2,778
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Detection of adulteration in food based on nondestructive analysis techniques: a review

, , , , &

References

  • Alamprese, C., M. Casale, N. Sinelli, S. Lanteri, and E. Casiraghi. 2013. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. Lwt - Food Science and Technology 53 (1):225–32. doi: 10.1016/j.lwt.2013.01.027.
  • Astrid, H., J. A. Fauerbach, N. J. Sacco, M. C. Bonetto, and E. Corton. 2012. Voltamperometric discrimination of urea and melamine adulterated skimmed milk powder. Sensors (Basel, Switzerland) 12 (9):12220–34. doi: 10.3390/s120912220.
  • Bertemes-Filho, P., L. H. Negri, and A. S. Paterno. 2011. Detection of bovine milk adulterants using bioimpedance measurements and artificial neural network. 5th European conference of the international federation for medical and biological engineering, ed. Á. Jobbágy, vol. 37. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-23508-5_330.
  • Bilge, G., H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci. 2016. Identification of meat species by using laser-induced breakdown spectroscopy. Meat Science 119:118–22. doi: 10.1016/j.meatsci.2016.04.035.
  • Bougrini, M., K. Tahri, Z. Haddi, T. Saidi, N. E. Bari, and B. Bouchikhi. 2014. Detection of adulteration in argan oil by using an electronic nose and a voltammetric electronic tongue. Journal of Sensors 2014:1–10. doi: 10.1155/2014/245831.
  • Bougrini, M., K. Tahri, T. Saidi, N. El Alami El Hassani, B. Bouchikhi, and N. El Bari. 2016. Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue. Food Analytical Methods 9 (8):2161–73. doi: 10.1007/s12161-015-0393-2.
  • Chakraborty, M., and K. Biswas. 2018. Limit of detection for five common adulterants in milk: A study with different fat percent. IEEE Sensors Journal 18 (6):2395–403. doi: 10.1109/JSEN.2018.2794764.
  • Chen, B., B. B. Xu, and Z. T. Wang. 2010. Determination of eight food additives in food by high performance liquid chromatographic. Food Science and Technology 35 (5):301–6. doi: 10.13684/j.cnki.spkj.2010.05.025.
  • Chen, H., C. Tan, Z. Lin, and T. Wu. 2017. Detection of melamine adulteration in milk by near-infrared spectroscopy and one-class partial least squares. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 173:832–6. doi: 10.1016/j.saa.2016.10.051.
  • Chen, Z., T. Wu, C. Xiang, X. Xu, and X. Tian. 2019. Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning. Molecules 24 (15):2851–64. doi: 10.3390/molecules24152851.
  • Cheng, J. H., Q. Dai, D. W. Sun, X. A. Zeng, D. Liu, and H. B. Pu. 2013. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in Food Science & Technology 34 (1):18–31. doi: 10.1016/j.tifs.2013.08.005.
  • Coelho, T. M., E. C. Vidotti, M. C. Rollemberg, A. N. Medina, M. L. Baesso, N. Cella, and A. C. Bento. 2010. Photoacoustic spectroscopy as a tool for determination of food dyes: Comparison with first derivative spectrophotometry. Talanta 81 (1–2):202–7. doi: 10.1016/j.talanta.2009.11.058.
  • Concina, I., M. Falasconi, and V. Sberveglieri. 2012. Electronic noses as flexible tools to assess food quality and safety: Should we trust them? IEEE Sensors Journal 12 (11):3232–7. doi: 10.1109/JSEN.2012.2195306.
  • Cordella, C., I. Moussa, A.-C. Martel, N. Sbirrazzuoli, and L. Lizzani-Cuvelier. 2002. Recent developments in food characterization and adulteration detection: Technique-oriented perspectives. Journal of Agricultural and Food Chemistry 50 (7):1751–64. doi: 10.1021/jf011096z.
  • Danezis, G. P., A. S. Tsagkaris, V. Brusic, and C. A. Georgiou. 2016. Food authentication: State of the art and prospects. Current Opinion in Food Science 10:22–31. doi: 10.1016/j.cofs.2016.07.003.
  • Dankowska, A., and M. MaÅ Ecka. 2009. Application of synchronous fluorescence spectroscopy for determination of extra virgin olive oil adulteration. European Journal of Lipid Science and Technology 111 (12):1233–9. doi: 10.1002/ejlt.200800295.
  • Dankowska, A., M. Małecka, and W. Kowalewski. 2014. Application of synchronous fluorescence spectroscopy with multivariate data analysis for determination of butter adulteration. International Journal of Food Science & Technology 49 (12):2628–34. doi: 10.1111/ijfs.12594.
  • Das, C., S. Chakraborty, K. Acharya, N. K. Bera, D. Chattopadhyay, A. Karmakar, and S. Chattopadhyay. 2017. FT-MIR supported electrical impedance spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta 171:327–34. doi: 10.1016/j.talanta.2017.05.016.
  • Deniz, E., E. Güneş Altuntaş, B. Ayhan, N. İğci, D. Özel Demiralp, and K. Candoğan. 2018. Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. Journal of Food Processing and Preservation 42 (10):e13767. doi: 10.1111/jfpp.13767.
