7,737
Views
214
CrossRef citations to date
0
Altmetric
Reviews

Anthocyanin food colorant and its application in pH-responsive color change indicator films

ORCID Icon & ORCID Icon

References

  • Abolghasemi, M. M., M. Sobhi, and M. Piryaei. 2016. Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane. Sensors and Actuators B: Chemical 224:391–5. doi: 10.1016/j.snb.2015.10.038.
  • Ahmad, N. A., L. Yook Heng, F. Salam, M. H. Mat Zaid, and S. Abu Hanifah. 2019. A colorimetric pH sensor based on Clitoria sp and Brassica sp for monitoring of food spoilage using chromametry. Sensors 19 (21):4813. doi: 10.3390/s19214813.
  • Ahmed, N. U., J. I. Park, H. J. Jung, Y. Hur, and I. S. Nou. 2015. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Functional & Integrative Genomics 15 (4):383–94. doi: 10.1007/s10142-014-0427-7.
  • Alpaslan, D., T. E. Dudu, and N. Aktaş. 2018. Synthesis, characterization and modification of novel food packaging material from dimethyl acrylamide/gelatin and purple cabbage extract. MANAS Journal of Engineering 6:15–33.
  • Ames, B. N., M. K. Shigenaga, and T. M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America 90 (17):7915–22. doi: 10.1073/pnas.90.17.7915.
  • Andretta, R., C. L. Luchese, I. C. Tessaro, and J. C. Spada. 2019. Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids 93:317–24. doi: 10.1016/j.foodhyd.2019.02.019.
  • Bagchi, D., A. Garg, R. L. Krohn, M. Bagchi, D. J. Bagchi, J. Balmoori, and S. J. Stohs. 1998. Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. General Pharmacology 30 (5):771–6. doi: 10.1016/S0306-3623(97)00332-7.
  • Balbinot-Alfaro, E., D. V. Craveiro, K. O. Lima, H. L. G. Costa, D. R. Lopes, and C. Prentice. 2019. Intelligent packaging with pH indicator potential. Food Engineering Reviews 11 (4):235–44. doi: 10.1007/s12393-019-09198-9.
  • Bento, L. M., M. C. P. d Silva, K. d S. Chaves, and R. Stefani. 2015. Development and evaluation of a smart packaging for the monitoring of ricotta cheese spoilage. MOJ Food Processing & Technology 1 (1):9–11. doi: 10.15406/mojfpt.2015.01.00004.
  • Bilgiç, S., E. Söğüt, and A. C. Seydim. 2019. Chitosan and starch-based intelligent films with anthocyanins from eggplant to monitor pH variations. Turkish Journal of Agriculture - Food Science and Technology 7 (Suppl 1):61–6. doi: 10.24925/turjaf.v7isp1.61-66.2705.
  • Brockgreitens, J., and A. Abbas. 2016. Responsive food packaging: Recent progress and technological prospects. Comprehensive Reviews in Food Science and Food Safety 15 (1):3–15. doi: 10.1111/1541-4337.12174.
  • Campos, C. A., L. N. Gerschenson, and S. K. Flores. 2011. Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology 4 (6):849–75. doi: 10.1007/s11947-010-0434-1.
  • Castañeda-Ovando, A., M. Pacheco-Hernández, L. de, M. E. Páez-Hernández, J. A. Rodríguez, and C. A. Galán-Vidal. 2009. Chemical studies of anthocyanins: A review. Food Chemistry 113 (4):859–71. doi: 10.1016/j.foodchem.2008.09.001.
  • Cazón, P., G. Velazquez, J. A. Ramírez, and M. Vázquez. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids 68:136–48. doi: 10.1016/j.foodhyd.2016.09.009.
  • Chayavanich, K., P. Thiraphibundet, and A. Imyim. 2020. Biocompatible film sensors containing red radish extract for meat spoilage observation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 226:117601. doi: 10.1016/j.saa.2019.117601.
  • Clydesdale, F. M. 1998. Color: Origin, stability, measurement and quality in storage stability, eds. I. A. Taub and R. P. Singh. New York, NY: CRC Press LCC.
  • Cevallos-Casals, B. A., and L. Cisneros-Zevallos. 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. Journal of Agricultural and Food Chemistry 51 (11):3313–9. doi: 10.1021/jf034109c.
  • Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70 (1):1–9. doi: 10.1111/j.1751-1097.1999.tb01944.x.
  • Chen, H., J. Wang, Y. Cheng, C. Wang, H. Liu, H. Bian, Y. Pan, J. Sun, and W. Han. 2019. Application of protein-based films and coatings for food packaging: A review. Polymers 11 (12):2039. doi: 10.3390/polym11122039.
  • Chen, H.-Z., M. Zhang, B. Bhandari, and C.-H. Yang. 2020. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids 100:105438. doi: 10.1016/j.foodhyd.2019.105438.
  • Chen, S., M. Wu, P. Lu, L. Gao, S. Yan, and S. Wang. 2020. Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. International Journal of Biological Macromolecules 149:271–80. doi: 10.1016/j.ijbiomac.2020.01.231.
  • Chi, W., L. Cao, G. Sun, F. Meng, C. Zhang, J. Li, and L. Wang. 2020. Developing a highly pH-sensitive ĸ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. Journal of Cleaner Production 244:118862. doi: 10.1016/j.jclepro.2019.118862.
  • Cho, J., S. K. Jong, H. L. Pham, J. Jing, Y. Back, and K. S. Chung. 2003. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract. Archives of Pharmacal Research 26 (10):821–5. doi: 10.1007/BF02980027.
  • Choi, I., J. Y. Lee, M. Lacroix, and J. Han. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218:122–8. doi: 10.1016/j.foodchem.2016.09.050.
  • Cui, L., J.-J. Hu, W. Wang, C. Yan, Y. Guo, and C. Tu. 2020. Smart pH response flexible sensor based on calcium alginate fibers incorporated with natural dye for wound healing monitoring. Cellulose. doi: 10.1007/s10570-020-03219-1.
