen, W.-C. Wang, Y.-C. Fang, S. Fukuoka, D. T. Pride, and O. S. Pak. 2018. A rapid and low-cost pathogen detection platform by using a molecular agglutination assay. ACS Central Science 4 (11):1485–94. https://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00447.
  • Wu, W., M. Zhou, H. He, C. Liu, P. Li, M. Wang, Y. Liu, X. Hao, and Z. Fang. 2018. A sensitive aptasensor for the detection of Vibrio parahaemolyticus. Sensors and Actuators B: Chemical 272:550–8. doi: 10.1016/j.snb.2018.05.171.
  • Xiao, R., Y. Wei, D. An, D. Li, X. Ta, Y. Wu, and Q. Ren. 2019. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. Reviews in Aquaculture 11 (3):863–95. doi: 10.1111/raq.12270.
  • Xu, D.-H., C. A. Shoemaker, and P. H. Klesius. 2007. Evaluation of the link between gyrodactylosis and streptococcosis of Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases 30 (4):233–8.
  • Xu, W., C. Jiao, P. Bao, Q. Liu, P. Wang, R. Zhang, X. Liu, and Y. Zhang. 2019. Efficacy of Montanide™ ISA 763 A VG as aquatic adjuvant administrated with an inactivated Vibrio harveyi vaccine in turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology 84:56–61.
  • Xue, S., W. Xu, J. Wei, and J. Sun. 2017. Impact of environmental bacterial communities on fish health in marine recirculating aquaculture systems. Veterinary Microbiology 203:34–39.
  • Yamazaki, W., Y. Kumeda, N. Misawa, Y. Nakaguchi, and M. Nishibuchi. 2010. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species. Applied and Environmental Microbiology 76 (3):820–8.
  • Yanong, R. P. E., D. B. Pouder, and J. O. Falkinham, III. 2010. Association of mycobacteria in recirculating aquaculture systems and mycobacterial disease in fish. Journal of Aquatic Animal Health 22 (4):219–23.
  • Yao, L., L. Wang, F. Huang, G. Cai, X. Xi, and J. Lin. 2018. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7. Sensors and Actuators B: Chemical 259:1013–21. doi: 10.1016/j.snb.2017.12.110.
  • Yoo, S. M., D.-K. Kim, and S. Y. Lee. 2015. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta 132:112–7.
  • Yu, F., Y. Li, M. Li, L. Tang, and J.-J. He. 2017. DNAzyme-integrated plasmonic nanosensor for bacterial sample-to-answer detection. Biosensors & Bioelectronics 89 (Pt 2):880–5.
  • Zhang, M., X. Wang, L. Han, S. Niu, C. Shi, and C. Ma. 2018. Rapid detection of foodborne pathogen Listeria monocytogenes by strand exchange amplification. Analytical Biochemistry 545:38–42.
  • Zhang, X., K. Li, S. Wu, J. Shuai, and W. Fang. 2015. Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments. International Journal of Food Microbiology 206:39–44.
  • Zhang, Z., C. Wang, L. Zhang, Q. Meng, Y. Zhang, F. Sun, and Y. Xu. 2017. Fast detection of Escherichia coli in food using nanoprobe and ATP bioluminescence technology. Analytical Methods 9 (36):5378–87. doi: 10.1039/C7AY01607G.
  • Zhao, G., J. Ding, H. Yu, T. Yin, and W. Qin. 2016. Potentiometric aptasensing of Vibrio alginolyticus based on DNA nanostructure-modified magnetic beads. Sensors 16 (12):2052. doi: 10.3390/s16122052.
  • Zhao, P., Y. Wu, Y. Zhu, X. Yang, X. Jiang, J. Xiao, Y. Zhang, and C. Li. 2014. Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum. Nanoscale 6 (7):3804–9.
  • Zhao, X., T. Dong, Z. Yang, N. Pires, and N. Høivik. 2012. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: Design and validation. Lab on a Chip 12 (3):602–12.
  • Zhi, A., B. Ma, Y. Wu, J. Fang, X. Yu, and M. Zhang. 2018. Detection of viable Vibrio cholerae cells in seafood using a real-time visual loop-mediated isothermal amplification combined with propidium monoazide. Food Analytical Methods 11 (1):99–110. doi: 10.1007/s12161-017-0981-4.
  • Zhou, W., J. Ding, and J. Liu. 2017. Theranostic DNAzymes. Theranostics 7 (4):1010–25.
  • Zhou, Y., J. Xiao, X. Ma, Q. Wang, and Y. Zhang. 2018. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae. Applied Microbiology and Biotechnology 102 (12):5299–308.
  • Zhou, H., D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch. 2014. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical Chemistry 86 (3):1525–33.
  • Zhu, Q. Y., F. R. Zhang, Y. Du, X. X. Zhang, J. Y. Lu, Q. F. Yao, W. T. Huang, X. Z. Ding, and L. Q. Xia. 2019. Graphene-based steganographically aptasensing system for information computing, encryption and hiding, fluorescence sensing and in vivo imaging of fish pathogens. ACS Applied Materials & Interfaces 11 (9):8904–14.
  • Zhuang, L., J. Gong, Y. Ji, P. Tian, F. Kong, H. Bai, N. Gu, and Y. Zhang. 2020. Lateral flow fluorescent immunoassay based on isothermal amplification for rapid quantitative detection of Salmonella spp. The Analyst 145 (6):2367–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.