  • Ding, X. X., Y. N. Ni, and K. Serge. 2015. NIR spectroscopy and chemometrics for the discrimination of pure, powdered, purple sweet potatoes and their samples adulterated with the white sweet potato flour. Chemometrics and Intelligent Laboratory Systems 144 :17–23. doi: 10.1016/j.chemolab.2015.03.004.
  • Dong, W., Y. Q. Zhang, B. Zhang, and X. P. Wang. 2012. Quantitative analysis of adulteration of extra virgin olive oil using Raman spectroscopy improved by Bayesian framework least squares support vector machines. Analytical Methods 4 (9):2772. doi: 10.1039/c2ay25431j.
  • Durante, G., W. Becari, F. A. S. Lima, and H. E. M. Peres. 2016. Electrical impedance sensor for real-time detection of bovine milk adulteration. IEEE Sensors Journal 16 (4):861–5. doi: 10.1109/JSEN.2015.2494624.
  • Eksi-Kocak, H., O. Mentes-Yilmaz, and I. H. Boyaci. 2016. Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. European Food Research and Technology 242 (2):271–7. doi: 10.1007/s00217-015-2538-3.
  • El-Mesery, H. S., H. Mao, and A. E. Abomohra. 2019. Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 19 (4):846. doi: 10.3390/s19040:846.
  • Elmasry, G., M. Kamruzzaman, D. W. Sun, and P. Allen. 2012. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Critical Reviews in Food Science and Nutrition 52 (11):999–1023. doi: 10.1080/10408398.2010.543495.
  • Elzey, B., D. Pollard, and S. O. Fakayode. 2016. Determination of adulterated neem and flaxseed oil compositions by FTIR spectroscopy and multivariate regression analysis. Food Control 68:303–9. doi: 10.1016/j.foodcont.2016.04.008.
  • Fan, Y. X., M. S. Kim, F. Cheng, S.-I. Tu, K. L. Chao and L. J. Xie. 2010. Quantitative analysis and detection of adulteration in pork using near-infrared spectroscopy. Proceedings of SPIE 7676. doi: 10.1117/12.852521.
  • Farley, C., A. Kassu, N. Bose, A. Jackson-Davis, J. Boateng, P. Ruffin, and A. Sharma. 2017. Short distance standoff raman detection of extra virgin olive oil adulterated with canola and grapeseed oils. Applied Spectroscopy 71 (6):1340–7. doi: 10.1177/0003702816681796.
  • Feng, Y. Z., and D. W. Sun. 2012. Application of hyperspectral imaging in food safety inspection and control: A review. Critical Reviews in Food Science and Nutrition 52 (11):1039–58. doi: 10.1080/10408398.2011.651542.
  • Ferreiro-Gonzalez, M., E. Espada-Bellido, L. Guillen-Cueto, M. Palma, C. G. Barroso, and G. F. Barbero. 2018. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 188 :288–92. doi: 10.1016/j.talanta.2018.05.095.
  • Filoda, P. F., L. F. Fetter, F. Fornasier, R. d C. d S. Schneider, G. A. Helfer, B. Tischer, A. Teichmann, and A. B. da Costa. 2019. Fast methodology for identification of olive oil adulterated with a mix of different vegetable oils. Food Analytical Methods 12 (1):293–304. doi: 10.1007/s12161-018-1360-5.
  • Fu, C. L., Y. Li, L. F. Chen, S. Y. Wang, and W. Wang. 2018. Rapid detection of lotus seed powder based on near infrared spectrum technology. Spectroscopy and Spectral Analysis 38 (2):424–9.
  • Ge, F., C. Chen, D. Liu, and S. Zhao. 2014. Rapid quantitative determination of walnut oil adulteration with sunflower oil using fluorescence spectroscopy. Food Analytical Methods 7 (1):146–50. doi: 10.1007/s12161-013-9610-z.
  • Grossi, M., and B. Riccò. 2017. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. Journal of Sensors and Sensor Systems 6 (2):303–25. doi: 10.5194/jsss-6-303-2017.
  • He, H., D. W. Sun, H. Pu, L. Chen, and L. Lin. 2019. Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments. Critical Reviews in Food Science and Nutrition 59 (5):770–93. doi: 10.1080/10408398.2018.1528436.
  • Heidarbeigi, K., S. S. Mohtasebi, A. Foroughirad, M. Ghasemi-Varnamkhasti, S. Rafiee, and K. Rezaei. 2015. Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties 18 (7):1391–401. doi: 10.1080/10942912.2014.915850.
  • Hernández-Aguilar, C., A. Domínguez-Pacheco, A. Cruz-Orea, and R. Ivanov. 2019. Photoacoustic spectroscopy in the optical characterization of foodstuff: A review. Journal of Spectroscopy 2019:1–34. doi: 10.1155/2019/5920948.
  • Hong, H. Z., and J. Wang. 2014. Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. Journal of Food Engineering 126:89–97. doi: 10.1016/j.jfoodeng.2013.11.008.