  • Dainelli, D., N. Gontard, D. Spyropoulos, E. Zondervan-van den Beuken, and P. Tobback. 2008. Active and intelligent food packaging: Legal aspects and safety concerns. Trends in Food Science & Technology 19 (Suppl 1):S103–S12. doi: 10.1016/j.tifs.2008.09.011.
  • De Abreu, D. A. P., J. M. Cruz, and P. P. Losada. 2012. Active and intelligent packaging for the food industry. Food Reviews International 28 (2):146–87. doi: 10.1080/87559129.2011.595022.
  • De Pascual-Teresa, S., and M. T. Sanchez-Ballesta. 2008. Anthocyanins: From plant to health. Phytochemistry Reviews 7 (2):281–99. doi: 10.1007/s11101-007-9074-0.
  • Debeaufort, F., J. A. Quezada-Gallo, and A. Voilley. 1998. Edible films and coatings: Tomorrow’s packagings: A review. Critical Reviews in Food Science and Nutrition 38 (4):299–313. doi: 10.1080/10408699891274219.
  • Ding, L., X. Li, L. Hu, Y. Zhang, Y. Jiang, Z. Mao, H. Xu, B. Wang, X. Feng, and X. Sui. 2020. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydrate Polymers 233:115859. doi: 10.1016/j.carbpol.2020.115859.
  • Dirpan, A., R. Latief, A. Syarifuddin, A. N. F. Rahman, R. P. Putra, and S. H. Hidayat. 2018. The use of color indicator as a smart packaging system for evaluating mangoes Arummanis (Mangifera indica L. var. Arummanisa) freshness. IOP Conference Series: Earth and Environmental Science 157:12031.
  • Dong, H., Z. Ling, X. Zhang, X. Zhang, S. Ramaswamy, and F. Xu. 2020. Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness. Sensors and Actuators B: Chemical 309:127752. doi: 10.1016/j.snb.2020.127752.
  • El-Wahab, H. M. F. A., and G. S. E. D. Moram. 2013. Toxic effects of some synthetic food colorants and/or flavor additives on male rats. Toxicology and Industrial Health 29 (2):224–32. doi: 10.1177/0748233711433935.
  • El Miri, N., K. Abdelouahdi, A. Barakat, M. Zahouily, A. Fihri, A. Solhy, and M. El Achaby. 2015. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers 129:156–67. doi: 10.1016/j.carbpol.2015.04.051.
  • Eskandarabadi, S. M., M. Mahmoudian, K. R. Farah, A. Abdali, E. Nozad, and M. Enayati. 2019. Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles. Food Packaging and Shelf Life 22:100389. doi: 10.1016/j.fpsl.2019.100389.
  • Ezati, P., and J.-W. Rhim. 2020. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers 230:115638. doi: 10.1016/j.carbpol.2019.115638.
  • Ezati, P., H. Tajik, and M. Moradi. 2019. Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensors and Actuators B: Chemical 285:519–28. doi: 10.1016/j.snb.2019.01.089.
  • Ezati, P., H. Tajik, M. Moradi, and R. Molaei. 2019. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. International Journal of Biological Macromolecules 132:157–65. doi: 10.1016/j.ijbiomac.2019.03.173.
  • Fossen, T., L. Cabrita, and O. M. Andersen. 1998. Color and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chemistry 63 (4):435–40. doi: 10.1016/S0308-8146(98)00065-X.
  • Francis, F. J. 1989. Food colorants: Anthocyanins. Critical Reviews in Food Science and Nutrition 28 (4):273–314. doi: 10.1080/10408398909527503.
  • Garavand, F., M. Rouhi, S. H. Razavi, I. Cacciotti, and R. Mohammadi. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules 104 (Pt A):687–707. doi: 10.1016/j.ijbiomac.2017.06.093.
  • Ghaani, M., C. A. Cozzolino, G. Castelli, and S. Farris. 2016. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology 51:1–11. doi: 10.1016/j.tifs.2016.02.008.
  • Giusti, M. M., and R. E. Wrolstad. 2003. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal 14 (3):217–25. doi: 10.1016/S1369-703X(02)00221-8.
  • Guo, M., H. Wang, Q. Wang, M. Chen, L. Li, X. Li, and S. Jiang. 2020. Intelligent double-layer fiber mats with high colorimetric response sensitivity for food freshness monitoring and preservation. Food Hydrocolloids 101:105468. doi: 10.1016/j.foodhyd.2019.105468.
  • Gutiérrez, T. J., and V. A. Alvarez. 2018. Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocolloids 77:407–20. doi: 10.1016/j.foodhyd.2017.10.017.
  • Halász, K., and L. Csóka. 2018. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packaging and Shelf Life 16:185–93. doi: 10.1016/j.fpsl.2018.03.002.
  • Hasan, A., M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, M. Al Hariri, Y-k Lee, and A. A. Jaffa. 2014. Recent advances in application of biosensors in tissue engineering. BioMed Research International 2014:307519. doi: 10.1155/2014/307519.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annual Review of Food Science and Technology 1 (1):163–87. doi: 10.1146/annurev.food.080708.100754.
  • Heinonen, I. M., A. S. Meyer, and E. N. Frankel. 1998. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry 46 (10):4107–12. doi: 10.1021/jf980181c.
  • Hoch, W. A., E. L. Zeldin, and B. H. McCown. 2001. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology 21 (1):1–8. doi: 10.1093/treephys/21.1.1.
  • Hoffmann, T., D. A. Peters, B. Angioletti, S. Bertoli, L. P. Vieira, M. G. R. Reiter, and C. K. De Souza. 2019. Potentials nanocomposites in food packaging. Chemical Engineering Transactions 75:253–8.
  • Hu, M., J. Du, L. Du, Q. Luo, and J. Xiong. 2020. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice. Journal of Functional Foods 65:103725. doi: 10.1016/j.jff.2019.103725.
