925
Views
20
CrossRef citations to date
0
Altmetric
Reviews

New perspectives on the biosynthesis, transportation, astringency perception and detection methods of grape proanthocyanidins

, , , , &

References

  • Abrahams, S., E. Lee, A. R. Walker, G. J. Tanner, P. J. Larkin, and A. R. Ashton. 2003. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. The Plant Journal: For Cell and Molecular Biology 35 (5):624–36. doi: 10.1046/j.1365-313X.2003.01834.x.
  • Ageorges, A., L. Fernandez, S. Vialet, D. Merdinoglu, N. Terrier, and C. Romieu. 2006. Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Science 170 (2):372–83. doi: 10.1016/j.plantsci.2005.09.007.
  • Akagi, T., A. Ikegami, and K. Yonemori. 2010. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta 232 (5):1045–59. doi: 10.2307/23391812.
  • Akagi, T., A. Katayama-Ikegami, and K. Yonemori. 2011. Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Scientia Horticulturae 130 (2):373–80. doi: 10.1016/j.scienta.2011.07.021.
  • Alessandra, A., C. Erika, Z. Sara, F. Laura, B. Maura, R. Benedetto, and G. B. Tornielli. 2016. A grapevine ttg2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Frontiers in Plant Science 7:1979doi: 10.3389/fpls.2016.01979.
  • Azuma, A., H. Fujii, T. Shimada, and H. Yakushiji. 2015. Microarray analysis for the screening of genes inducible by light or low temperature in post-veraison grape berries. The Horticulture Journal 84 (3):214–26. 26. doi: 10.1021/jf105c.
  • Balalaie, A., M. B. Rezvani, and B. M. Mohammadi. 2018. Dual function of proanthocyanidins as both mmp inhibitor and crosslinker in dentin biomodification: A literature review. Dent Mater J 37 (2):173–82. doi: 10.4012/dmj.2017-062.
  • Basalekou, M., M. Kyraleou, C. Pappas, P. Tarantilis, Y. Kotseridis, and S. Kallithraka. 2019. Proanthocyanidin content as an astringency estimation tool and maturation index in red and white winemaking technology. Food Chemistry 299:125135doi: 10.1016/j.foodchem.2019.125135.
  • Baudry, A., M. A. Heim, B. Dubreucq, M. Caboche, B. Weisshaar, and L. Lepiniec. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal: For Cell and Molecular Biology 39 (3):366–80. doi: 10.1111/j.1365-313X.2004.02138.x.
  • Baxter, I. R., J. C. Young, G. Armstrong, N. Foster, N. Bogenschutz, T. Cordova, W. A. Peer, S. P. Hazen, A. S. Murphy, and J. F. Harper. 2005. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 102 (7):2649–54. doi: 10.1073/pnas.0406377102.
  • Bénédicte, L., K. Chira, and P. L. Teissedre. 2011. Phenolic composition of merlot and cabernet-sauvignon grapes from bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chemistry 126 (4):1991–9. doi: 10.1016/j.foodchem.2010.12.062.
  • Biao, L. H., S. N. Tan, Q. H. Meng, J. Gao, X. W. Zhang, Z. G. Liu, and Y. J. Fu. 2018. Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials 8 (1):53. doi: 10.3390/nano8010053.
  • Bindon, K., C. Varela, J. Kennedy, H. Holt, and M. Herderich. 2013. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chemistry 138 (2-3):1696–705. doi: 10.1016/j.foodchem.2013.03.014.
  • Bogs, J., M. O. Downey, J. S. Harvey, A. R. Ashton, G. J. Tanner, and S. P. Robinson. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology 139 (2):652–63. doi: 10.1104/pp.105.064238.
  • Bogs, J., F. W. Jaffe, A. M. Takos, A. R. Walker, and S. P. Robinson. 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology 143 (3):1347–61. doi: 10.2307/40065305.
  • Braidot, E., M. Zancani, E. Petrussa, C. Peresson, A. Bertolini, S. Patui, F. Macrì, and A. Vianello. 2008. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signaling & Behavior 3 (9):626–32. −doi: 10.4161/psb.3.9.6686.
  • Bucchetti, B., M. A. Matthews, L. Falginella, E. Peterlunger, and S. D. Castellarin. 2011. Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Scientia Horticulturae 128 (3):297–305. doi: 10.1016/j.scienta.2011.02.003.
  • Busse-Valverde, N., E. Gomez-Plaza, J. M. Lopez-Roca, R. Gil-Munoz, J. I. Fernandez-Fernandez, and A. B. Bautista-Ortın. 2010. Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. Journal of Agricultural and Food Chemistry 58 (21):11333–9. doi: 10.1021/jf102265c.
  • Carrier, G., Y. F. Huang, L. L. Cunff, A. Fournier-Level, S. Vialet, J. M. Souquet, V. Cheynier, N. Terrier, and P. This. 2013. Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. Plant Physiology and Biochemistry: PPB 72:87–95. doi: 10.1016/j.plaphy.2013.04.014.