  • Hong, X. Z., J. Wang, and S. S. Qiu. 2014. Authenticating cherry tomato juices—Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Research International 60:173–9. doi: 10.1016/j.foodres.2013.10.039.
  • Hu, L. Q., C. L. Yin, S. Ma, and Z. M. Liu. 2018. Assessing the authenticity of black pepper using diffuse reflectance mid-infrared Fourier transform spectroscopy coupled with chemometrics. Computers and Electronics in Agriculture 154:491–500. doi: 10.1016/j.compag.2018.09.029.
  • Hu, O., J. Chen, P. Gao, G. Li, S. Du, H. Fu, Q. Shi, and L. Xu. 2019. Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods. Journal of the Science of Food and Agriculture 99 (5):2285–91. doi: 10.1002/jsfa.9424.
  • Hu, Y., L. Zou, X. Huang, and X. Lu. 2017. Detection and quantification of offal content in ground beef meat using vibrational spectroscopic-based chemometric analysis. Scientific Reports 7 (1):15162. doi: 10.1038/s41598-017-15389-3.
  • Huang, Y., S. Min, J. Duan, L. Wu, and Q. Li. 2014. Identification of additive components in powdered milk by NIR imaging methods. Food Chemistry 145:278–83. doi: 10.1016/j.foodchem.2013.06.116.
  • Huang, Y., K. Tian, S. Min, Y. Xiong, and G. Du. 2015. Distribution assessment and quantification of counterfeit melamine in powdered milk by NIR imaging methods. Food Chemistry 177:174–81. doi: 10.1016/j.foodchem.2015.01.029.
  • Huyan, Z. Y., S. X. Ding, X. L. Liu, and X. Z. Yu. 2018. Authentication and adulteration detection of peanut oils of three flavor types using synchronous fluorescence spectroscopy. Analytical Methods 10 (26):3207–14. doi: 10.1039/C8AY00837J.
  • Jimenez, J. C., F. M. Amores, E. G. Solorzano, G. A. Rodriguez, A. La Mantia, P. Blasi, and R. G. Loor. 2018. Differentiation of Ecuadorian National and CCN-51 cocoa beans and their mixtures by computer vision. Journal of the Science of Food and Agriculture 98 (7):2824–9. doi: 10.1002/jsfa.8790.
  • Kalivas, J. H., C. A. Georgiou, M. Moira, I. Tsafaras, E. A. Petrakis, and G. A. Mousdis. 2014. Food adulteration analysis without laboratory prepared or determined reference food adulterant values. Food Chemistry 148:289–93. doi: 10.1016/j.foodchem.2013.10.065.
  • Kamruzzaman, M., Y. Makino, and S. Oshita. 2015. Hyperspectral imaging in tandem with multivariate analysis and image processing for non-invasive detection and visualization of pork adulteration in minced beef. Analytical Methods 7 (18):7496–502. doi: 10.1039/C5AY01617G.
  • Kawase, M. 2012. Application of terahertz waves to food science. Food Science and Technology Research 18 (5):601–9. doi: 10.3136/fstr.18.601.
  • Kiani, S., S. Minaei, and M. Ghasemi-Varnamkhasti. 2017. Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Computers and Electronics in Agriculture 141:46–53. doi: 10.1016/j.compag.2017.06.018.
  • Kim, M. S., K. Chao, B. A. Chin, S. Dhakal, K. Chao, J. Qin, M. Kim, W. Schmidt, and D. Chan. 2016. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy. Proceedings of SPIE 9864. doi: 10.1117/12.2223957.
  • Koca, N., N. A. Kocaoglu-Vurma, W. J. Harper, and L. E. Rodriguez-Saona. 2010. Application of temperature-controlled attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy for rapid estimation of butter adulteration. Food Chemistry 121 (3):778–82. doi: 10.1016/j.foodchem.2009.12.083.
  • Kou, Y., Q. Li, X. Liu, R. Zhang, and X. Yu. 2018. Efficient detection of edible oils adulterated with used frying oils through PE-film-based FTIR spectroscopy combined with DA and PLS. Journal of Oleo Science 67 (9):1083–9. doi: 10.5650/jos.ess18029.
  • Kuson, P., and A. Terdwongworakul. 2013. Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. Journal of Food Engineering 116 (1):50–6. doi: 10.1016/j.jfoodeng.2012.11.021.
  • Kuswandi, B., K. A. Cendekiawan, N. Kristiningrum, and M. Ahmad. 2015. Pork adulteration in commercial meatballs determined by chemometric analysis of NIR Spectra. Journal of Food Measurement and Characterization 9 (3):313–23. doi: 10.1007/s11694-015-9238-3.
  • Latief, M., A. Khorsidtalab, I. Saputra, R. Akmeliawati, A. Nurashikin, I. Jaswir, and G. Witjaksono. 2017. Rapid lard identification with portable electronic nose. IOP Conference Series: Materials Science and Engineering 260:012043. doi: 10.1088/1757-899X/260/1/012043.