  • Huang, S., Y. Xiong, Y. Zou, Q. Dong, F. Ding, X. Liu, and H. Li. 2019. A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids 90:198–205. doi: 10.1016/j.foodhyd.2018.12.009.
  • Huang, X., X. Luo, L. Liu, K. Dong, R. Yang, C. Lin, H. Song, S. Li, and Q. Huang. 2020. Formation mechanism of egg white protein/κ-carrageenan composite film and its application to oil packaging. Food Hydrocolloids 105:105780. doi: 10.1016/j.foodhyd.2020.105780.
  • Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18 (9):477–83. doi: 10.1016/j.tplants.2013.06.003.
  • Jamróz, E., P. Kulawik, P. Krzyściak, K. Talaga-Ćwiertnia, and L. Juszczak. 2019. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. International Journal of Biological Macromolecules 122:745–57. doi: 10.1016/j.ijbiomac.2018.11.008.
  • Jancikova, S., E. Jamróz, P. Kulawik, J. Tkaczewska, and D. Dordevic. 2019. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. International Journal of Biological Macromolecules 131:19–28. doi: 10.1016/j.ijbiomac.2019.03.050.
  • Jankowski, A., B. Jankowska, and J. Niedworok. 2000. The effect of anthocyanin dye from grapes on experimental diabetes. Folia Medica Cracoviensia 41 (3-4):5–15.
  • Jayakumar, A., H. K V, S. T S, M. Joseph, S. Mathew, P. G, I. C. Nair, and R. E K. 2019. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules 136:395–403. doi: 10.1016/j.ijbiomac.2019.06.018.
  • Jiang, G., X. Hou, X. Zeng, C. Zhang, H. Wu, G. Shen, S. Li, Q. Luo, M. Li, X. Liu, et al. 2020. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules 143:359–72. doi: 10.1016/j.ijbiomac.2019.12.024.
  • Joseph, J. A., B. Shukitt-Hale, N. A. Denisova, D. Bielinski, A. Martin, J. J. McEwen, and P. C. Bickford. 1999. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. The Journal of Neuroscience 19 (18):8114–21. doi: 10.1523/JNEUROSCI.19-18-08114.1999.
  • Juroszek, P., H. M. Lumpkin, R. Y. Yang, D. R. Ledesma, and C. H. Ma. 2009. Fruit quality and bioactive compounds with antioxidant activity of tomatoes grown on-farm: Comparison of organic and conventional management systems. Journal of Agricultural and Food Chemistry 57 (4):1188–94. doi: 10.1021/jf801992s.
  • Jussen, D., S. Sharma, J. K. Carson, and K. L. Pickering. 2020. Preparation and tensile properties of guar gum hydrogel films. Polymers and Polymer Composites 28 (3):180–6. doi: 10.1177/0967391119867560.
  • Kähkönen, M. P., and M. Heinonen. 2003. Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry 51 (3):628–33. doi: 10.1021/jf025551i.
  • Kamei, H., T. Kojima, M. Hasegawa, T. Koide, T. Umeda, T. Yukawa, and K. Terabe. 1995. Suppression of tumor cell growth by anthocyanins in vitro. Cancer Investigation 13 (6):590–4. doi: 10.3109/07357909509024927.
  • Kanatt, S. R. 2020. Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life 24:100506. doi: 10.1016/j.fpsl.2020.100506.
  • Kang, S., H. Wang, L. Xia, M. Chen, L. Li, J. Cheng, X. Li, and S. Jiang. 2020. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydrate Polymers 229:115402. doi: 10.1016/j.carbpol.2019.115402.
  • Kang, S., H. Wang, M. Guo, L. Zhang, M. Chen, S. Jiang, X. Li, and S. Jiang. 2018. Ethylene-vinyl alcohol copolymer-Montmorillonite multilayer barrier film coated with mulberry anthocyanin for freshness monitoring. Journal of Agricultural and Food Chemistry 66 (50):13268–76. doi: 10.1021/acs.jafc.8b05189.
  • Kang, S.-Y., N. P. Seeram, M. G. Nair, and L. D. Bourquin. 2003. Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Letters 194 (1):13–9. doi: 10.1016/S0304-3835(02)00583-9.
  • Katsumoto, Y., M. Fukuchi-Mizutani, Y. Fukui, F. Brugliera, T. A. Holton, M. Karan, N. Nakamura, K. Yonekura-Sakakibara, J. Togami, A. Pigeaire, et al. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48 (11):1589–600. doi: 10.1093/pcp/pcm131.
  • Kausar, A. 2020. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. Journal of Plastic Film & Sheeting 36 (1):94–112. doi: 10.1177/8756087919849459.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779. doi: 10.1080/16546628.2017.1361779.
  • Kobylewski, S., and M. F. Jacobson. 2012. Toxicology of food dyes. International Journal of Occupational and Environmental Health 18 (3):220–46. doi: 10.1179/1077352512Z.00000000034.
  • Kong, J. M., L. S. Chia, N. K. Goh, T. F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64 (5):923–33. doi: 10.1016/j.phytochem.2003.06.001.
  • Koosha, M., and S. Hamedi. 2019. Intelligent chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Progress in Organic Coatings 127:338–47. doi: 10.1016/j.porgcoat.2018.11.028.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan-based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Kuorwel, K. K., M. J. Cran, J. D. Orbell, S. Buddhadasa, and S. W. Bigger. 2015. Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Comprehensive Reviews in Food Science and Food Safety 14 (4):411–30. doi: 10.1111/1541-4337.12139.
  • Kurek, M., I. E. Garofulić, M. T. Bakić, M. Ščetar, V. D. Uzelac, and K. Galić. 2018. Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids 84:238–46. doi: 10.1016/j.foodhyd.2018.05.050.
  • Kurek, M., L. Hlupić, M. Ščetar, T. Bosiljkov, and K. Galić. 2019. Comparison of two pH-responsive color-changing bio‐based films containing wasted fruit pomace as a source of colorants. Journal of Food Science 84 (9):2490–8. doi: 10.1111/1750-3841.14716.