  • Li, B., H. Wang, Q. Zhao, J. Ouyang, and Y. Wu. 2015. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chemistry 181:25–30. doi: 10.1016/j.foodchem.2015.02.079.
  • Li, L. A., Y. P. Yu, J. J. Yang, R. J. Yang, G. M. Dong, and T. M. Ji. 2015. Voltammetric electronic tongue for the qualitative analysis of milk adulterated with urea combined with multi-way data analysis. International Journal of Electrochemical Science 10:5970–80.
  • Li, S. F., Y. Shan, X. R. Zhu, X. Zhang, and G. W. Ling. 2012. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. Journal of Food Composition and Analysis 28 (1):69–74. doi: 10.1016/j.jfca.2012.07.006.
  • Liu, J. J. 2017. Terahertz spectroscopy and chemometric tools for rapid identification of adulterated dairy product. Optical and Quantum Electronics 49 (1). doi: 10.1007/s11082-016-0848-8.
  • Liu, C. Y., L. L. Zhao, Z. Sun, N. Cheng, X. F. Xue, L. M. Wu, and W. Cao. 2018. Determination of three flavor enhancers using HPLC-ECD and its application in detecting adulteration of honey. Analytical Methods 10 (7):743–8. doi: 10.1039/C7AY02248D.
  • Liu, J., Y. Wen, N. Dong, C. Lai, and G. Zhao. 2013. Authentication of lotus root powder adulterated with potato starch and/or sweet potato starch using Fourier transform mid-infrared spectroscopy. Food Chemistry 141 (3):3103–9. doi: 10.1016/j.foodchem.2013.05.155.
  • Liu, P., and M. H. Ma. 2018. Application of hyperspectral technology for detecting adulterated whole egg powder. Spectroscopy and Spectral Analysis 38 (1):246–52.
  • Liu, Y. S., and S. B. Zhou. 2017. Rapid detection of hydrolyzed leather protein adulteration in infant formula by near-infrared spectroscopy. Food Science and Technology Research 23 (3):469–74. doi: 10.3136/fstr.23.469.
  • Lohumi, S., S. Lee, H. Lee, and B.-K. Cho. 2015. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology 46 (1):85–98. doi: 10.1016/j.tifs.2015.08.003.
  • López, M. I., E. Trullols, M. P. Callao, and I. Ruisanchez. 2014. Multivariate screening in food adulteration: Untargeted versus targeted modelling. Food Chemistry 147:177–81. doi: 10.1016/j.foodchem.2013.09.139.
  • Ma, H. L., J. W. Wang, Y. J. Chen, J. L. Cheng, and Z. T. Lai. 2017. Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods. Food Chemistry 215:108–15. doi: 10.1016/j.foodchem.2016.07.156.
  • Ma, J., D. W. Sun, J. H. Qu, D. Liu, H. Pu, W. H. Gao, and X. A. Zeng. 2016. Applications of computer vision for assessing quality of agri-food products: A review of recent research advances. Critical Reviews in Food Science and Nutrition 56 (1):113–27. doi: 10.1080/10408398.2013.873885.
  • Marcone, M. F., S. Wang, W. Albabish, S. Nie, D. Somnarain, and A. Hill. 2013. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Research International 51 (2):729–47. doi: 10.1016/j.foodres.2012.12.046.
  • Marina, A. M., Y. B. Che Man, and I. Amin. 2010. Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. Journal of the American Oil Chemists' Society 87 (3):263–70. doi: 10.1007/s11746-009-1492-2.
  • Marquez, C., M. I. Lopez, I. Ruisanchez, and M. P. Callao. 2016. FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud. Talanta 161:80–6. doi: 10.1016/j.talanta.2016.08.003.
  • Mathanker, S. K., P. R. Weckler, and N. Wang. 2013. Terahertz(THZ) application in food and agriculture: A review. American Society of Agricultural and Biological Engineers 56 (3):1213–26.
  • Men, H., D. L. Chen, X. T. Zhang, J. J. Liu, and K. Ning. 2014. Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. Journal of Sensors 2014 :1–7. doi: 10.1155/2014/840685.
  • Meza-Márquez, O. G., T. Gallardo-Velazquez, and G. Osorio-Revilla. 2010. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Science 86 (2):511–9. doi: 10.1016/j.meatsci.2010.05.044.
  • Mi, J. P., Y. J. Xu, P. C. Zhu, D. R. Wu, W. Y. Zhang, Y. J. Li, C. B. Huang, B. Su, and X. Y. Bao. 2015. Application and research progress of high performance liquid chromatography-mass spectrometry in determination of the abuse of food additives and illegal additives. Genomics and Applied Biology 34 (7):1579–86. doi: 10.13417/j.gab.034.001579.
  • Miaw, C. S. W., C. Assis, A. Silva, M. L. Cunha, M. M. Sena, and S. V. C. de Souza. 2018. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods. Food Chemistry 254 :272–80. doi: 10.1016/j.foodchem.2018.02.015.
  • Miaw, C. S. W., M. M. Sena, S. V. C. Souza, M. P. Callao, and I. Ruisanchez. 2018. Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies. Food Chemistry 266 :254–61. doi: 10.1016/j.foodchem.2018.06.006.