  • Kuswandi, B., Wicaksono, Y. Jayus, Abdullah, A. Heng, L. Y.. and Ahmad M. 2011. Smart packaging: Sensors for monitoring of food quality and safety. Sensing and Instrumentation for Food Quality and Safety 5 (3–4):137–46. doi: 10.1007/s11694-011-9120-x.
  • Lazzé, M. C., R. Pizzala, M. Savio, L. A. Stivala, E. Prosperi, and L. Bianchi. 2003. Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutation Research 535 (1):103–15.
  • Lee, S. Y., S. J. Lee, D. S. Choi, and S. J. Hur. 2015. Current topics in active and intelligent food packaging for preservation of fresh foods. Journal of the Science of Food and Agriculture 95 (14):2799–810. doi: 10.1002/jsfa.7218.
  • Lev-Yadun, S., and K. S. Gould. 2009. Role of anthocyanins in plant defence. In Anthocyanins: Biosynthesis, functions, and applications, eds. C. Winefield, K. Davies, and K. Gould, 22–8. New York, NY: Springer.
  • Li, H., Z. Deng, H. Zhu, C. Hu, R. Liu, J. C. Young, and R. Tsao. 2012. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International 46 (1):250–9. doi: 10.1016/j.foodres.2011.12.014.
  • Li, Y., Y. Ying, Y. Zhou, Y. Ge, C. Yuan, C. Wu, and Y. Hu. 2019. A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. International Journal of Biological Macromolecules 127:376–84. doi: 10.1016/j.ijbiomac.2019.01.060.
  • Liang, T., G. Sun, L. Cao, J. Li, and L. Wang. 2019. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids 87:858–68. doi: 10.1016/j.foodhyd.2018.08.028.
  • Liang, T., and L. Wang. 2017. A pH-sensing film from tamarind seed polysaccharide with Litmus lichen extract as an indicator. Polymers 10 (1):13. doi: 10.3390/polym10010013.
  • Licciardello, F. 2017. Packaging, blessing in disguise. Review on its diverse contribution to food sustainability. Trends in Food Science & Technology 65:32–9. doi: 10.1016/j.tifs.2017.05.003.
  • Lila, M. A. 2004. Anthocyanins and human health: An in vitro investigative approach. Journal of Biomedicine & Biotechnology 2004 (5):306–13. doi: 10.1155/S111072430440401X.
  • Liu, B., H. Xu, H. Zhao, W. Liu, L. Zhao, and Y. Li. 2017. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers 157:842–9. doi: 10.1016/j.carbpol.2016.10.067.
  • Liu, J., H. Wang, M. Guo, L. Li, M. Chen, S. Jiang, X. Li, and S. Jiang. 2019. Extract from Lycium ruthenicum Murr. incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring. Food Hydrocolloids 94:1–10. doi: 10.1016/j.foodhyd.2019.03.008.
  • Liu, J., H. Wang, P. Wang, M. Guo, S. Jiang, X. Li, and S. Jiang. 2018. Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids 83:134–42. doi: 10.1016/j.foodhyd.2018.05.012.
  • Liu, Y., Y. Qin, R. Bai, X. Zhang, L. Yuan, and J. Liu. 2019. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules 134:993–1001. doi: 10.1016/j.ijbiomac.2019.05.175.
  • Luchese, C. L., V. F. Abdalla, J. C. Spada, and I. C. Tessaro. 2018. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids 82:209–18. doi: 10.1016/j.foodhyd.2018.04.010.
  • Luchese, C. L., T. Garrido, J. C. Spada, I. C. Tessaro, and K. de la Caba. 2018. Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules 106:834–9. doi: 10.1016/j.ijbiomac.2017.08.083.
  • Lule, S. U., and W. Xia. 2005. Food phenolics, pros and cons: A review. Food Reviews International 21 (4):367–88. doi: 10.1080/87559120500222862.
  • Ma, Q., L. Du, and L. Wang. 2017. Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sensors and Actuators B: Chemical 244:759–66. doi: 10.1016/j.snb.2017.01.035.
  • Ma, Q., and L. Wang. 2016. Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical 235:401–7. doi: 10.1016/j.snb.2016.05.107.
  • Ma, Q., T. Liang, L. Cao, and L. Wang. 2018. Intelligent poly(vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. International Journal of Biological Macromolecules 108:576–84. doi: 10.1016/j.ijbiomac.2017.12.049.
  • Ma, Q., Y. Ren, Z. Gu, and L. Wang. 2017. Developing an intelligent film containing Vitis amurensis husk extracts: The effects of pH value of the film-forming solution. Journal of Cleaner Production 166:851–9. doi: 10.1016/j.jclepro.2017.08.099.
  • Markakis, P. 1982. Anthocyanins as food additives: Anthocyanins as food colors. New York, NY: Academic Press.
  • Mazza, G. 1995. Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition 35 (4):341–71. doi: 10.1080/10408399509527704.
  • Mazza, G. 2007. Anthocyanins and heart health. Annali Dell’Istituto Superiore Di Sanita 43 (4):369–74.
  • Medina-Jaramillo, C., O. Ochoa-Yepes, C. Bernal, and L. Famá. 2017. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers 176:187–94. doi: 10.1016/j.carbpol.2017.08.079.
  • Meerasri, J., and R. Sothornvit. 2020. Characterization of bioactive film from pectin incorporated with gamma-aminobutyric acid. International Journal of Biological Macromolecules 147:1285–93. doi: 10.1016/j.ijbiomac.2019.10.094.
  • Mehdizadeh, T., H. Tajik, A. M. Langroodi, R. Molaei, and A. Mahmoudian. 2020. Chitosan-starch film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong the shelf life of beef. Meat Science 163:108073. doi: 10.1016/j.meatsci.2020.108073.
  • Meiers, S., M. Kemény, U. Weyand, R. Gastpar, E. Von Angerer, and D. Marko. 2001. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. Journal of Agricultural and Food Chemistry 49 (2):958–62. doi: 10.1021/jf0009100.
  • Merz, B., C. Capello, G. C. Leandro, D. E. Moritz, A. R. Monteiro, and G. A. Valencia. 2020. A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International Journal of Biological Macromolecules 153:625–32. doi: 10.1016/j.ijbiomac.2020.03.048.
  • Miguel, M. G. 2017. Anthocyanins: Antioxidant and/or anti-inflammatory activities. Journal of Applied Pharmaceutical Science 1 (6):7–15. doi: 10.7324/JAPS.2017.70733.
  • Mihindukulasuriya, S. D. F., and L.-T. Lim. 2014. Nanotechnology development in food packaging: A review. Trends in Food Science & Technology 40 (2):149–67. doi: 10.1016/j.tifs.2014.09.009.
  • Mohammadalinejhad, S., H. Almasi, and M. Moradi. 2020. Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control 113:107169. doi: 10.1016/j.foodcont.2020.107169.
  • Moradi, M., H. Tajik, H. Almasi, M. Forough, and P. Ezati. 2019. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers 222:115030. doi: 10.1016/j.carbpol.2019.115030.
  • Müller, P., and M. Schmid. 2019. Intelligent packaging in the food sector: A brief overview. Foods 8 (1):16. doi: 10.3390/foods8010016.
  • Musso, Y. S., P. R. Salgado, and A. N. Mauri. 2016. Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloids 61:523–30. doi: 10.1016/j.foodhyd.2016.06.013.
  • Musso, Y. S., P. R. Salgado, and A. N. Mauri. 2017. Smart edible films based on gelatin and curcumin. Food Hydrocolloids 66:8–15. doi: 10.1016/j.foodhyd.2016.11.007.
  • Musso, Y. S., P. R. Salgado, and A. N. Mauri. 2019. Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids 89:674–81. doi: 10.1016/j.foodhyd.2018.11.036.
  • Mustafa, P., M. B. Niazi, Z. Jahan, G. Samin, A. Hussain, T. Ahmed, and S. R. Naqvi. 2020. PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. Journal of Food Safety 40 (1):12725. doi: 10.1111/jfs.12725.
  • Nešić, A., G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, and C. Delattre. 2019. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25 (1):135. doi: 10.3390/molecules25010135.
  • Nichenametla, S. N., T. G. Taruscio, D. L. Barney, and J. H. Exon. 2006. A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition 46 (2):161–83. doi: 10.1080/10408390591000541.
  • Norton, R. A. 1999. Inhibition of aflatoxin B(1) biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. Journal of Agricultural and Food Chemistry 47 (3):1230–5. doi: 10.1021/jf980995t.
  • Peighambardoust, S. J., S. H. Peighambardoust, N. Mohammadzadeh Pournasir, and P. Pakdel. 2019. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life 22:100420. doi: 10.1016/j.fpsl.2019.100420.
  • Peralta, J., C. M. Bitencourt-Cervi, V. B. V. Maciel, C. M. P. Yoshida, and R. A. Carvalho. 2019. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packaging and Shelf Life 19:47–55. doi: 10.1016/j.fpsl.2018.11.017.
  • Pereira, V. A., I. N. Q. De Arruda, and R. Stefani. 2015. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids 43:180–8. doi: 10.1016/j.foodhyd.2014.05.014.
  • Pirsa, S., I. Karimi Sani, M. K. Pirouzifard, and A. Erfani. 2020. Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A 37 (4):634–48. doi: 10.1080/19440049.2020.1716079.
  • Pourjavaher, S., H. Almasi, S. Meshkini, S. Pirsa, and E. Parandi. 2017. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers 156:193–201. doi: 10.1016/j.carbpol.2016.09.027.
  • Poyatos-Racionero, E., J. V. Ros-Lis, J. L. Vivancos, and R. Martínez-Máñez. 2018. Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production 172:3398–409. doi: 10.1016/j.jclepro.2017.11.075.
  • Prietto, L., T. C. Mirapalhete, V. Z. Pinto, J. F. Hoffmann, N. L. Vanier, L.-T. Lim, A. R. Guerra Dias, and E. da Rosa Zavareze. 2017. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology 80:492–500. doi: 10.1016/j.lwt.2017.03.006.
  • Qin, Y., Y. Liu, H. Yong, J. Liu, X. Zhang, and J. Liu. 2019. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules 134:80–90. doi: 10.1016/j.ijbiomac.2019.05.029.
  • Qin, Y., Y. Liu, L. Yuan, H. Yong, and J. Liu. 2019. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids 96:102–11. doi: 10.1016/j.foodhyd.2019.05.017.
  • Qin, Y., Y. Liu, X. Zhang, and J. Liu. 2020. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids 100:105, 105410. doi: 10.1016/j.foodhyd.2019.105410.
  • Ramesh, M., G. Narendra, and S. Sasikanth. 2020. A Review on biodegradable packaging materials in extending the shelf life and quality of fresh fruits and vegetables. In Waste management as economic industry towards circular economy, ed. S. K. Ghosh, 59–65. Singapore: Springer.
  • Ramirez-Tortosa, C., Ø. M. Andersen, P. T. Gardner, P. C. Morrice, S. G. Wood, S. J. Duthie, A. R. Collins, and G. G. Duthie. 2001. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology and Medicine 31 (9):1033–7. doi: 10.1016/S0891-5849(01)00618-9.
  • Rawdkuen, S., A. Faseha, S. Benjakul, and P. Kaewprachu. 2020. Application of anthocyanin as a color indicator in gelatin films. Food Bioscience 36:100603. doi: 10.1016/j.fbio.2020.100603.
  • Rechner, A. R., and C. Kroner. 2005. Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thrombosis Research 116 (4):327–34. doi: 10.1016/j.thromres.2005.01.002.
  • Rhim, J.-W., and P. K. W. Ng. 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition 47 (4):411–33. doi: 10.1080/10408390600846366.