  • Mildner-Szkudlarz, S., and H. H. Jeleń. 2008. The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil. Food Chemistry 110 (3):751–61. doi: 10.1016/j.foodchem.2008.02.053.
  • Mishra, P., A. Herrero-Langreo, P. Barreiro, J. M. Roger, B. Diezma, N. Gorretta, and L. Lleó. 2015. Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of near Infrared Spectroscopy 23 (1):15–22. doi: 10.1255/jnirs.1141.
  • Mogol, B. A., and V. Gokmen. 2014. Computer vision-based analysis of foods: A non-destructive colour measurement tool to monitor quality and safety. Journal of the Science of Food and Agriculture 94 (7):1259–63. doi: 10.1002/jsfa.6500.
  • Nallappan, K., J. Dash, S. Ray, and B. Pesala. 2013. Identification of adulterants in turmeric powder using terahertz spectroscopy. 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2, IEEE, Mainz, Germany. doi: 10.1109/IRMMW-THz.2013.6665688.
  • Nedeljković, A., P. Rösch, J. Popp, J. Miočinović, M. Radovanović, and P. Pudja. 2016. Raman spectroscopy as a rapid tool for quantitative analysis of butter adulterated with margarine. Food Analytical Methods 9 (5):1315–20. doi: 10.1007/s12161-015-0317-1.
  • Nunes, K. M., M. V. Andrade, A. M. Santos Filho, M. C. Lasmar, and M. M. Sena. 2016. Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy. Food Chemistry 205 :14–22. doi: 10.1016/j.foodchem.2016.02.158.
  • Oroian, M., S. Paduret, and S. Ropciuc. 2018. Honey adulteration detection: Voltammetric e-tongue versus official methods for physicochemical parameter determination. Journal of the Science of Food and Agriculture 98 (11):4304–11. doi: 10.1002/jsfa.8956.
  • Paixão, T. R. L. C., and M. Bertotti. 2009. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sensors and Actuators B: Chemical 137 (1):266–73. doi: 10.1016/j.snb.2008.10.045.
  • Park, C. W., I. Lee, S.-H. Kwon, K.-S. Lee, C. Jo, and D.-K. Ko. 2017. Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy. Journal of Raman Spectroscopy 48 (10):1330–6. doi: 10.1002/jrs.5217.
  • Peng, Q., X. Xu, W. Xing, B. Hu, C. Shen, R. Tian, X. Li, Q. Xu, J. Chen, F. Chen, et al. 2017. Ageing status characterization of Chinese spirit using scent characteristics combined with chemometric analysis. Innovative Food Science & Emerging Technologies 44:212–6. doi: 10.1016/j.ifset.2017.04.006.
  • Petrakis, E. A., and M. G. Polissiou. 2017. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta 162:558–66. doi: 10.1016/j.talanta.2016.10.072.
  • Qi, S. Y., Z. W. Zhang, K. Zhao, and D. H. Han. 2012. Evaluation of walnut by terahertz nondestructive technology. Guang pu Xue yu Guang pu Fen xi = Guang pu 32 (12):3390–3.
  • Qin, J., M. S. Kim, K. Chao, S. Dhakal, H. Lee, B. K. Cho, and C. Mo. 2017. Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (2):152–61. doi: 10.1080/19440049.2016.1263880.
  • Raman, C. V., and K. S. Krishnan. 1928. A new type of secondary radiation. Nature 121 (3048):501–2. doi: 10.1038/121501c0.
  • Reid, L. M., C. P. O'Donnell, and G. Downey. 2006. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology 17 (7):344–53. doi: 10.1016/j.tifs.2006.01.006.
  • Reis, N., B. G. Botelho, A. S. Franca, and L. S. Oliveira. 2017. Simultaneous Detection of Multiple Adulterants in Ground Roasted Coffee by ATR-FTIR Spectroscopy and Data Fusion. Food Analytical Methods 10 (8):2700–9. doi: 10.1007/s12161-017-0832-3.
  • Richardson, P. I. C., H. Muhamadali, D. I. Ellis, and R. Goodacre. 2019. Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics. Food Chemistry 272:157–64. doi: 10.1016/j.foodchem.2018.08.038.
  • Richardson, P. I. C., H. Muhamadali, Y. Lei, A. P. Golovanov, D. I. Ellis, and R. Goodacre. 2019. Detection of the adulteration of fresh coconut water via NMR spectroscopy and chemometrics. The Analyst 144 (4):1401–8. doi: 10.1039/c8an01964a.
  • Rodríguez-Páez, C. L., A. Carballo-Carballo, R. Rico-Molina, C. Hernández-Aguilar, A. Domínguez-Pacheco, A. Cruz-Orea, and E. Moreno-Martínez. 2017. The optical absorption coefficient of maize grains investigated by photoacoustic spectroscopy. International Journal of Thermophysics 38 (1):1–11. doi: 10.1007/s10765-016-2141-2.