  • Rhim, J.-W., H.-M. Park, and C.-S. Ha. 2013. Bio-nanocomposites for food packaging applications. Progress in Polymer Science 38 (10-11):1629–52. doi: 10.1016/j.progpolymsci.2013.05.008.
  • Rhim, J.-W., and L. F. Wang. 2013. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydrate Polymers 96 (1):71–81. doi: 10.1016/j.carbpol.2013.03.083.
  • Rossi, A., I. Serraino, P. Dugo, R. Di Paola, L. Mondello, T. Genovese, D. Morabito, G. Dugo, L. Sautebin, A. P. Caputi, et al. 2003. Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radical Research 37 (8):891–900. doi: 10.1080/1071576031000112690.
  • Rotariu, L., F. Lagarde, N. Jaffrezic-Renault, and C. Bala. 2016. Electrochemical biosensors for fast detection of food contaminants - Trends and perspective. TrAC Trends in Analytical Chemistry 79:80–7. doi: 10.1016/j.trac.2015.12.017.
  • Roy, S., H. C. Kim, J. W. Kim, L. Zhai, Q. Y. Zhu, and J. Kim. 2020. Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Materials Today Communications 24:100984. doi: 10.1016/j.mtcomm.2020.100984.
  • Roy, S., and J.-W. Rhim. 2019a. Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids 94:391–8. doi: 10.1016/j.foodhyd.2019.03.038.
  • Roy, S., and J.-W. Rhim. 2019b. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids 90:500–7. doi: 10.1016/j.foodhyd.2018.12.056.
  • Roy, S., and J.-W. Rhim. 2020a. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids and Surfaces. B, Biointerfaces 188:110761. doi: 10.1016/j.colsurfb.2019.110761.
  • Roy, S., and J.-W. Rhim. 2020b. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules 148:666–76. doi: 10.1016/j.ijbiomac.2020.01.204.
  • Roy, S., and J.-W. Rhim. 2020c. Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocolloids 98:105302. doi: 10.1016/j.foodhyd.2019.105302.
  • Roy, S., J.-W. Rhim, and L. Jaiswal. 2019. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids 93:156–66. doi: 10.1016/j.foodhyd.2019.02.034.
  • Roy, S., S. Shankar, and J. W. Rhim. 2019. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids 88:237–46. doi: 10.1016/j.foodhyd.2018.10.013.
  • Roy, S., L. Van Hai, H. C. Kim, L. Zhai, and J. Kim. 2020. Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films. Carbohydrate Polymers 231:115729. doi: 10.1016/j.carbpol.2019.115729.
  • Rukchon, C., A. Nopwinyuwong, S. Trevanich, T. Jinkarn, and P. Suppakul. 2014. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 130:547–54. doi: 10.1016/j.talanta.2014.07.048.
  • Rukmanikrishnan, B., F. R. M. Ismail, R. K. Manoharan, S. S. Kim, and J. Lee. 2020. Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: Rheological and antimicrobial properties. International Journal of Biological Macromolecules 148:1182–9. doi: 10.1016/j.ijbiomac.2019.11.155.
  • Sarabandi, K., S. M. Jafari, A. S. Mahoonak, and A. Mohammadi. 2019. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules 140:59–68. doi: 10.1016/j.ijbiomac.2019.08.133.
  • Sebastian, R. S., C. Wilkinson Enns, J. D. Goldman, C. L. Martin, L. C. Steinfeldt, T. Murayi, and A. J. Moshfegh. 2015. A new database facilitates characterization of flavonoid intake, sources, and positive associations with diet quality among US adults. The Journal of Nutrition 145 (6):1239–48. doi: 10.3945/jn.115.213025.
  • Seeram, N. P., R. A. Momin, M. G. Nair, and L. D. Bourquin. 2001. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8 (5):362–9. doi: 10.1078/0944-7113-00053.
  • Sharma, C., R. Dhiman, N. Rokana, and H. Panwar. 2017. Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology 8:1735. doi: 10.3389/fmicb.2017.01735.
  • Sharma, R., S. M. Jafari, and S. Sharma. 2020. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086. doi: 10.1016/j.foodcont.2020.107086.
  • Sigurdson, G. T., P. Tang, and M. M. Giusti. 2017. Natural colorants: Food colorants from natural sources. Annual Review of Food Science and Technology 8 (1):261–80. doi: 10.1146/annurev-food-030216-025923.
  • Silva-Pereira, M. C., J. A. Teixeira, V. A. Pereira-Júnior, and R. Stefani. 2015. Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT - Food Science and Technology 61 (1):258–62. doi: 10.1016/j.lwt.2014.11.041.
  • Singh, S., K. K. Gaikwad, and Y. S. Lee. 2018. Anthocyanin – A natural dye for smart food packaging systems. Korean Journal of Packaging Science and Technology 24 (3):167–80. doi: 10.20909/kopast.2018.24.3.167.
  • Siracusa, V., P. Rocculi, S. Romani, and M. D. Rosa. 2008. Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology 19 (12):634–43. doi: 10.1016/j.tifs.2008.07.003.
  • Slimestad, R., and H. Solheim. 2002. Anthocyanins from black currants (Ribes nigrum L.). Journal of Agricultural and Food Chemistry 50 (11):3228–31. doi: 10.1021/jf011581u.
  • Smeriglio, A., D. Barreca, E. Bellocco, and D. Trombetta. 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research : PTR 30 (8):1265–86. doi: 10.1002/ptr.5642.
  • Smith, M. A. L., K. A. Marley, D. Seigler, K. W. Singletary, and B. Meline. 2000. Bioactive properties of wild blueberry fruits. Journal of Food Science 65 (2):352–6. doi: 10.1111/j.1365-2621.2000.tb16006.x.
  • Sohail, M., D.-W. Sun, and Z. Zhu. 2018. Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition 58 (15):2650–62. doi: 10.1080/10408398.2018.1449731.