  • Rodríguez, S. D., G. Rolandelli, and M. P. Buera. 2019. Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chemistry 274:392–401. doi: 10.1016/j.foodchem.2018.08.140.
  • Rohman, A., and Y. B. Che Man. 2011a. Analysis of chicken fat as adulterant in cod liver oil using Fourier transform infrared (FTIR) spectroscopy and chemometrics. CyTA - Journal of Food 9 (3):187–91. doi: 10.1080/19476337.2010.510211.
  • Rohman, A., R. Widyaningtyas, and F. Amalia. 2017. Authentication of cod liver oil from selected edible oils using FTIR spectrophotometry and chemometrics. International Food Research Journal 24 (4):1362–7.
  • Rohman, A., and Y. B. Che Man. 2011b. The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chemistry 129 (2):583–8. doi: 10.1016/j.foodchem.2011.04.070.
  • Ruiz-Pérez, A., J. I. Pérez-Castañeda, R. Castañeda-Guzmán, and S. J. Pérez-Ruiz. 2013. Determination of Tequila Quality by Photoacoustic Analysis. International Journal of Thermophysics 34 (8–9):1695–702. doi: 10.1007/s10765-013-1397-z.
  • Lee, S., S. Lohumi, B. –K. Cho, H. –S. Lim, T. Gotoh, M. S. Kim, and S. H. Lee. 2015. Development of a detection method for adulterated onion powder using raman spectroscopy. Journal- Faculty of Agriculture Kyushu University 60 (1):151–6.
  • Santana, F. B., L. C. Gontijo, H. Mitsutake, S. J. Mazivila, L. M. Souza, and W. B. Neto. 2016. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry 209:228–33. doi: 10.1016/j.foodchem.2016.04.051.
  • Santos, P. M., E. R. Pereira-Filho, and L. E. Rodriguez-Saona. 2013a. Application of hand-held and portable infrared spectrometers in bovine milk analysis. Journal of Agricultural and Food Chemistry 61 (6):1205–11. doi: 10.1021/jf303814g.
  • Santos, P. M., E. R. Pereira-Filho, and L. E. Rodriguez-Saona. 2013b. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chemistry 138 (1):19–24. doi: 10.1016/j.foodchem.2012.10.024.
  • Sezer, B., H. Apaydin, G. Bilge, and I. H. Boyaci. 2019. Detection of Pistacia vera adulteration by using laser induced breakdown spectroscopy. Journal of the Science of Food and Agriculture 99 (5):2236–42. doi: 10.1002/jsfa.9418.
  • Sezer, B., G. Bilge, A. Berkkan, U. Tamer, and I. H. Boyaci. 2018. A rapid tool for determination of titanium dioxide content in white chickpea samples. Food Chemistry 240:84–9. doi: 10.1016/j.foodchem.2017.07.093.
  • Sezer, B., S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, and I. H. Boyaci. 2018. Identification of milk fraud using laser-induced breakdown spectroscopy (LIBS). International Dairy Journal 81:1–7. doi: 10.1016/j.idairyj.2017.12.005.
  • Shen, F., and Y. B. Ying. 2009. Applications of terahertz spectroscopy and imaging techniques in food safety inspection. Guang pu Xue yu Guang pu Fen xi = Guang pu 29 (6):1445–9.
  • Shen, F., Q. Wu, A. Su, P. Tang, X. Shao, and B. Liu. 2016. Detection of adulteration in freshly squeezed orange juice by electronic nose and infrared spectroscopy. Czech Journal of Food Sciences 34 (3):224–32. doi: 10.17221/303/2015-CJFS.
  • Smithson, S. C., B. D. Fakayode, S. Henderson, J. Nguyen, and S. O. Fakayode. 2018. Detection, purity analysis, and quality assurance of adulterated peanut (Arachis Hypogaea) oils. Foods 7 (8):122. doi: 10.3390/foods7080:122.
  • Sobrino-Gregorio, L., R. Bataller, J. Soto, and I. Escriche. 2018. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control 91:254–60. doi: 10.1016/j.foodcont.2018.04.003.
  • Su, W. H., and D. W. Sun. 2017. Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassava flour and corn flour in organic Avatar wheat (Triticum spp.) flour. Journal of Food Engineering 200:59–69. doi: 10.1016/j.jfoodeng.2016.12.014.
  • Su, W. H., and D. W. Sun. 2018. Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review. Comprehensive Reviews in Food Science and Food Safety 17 (1):104–22. doi: 10.1111/1541-4337.12314.
  • Su, W. H., H. J. He, and D. W. Sun. 2017. Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: A review. Critical Reviews in Food Science and Nutrition 57 (5):1039–51. doi: 10.1080/10408398.2015.1082966.
  • Sumar, S., and H. Ismail. 1995. Adulteration of foods–past and present. Nutrition & Food Science 95 (4):11–5. doi: 10.1108/00346659510088663.
  • Tengku Mansor, T. S., Y. B. Che Man, and A. Rohman. 2011. Application of fast gas chromatography and fourier transform infrared spectroscopy for analysis of lard adulteration in virgin coconut oil. Food Analytical Methods 4 (3):365–72. doi: 10.1007/s12161-010-9176-y.