  • Srivastava, S., R. Sinha, and D. Roy. 2004. Toxicological effects of malachite green. Aquatic Toxicology (Amsterdam, Netherlands) 66 (3):319–29. doi: 10.1016/j.aquatox.2003.09.008.
  • Stintzing, F. C., and R. Carle. 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology 15 (1):19–38. doi: 10.1016/j.tifs.2003.07.004.
  • Stoll, L., Silva, A. M. da, Iahnke, A. O. E. S. Costa, T. M. H. Flôres, S. H.. and Rios A. d O. 2017. Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation 41 (6):e13218. doi: 10.1111/jfpp.13218.
  • Sun, G., W. Chi, C. Zhang, S. Xu, J. Li, and L. Wang. 2019. Developing a green film with pH-sensitivity and antioxidant activity based on к-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids 94:345–53. doi: 10.1016/j.foodhyd.2019.03.039.
  • Sun, G., W. Chi, S. Xu, and L. Wang. 2020. Developing a simultaneously antioxidant and pH-responsive κ-carrageenan/hydroxypropyl methylcellulose film blended with Prunus maackii extract. International Journal of Biological Macromolecules 155:1393–400. doi: 10.1016/j.ijbiomac.2019.11.114.
  • Sun, J., H. Jiang, H. Wu, C. Tong, J. Pang, and C. Wu. 2020. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids 107:105942. doi: 10.1016/j.foodhyd.2020.105942.
  • Sun, W., L. Liang, X. Meng, Y. Li, F. Gao, X. Liu, S. Wang, X. Gao, and L. Wang. 2016. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in freesia hybrida. Frontiers in Plant Science 7:410. doi: 10.3389/fpls.2016.00410.
  • Sung, S.-Y., L. T. Sin, T.-T. Tee, S.-T. Bee, A. R. Rahmat, W. A. W. A. Rahman, A.-C. Tan, and M. Vikhraman. 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology 33 (2):110–23.
  • Tirtashi, F. E., M. Moradi, H. Tajik, M. Forough, P. Ezati, and B. Kuswandi. 2019. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. International Journal of Biological Macromolecules 136:920–6. doi: 10.1016/j.ijbiomac.2019.06.148.
  • Torskangerpoll, K., and O. M. Andersen. 2005. Color stability of anthocyanins in aqueous solutions at various pH values. Food Chemistry 89 (3):427–40. doi: 10.1016/j.foodchem.2004.03.002.
  • Tsuda, T., F. Horio, K. Uchida, H. Aoki, and T. Osawa. 2003. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition 133 (7):2125–30. doi: 10.1093/jn/133.7.2125.
  • Turturică, M., A. M. Oancea, G. Râpeanu, and G. Bahrim. 2015. Anthocyanins: Naturally occuring fruit pigments with functional properties. The Annals of the University Dunarea de Jos of Galati. Fascicle VI - Food Technology 39 (1):9–24.
  • Uranga, J., A. Etxabide, P. Guerrero, and K. de la Caba. 2018. Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids 84:313–20. doi: 10.1016/j.foodhyd.2018.06.018.
  • Vadivel, M., M. Sankarganesh, J. D. Raja, J. Rajesh, D. Mohanasundaram, and M. Alagar. 2019. Bioactive constituents and bio-waste derived chitosan/xylan based biodegradable hybrid nanocomposite for sensitive detection of fish freshness. Food Packaging and Shelf Life 22:100384. doi: 10.1016/j.fpsl.2019.100384.
  • Vanderroost, M., P. Ragaert, F. Devlieghere, and B. De Meulenaer. 2014. Intelligent food packaging: The next generation. Trends in Food Science & Technology 39 (1):47–62. doi: 10.1016/j.tifs.2014.06.009.
  • Veiga-Santos, P., C. Ditchfield, and C. C. Tadini. 2011. Development and evaluation of a novel pH indicator biodegradable film based on cassava starch. Journal of Applied Polymer Science 120 (2):1069–79. doi: 10.1002/app.33255.
  • Vieira, M. G. A., M. A. Da Silva, L. O. Dos Santos, and M. M. Beppu. 2011. Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 47 (3):254–63. doi: 10.1016/j.eurpolymj.2010.12.011.
  • Vilela, C., C. Moreirinha, E. M. Domingues, F. M. L. Figueiredo, A. Almeida, and C. S. R. Freire. 2019. Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging. Nanomaterials 9 (7):980. doi: 10.3390/nano9070980.
  • Vo, T.-V., T.-H. Dang, and B.-H. Chen. 2019. Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers 11 (7):1088. doi: 10.3390/polym11071088.
  • Vukoja, J., A. Picheler, and M. Kopjar. 2019. Stability of anthocyanins, phenolics and color of tart cherry jams. Foods 8 (7):255. doi: 10.3390/foods8070255.
  • Wallace, T. C., and M. M. Giusti. 2015. Anthocyanins. Advances in Nutrition (Bethesda, Md.) 6 (5):620–2. doi: 10.3945/an.115.009233.
  • Wallace, T. C., and M. M. Giusti. 2019. Anthocyanins-nature’s bold, beautiful, and health-promoting colors. Foods 8 (11):550. doi: 10.3390/foods8110550.
  • Wallace, T., M. Slavin, and C. Frankenfeld. 2016. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients 8 (1):32. doi: 10.3390/nu8010032.
  • Wang, C. J., J. M. Wang, W. L. Lin, C. Y. Chu, F. P. Chou, and T. H. Tseng. 2000. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 38 (5):411–6. doi: 10.1016/S0278-6915(00)00011-9.
  • Wang, L. S., and G. D. Stoner. 2008. Anthocyanins and their role in cancer prevention. Cancer Letters 269 (2):281–90. doi: 10.1016/j.canlet.2008.05.020.
  • Wang, S. Y., and H. S. Lin. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry 48 (2):140–6. doi: 10.1021/jf9908345.
  • Wang, X., H. Yong, L. Gao, L. Li, M. Jin, and J. Liu. 2019. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloids 89:56–66. doi: 10.1016/j.foodhyd.2018.10.019.