  • Timsorn, K., Y. Lorjaroenphon, and C. Wongchoosuk. 2017. Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system. Measurement 108:67–76. doi: 10.1016/j.measurement.2017.05.035.
  • Trung, D. T., N. P. Kien, T. D. Hung, D. C. Hieu, and T. A. Vu. 2016. Electrical impedance measurement for assessment of the pork aging: A preliminary study. International Conference on Biomedical Engineering (BME-HUST), 1-5, IEEE, Hanoi, Vietnam. doi:10.1109/BME-HUST.2016.7782109.
  • Uncu, O., and B. Ozen. 2019. A comparative study of mid-infrared, UV–Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. Food Control 105:209–18. doi: 10.1016/j.foodcont.2019.06.013.
  • Várvölgyi, E., T. Werum, L. Dénes, J. Soós, G. Szabó, J. Felföldi, G. Esper, and Z. Kovács. 2014. Vision system and electronic tongue application to detect coffee adulteration with barley. Acta Alimentaria 43 (Supplement 1):197–205. doi: 10.1556/AAlim.43.2014.Suppl.27.
  • Wang, C., J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying. 2018. Terahertz imaging applications in agriculture and food engineering: A review. Transactions of the ASABE 61 (2):411–24. doi: 10.13031/trans.12201.
  • Wang, K. Q., H. B. Pu, and D. W. Sun. 2018. Emerging spectroscopic and spectral imaging techniques for the rapid detection of microorganisms: An overview. Comprehensive Reviews in Food Science and Food Safety 17 (2):256–73. doi: 10.1111/1541-4337.12323.
  • Wang, W., J. M. Wang, Y. Li, X. H. Li, and Y. R. Li. 2017. Study on diversified adulteration of ganoderma lucidum spore oil by RVM and new clustering algorithms. Spectroscopy and Spectral Analysis 37 (4):1064–8.
  • Wei, X., X. Shao, Y. Wei, L. Cheong, L. Pan, and K. Tu. 2018. Rapid detection of adulterated peony seed oil by electronic nose. Journal of Food Science and Technology 55 (6):2152–9. doi: 10.1007/s13197-018-3132-z.
  • Widodo, C. S., W. Sugianto, A. M. Effendi, and G. Saroja. 2019. Study on the effect of sugar canes and saccharin to the value of electrical impedance of apple cider manalagi (Malus sylvestris mill). Journal of Physics: Conference Series 1153:012121. doi: 10.1088/1742-6596/1153/1/012121.
  • Winkler-Moser, J. K., M. Singh, K. A. Rennick, E. L. Bakota, G. Jham, S. X. Liu, and S. F. Vaughn. 2015. Detection of corn adulteration in Brazilian Coffee (Coffea arabica) by tocopherol profiling and Near-Infrared (NIR) spectroscopy. Journal of Agricultural and Food Chemistry 63 (49):10662–8. doi: 10.1021/acs.jafc.5b04777.
  • Wu, T., N. Zhong, and L. Yang. 2018. Identification of adulterated and non-adulterated norwegian salmon using FTIR and an improved PLS-DA method. Food Analytical Methods 11 (5):1501–9. doi: 10.1007/s12161-017-1135-4.
  • Xu, L. X., C. B. Cai, and D. H. Deng. 2011. Multivariate quality control solved by one-class partial least squares regression: Identification of adulterated peanut oils by mid-infrared spectroscopy. Journal of Chemometrics 25 (10):568–74. doi: 10.1002/cem.1402.
  • Xu, L., W. Shi, C. B. Cai, W. Zhong, and K. Tu. 2015. Rapid and nondestructive detection of multiple adulterants in kudzu starch by near infrared (NIR) spectroscopy and chemometrics. LWT - Food Science and Technology 61 (2):590–5. doi: 10.1016/j.lwt.2014.12.002.
  • Xu, L., P. T. Shi, Z. H. Ye, S. M. Yan, and X. P. Yu. 2013. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques. Food Chemistry 141 (3):2434–9. doi: 10.1016/j.foodchem.2013.05.104.
  • Xu, L., S. M. Yan, C. M. Cai, and X. P. Yu. 2013. Untargeted detection of illegal adulterations in Chinese Glutinous Rice Flour (GRF) by NIR spectroscopy and chemometrics: Specificity of detection improved by reducing unnecessary variations. Food Analytical Methods 6 (6):1568–75. doi: 10.1007/s12161-013-9575-y.
  • Xu, M., L. S. Ye, J. Wang, Z. B. Wei, and S. M. Cheng. 2017. Quality tracing of peanuts using an array of metal-oxide based gas sensors combined with chemometrics methods. Postharvest Biology and Technology 128:98–104. doi: 10.1016/j.postharvbio.2017.02.008.
  • Xu, G. T., H. F. Yuan, and W. Z. Lu. 2000. Development of Modern Near Infrared Spectroscopic Techniques and Its Applications. Guang pu Xue yu Guang pu Fen xi = Guang pu 20 (2):134–42.
  • Yang, H., J. Irudayaraj, and M. Paradkar. 2005. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry 93 (1):25–32. doi: 10.1016/j.foodchem.2004.08.039.
  • Yang, P., R. Zhou, W. Zhang, S. Tang, Z. Hao, X. Li, Y. Lu, and X. Zeng. 2018. Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification. Applied Optics 57 (28):8297–302. doi: 10.1364/AO.57.008297.
  • Yang, R. J., R. Liu, and K. X. Xu. 2011. Adulteration detection of urea in milk by mid-infrared spectroscopy. Spectroscopy and Spectral Analysis 31 (9):2383–5. doi: 10.11840/j.issn.1001-6392.2011.3.007.
  • Yang, R. J., R. Liu, G. M. Dong, K. X. Xu, Y. R. Yang, and W. Y. Zhang. 2016. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 157:50–4. doi: 10.1016/j.saa.2015.12.017.
  • Yang, R. J., X. S. Xun, B. H. Wang, G. M. Dong, Y. R. Yang, H. X. Liu, Y. H. Du, and W. Y. Zhang. 2016. Adulteration of sesame oil with corn oil detected by use of two-dimensional infrared correlation spectroscopy and multivariate calibration. Spectroscopy Letters 49 (5):355–61. doi: 10.1080/00387010.2016.1167743.
  • Yang, R. J., Y. R. Yang, G. M. Dong, W. Y. Zhang, and Y. P. Yu. 2014. Multivariate methods for the identification of adulterated milk based on two-dimensional infrared correlation spectroscopy. Analytical Methods 6 (10):3436–41. doi: 10.1039/c4ay00442f.
  • Yang, R. J., G. M. Dong, X. S. Sun, Y. R. Yang, H. X. Liu, Y. H. Du, H. Jin, and W. Y. Zhang. 2017. Discrimination of sesame oil adulterated with corn oil using information fusion of synchronous and asynchronous two-dimensional near-mid infrared spectroscopy. European Journal of Lipid Science and Technology 119 (9)1600459. doi: 10.1002/ejlt.20:.
  • You, Z. H., Z. H. Liu, C. Y. Gong, X. L. Yang, and F. Cheng. 2015. Applying attenuated total Reflection-Mid-Infrared (ATR-MIR) spectroscopy to detect hairtail surimi in mixed surimi and their surimi products. Spectroscopy and Spectral Analysis 35 (10):2930–9.
  • Yu, G., R. J. Yang, A. J. Lyu, and E. Z. Tan. 2017. Detection of adulterated sesame oil based on synchronous‐asynchronous two‐dimensional mid‐infrared correlation spectroscopy. Spectroscopy and Spectral Analysis 37 (4):1105–9.
  • Yu, Y. P., H. Zhao, G. M. Dong, R. J. Yang, L. A. Li, Y. Liu, H. Y. Wu, and W. Y. Zhang. 2015. Discrimination of milk adulterated with urea using voltammetric electronic tongue coupled with PCA-LSSVM. International Journal of Electrochemical Science 10:10119–31.
  • Yu, Y. X., H. Y. Yu, L. B. Guo, J. Li, Y. W. Chu, Y. Tang, S. S. Tang, and F. Wang. 2018. Accuracy and stability improvement in detecting Wuchang rice adulteration by piece-wise multiplicative scatter correction in the hyperspectral imaging system. Analytical Methods 10 (26):3224–31. doi: 10.1039/C8AY00701B.
  • Zhang, C., F. Liu, and Y. He. 2018. Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis. Scientific Reports 8 (1):2166. doi: 10.1038/s41598-018-20270-y.
  • Zhang, H., H. Sun, L. Wang, S. Wang, W. Zhang, and J. Hu. 2018. Near infrared spectroscopy based on supervised pattern recognition methods for rapid identification of adulterated Edible Gelatin. Journal of Spectroscopy 2018:1–9. doi: 10.1155/2018/7652592.
  • Zhang, T., B. Wang, P. Yan, K. Wang, X. Zhang, H. Wang, and Y. Lv. 2018. Nondestructive identification of salmon adulteration with water based on hyperspectral data. Journal of Food Quality 2018:1–10. doi: 10.1155/2018/1809297.
  • Zhang, X. F., M. Q. Zou, X. H. Qi, F. Liu, X. H. Zhu, and B. H. Zhao. 2010. Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy 41 (12):1655–60. doi: 10.1002/jrs.2629.
  • Zhao, X. D., D. M. Dong, W. G. Zheng, L. Z. Jiao, and Y. Lang. 2015. Discrimination of adulterated sesame oil using mid-infrared spectroscopy and chemometrics. Food Analytical Methods 8 (9):2308–14. doi: 10.1007/s12161-015-0125-7.
  • Zou, M. Q., X. F. Zhang, X. H. Qi, H. L. Ma, Y. Dong, C. W. Liu, X. Guo, and H. Wang. 2009. Rapid authentication of olive oil adulteration by Raman spectrometry. Journal of Agricultural and Food Chemistry 57 (14):6001–6. doi: 10.1021/jf900217s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.