  • Wen, H., Y.-I. Hsu, T.-A. Asoh, and H. Uyama. 2020. Antioxidant activity and physical properties of pH-sensitive biocomposite using poly(vinyl alcohol) incorporated with green tea extract. Polymer Degradation and Stability 178:109215. doi: 10.1016/j.polymdegradstab.2020.109215.
  • West, M. E., and L. J. Mauer. 2013. Color and chemical stability of a variety of anthocyanins and ascorbic acid in solution and powder forms. Journal of Agricultural and Food Chemistry 61 (17):4169–79. doi: 10.1021/jf400608b.
  • Weston, M., M. A. T. Phan, J. Arcot, and R. Chandrawati. 2020. Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chemistry 326:127017. doi: 10.1016/j.foodchem.2020.127017.
  • Wrolstad, R. E., R. W. Durst, and J. Lee. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology 16 (9):423–8. doi: 10.1016/j.tifs.2005.03.019.
  • Wu, C., Y. Li, J. Sun, Y. Lu, C. Tong, L. Wang, Z. Yan, and J. Pang. 2020. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocolloids 98:105245. doi: 10.1016/j.foodhyd.2019.105245.
  • Wu, C., J. Sun, P. Zheng, X. Kang, M. Chen, Y. Li, Y. Ge, Y. Hu, and J. Pang. 2019. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers 222:115006. doi: 10.1016/j.carbpol.2019.115006.
  • Wu, X., G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, and R. L. Prior. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry 54 (11):4069–75. doi: 10.1021/jf060300l.
  • Yabuya, T., M. Nakamura, T. Iwashina, M. Yamaguchi, and T. Takehara. 1997. Anthocyanin-flavone copigmentation in bluish purple flowers of Japanese garden iris (Iris ensata thunb). Euphytica 98 (3):163–7. doi: 10.1007/BF00033766.
  • Yadav, M., and F. C. Chiu. 2019. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydrate Polymers 211:181–94. doi: 10.1016/j.carbpol.2019.01.114.
  • Yam, K. L., P. T. Takhistov, and J. Miltz. 2005. Intelligent packaging: Concepts and applications. Journal of Food Science 70 (1):R1–10. doi: 10.1111/j.1365-2621.2005.tb09052.x.
  • Yang, Z., Y. Zheng, and S. Cao. 2009. Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging activity of Chinese bayberry fruit. Journal of Agricultural and Food Chemistry 57 (1):176–81. doi: 10.1021/jf803007j.
  • Yong, H., J. Liu, Y. Qin, R. Bai, X. Zhang, and J. Liu. 2019. Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix. International Journal of Biological Macromolecules 137:307–16. doi: 10.1016/j.ijbiomac.2019.07.009.
  • Yong, H., X. Wang, R. Bai, Z. Miao, X. Zhang, and J. Liu. 2019. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids 90:216–24. doi: 10.1016/j.foodhyd.2018.12.015.
  • Yong, H., X. Wang, X. Zhang, Y. Liu, Y. Qin, and J. Liu. 2019. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids 94:93–104. doi: 10.1016/j.foodhyd.2019.03.012.
  • Yoshida, C. M. P., V. B. V. Maciel, M. E. D. Mendonça, and T. T. Franco. 2014. Chitosan biobased and intelligent films: Monitoring pH variations. LWT - Food Science and Technology 55 (1):83–9. doi: 10.1016/j.lwt.2013.09.015.
  • Youdim, K. A., A. Martin, and J. A. Joseph. 2000. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biology & Medicine 29 (1):51–60. doi: 10.1016/S0891-5849(00)00329-4.
  • Yousefi, H., H. M. Su, S. M. Imani, K. Alkhaldi, C. D. Filipe, and T. F. Didar. 2019. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sens 4 (4):808–21. doi: 10.1021/acssensors.9b00440.
  • Zeng, P., X. Chen, Y.-R. Qin, Y.-H. Zhang, X.-P. Wang, J.-Y. Wang, Z.-X. Ning, Q.-J. Ruan, and Y.-S. Zhang. 2019. Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Research International (Ottawa, Ont.) 126:108604. doi: 10.1016/j.foodres.2019.108604.
  • Zhai, X., Z. Li, J. Zhang, J. Shi, X. Zou, X. Huang, D. Zhang, Y. Sun, Z. Yang, M. Holmes, et al. 2018. Natural Biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging. Journal of Agricultural and Food Chemistry 66 (48):12836–46. doi: 10.1021/acs.jafc.8b04932.
  • Zhai, X., J. Shi, X. Zou, S. Wang, C. Jiang, J. Zhang, X. Huang, W. Zhang, and M. Holmes. 2017. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids 69:308–17. doi: 10.1016/j.foodhyd.2017.02.014.
  • Zhai, X., X. Zou, J. Shi, X. Huang, Z. Sun, Z. Li, Y. Sun, Y. Li, X. Wang, M. Holmes, et al. 2020. Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sensors and Actuators B: Chemical 302:127130. doi: 10.1016/j.snb.2019.127130.
  • Zhang, J., X. Zou, X. Zhai, X. Huang, C. Jiang, and M. Holmes. 2019. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chemistry 272:306–12. doi: 10.1016/j.foodchem.2018.08.041.
  • Zhang, X.-F., L. Song, Z. Wang, Y. Wang, L. Wan, and J. Yao. 2020. Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. International Journal of Biological Macromolecules 145:663–7. doi: 10.1016/j.ijbiomac.2019.12.241.
  • Zhang, X., Y. Liu, H. Yong, Y. Qin, J. Liu, and J. Liu. 2019. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids 94:80–92. doi: 10.1016/j.foodhyd.2019.03.009.
  • Zhang, K., T.-S. Huang, H. Yan, X. Hu, and T. Ren. 2020. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. International Journal of Biological Macromolecules 145:768–76. doi: 10.1016/j.ijbiomac.2019.12.159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.