  • Casassa, L. F., M. Keller, and J. F. Harbertson. 2015. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines. Molecules (Basel, Switzerland) 20 (5):7820–44. doi: 10.3390/molecules20057820.
  • Castellarin, S. D., M. A. Matthews, G. D. Gaspero, and G. A. Gambetta. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227 (1):101–12. doi: 10.1007/s00425-007-0598-8.
  • Chai, W. M., C. Ou-Yang, Q. Huang, M. Z. Lin, Y. X. Wang, K. L. Xu, W. Y. Huang, and D. D. Pang. 2018. Antityrosinase and antioxidant properties of mung bean seed proanthocyanidins: Novel insights into the inhibitory mechanism. Food Chemistry 260:27–36. doi: 10.1016/j.foodchem.2018.04.001.
  • Chai, W. M., Q. M. Wei, W. L. Deng, Y. L. Zheng, X. Y. Chen, Q. Huang, C. Ou-Yang, and Y. Y. Peng. 2019. Anti-melanogenesis properties of condensed tannins from Vigna angularis seeds with potent antioxidant and DNA damage protection activities. Food & Function 10 (1):99–111. doi: 10.1039/c8fo01979g.
  • Chen, Q., H. Yu, H. Tang, and X. Wang. 2012. Identification and expression analysis of genes involved in anthocyanin and proanthocyanidin biosynthesis in the fruit of blackberry. Scientia Horticulturae 141:61–8. doi: 10.1016/j.scienta.2012.04.025.
  • Chen, S. Y., Y. M. Tang, Y. Y. Hu, Y. Wang, B. Sun, X. R. Wang, H. R. Tang, and Q. Chen. 2018. Fatt12-1, a multidrug and toxin extrusion (MATE) member involved in proanthocyanidin transport in strawberry fruits. Scientia Horticulturae 231:158–65. doi: 10.1016/j.scienta.2017.12.032.
  • Chen, X., J. Xiong, S. Huang, X. Li, Y. Zhang, L. Zhang, and F. Wang. 2018. Analytical profiling of proanthocyanidins from Acacia mearnsii bark and in vitro assessment of antioxidant and antidiabetic potential. Molecules 23 (11):2891. doi: 10.3390/molecules23112891.
  • Chen, W., Y. Xiong, L. Xu, Q. Zhang, and Z. Luo. 2017. An integrated analysis based on transcriptome and proteome reveals deastringency-related genes in CPCNA persimmon. Scientific Reports 7:44671doi: 10.1038/srep44671.
  • Chira, K., M. Jourdes, and P. L. Teissedre. 2012. Cabernet Sauvignon red wine astringency quality control by tannin characterization and polymerization during storage. European Food Research and Technology 234 (2):253–61. doi: 10.1007/s00217-011-1627-1.
  • Chira, K., L. Zeng, A. L. Floch, L. Pechamat, M. Jourdes, and P. L. Teissedre. 2015. Compositional and sensory characterization of grape proanthocyanidins and oak wood ellegitannin. Tetrahedron 71 (20):2999–3006. doi: 10.1016/j.tet.2015.02.018.
  • Chira, K., G. Schmauch, C. Saucier, S. Fabre, and P. L. Teissedre. 2009. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from Bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007). Journal of Agricultural and Food Chemistry 57 (2):545–53. doi: 10.1021/jf802301g.
  • Cholet, C.,. C. Delsart, M. Petrel, E. Gontier, N. Grimi, A. L'hyvernay, R. Ghidossi, E. Vorobiev, M. Mietton-Peuchot, and L. Gény. 2014. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: Impact on cell wall total tannins and polysaccharides. Journal of Agricultural and Food Chemistry 62 (13):2925–34. doi: 10.1021/jf404804d.
  • Christopher, D. 2013. Trans-acting small interfering RNA4: Key to nutraceutical synthesis in grape development? Trends in Plant Science 18 (11):601–10. doi: 10.1016/j.tplants.2013.07.006.
  • Chuine, I., P. Yiou, N. Viovy, B. Seguin, V. Daux, and E. L. Ladurie. 2004. Historical phenology: Grape ripening as a past climate indicator. Nature 432 (7015):289–90. doi: 10.1038/432289a.
  • Colquhoun, T. A., J. Y. Kim, A. E. Wedde, L. A. Levin, K. C. Schmitt, R. C. Schuurink, and D. G. Clark. 2011. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H . Journal of Experimental Botany 62 (3):1133–43. doi: 10.1093/jxb/erq342.
  • Conn, S., C. Curtin, A. Bézier, C. Franco, and W. Zhang. 2008. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany 59 (13):3621–34. doi: 10.1093/jxb/ern217.
  • Cortell, J. M., M. Halbleib, A. V. Gallagher, T. L. Righetti, and J. A. Kennedy. 2007. Influence of vine vigor on grape (Vitis vinifera L. cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit. Journal of Agricultural and Food Chemistry 55 (16):6575–84. doi: 10.1021/jf070195v.
  • Cosme, F., J. M. Ricardo-Da-Silva, and O. Laureano. 2009. Tannin profiles of Vitis vinifera L. cv. red grapes growing in Lisbon and from their monovarietal wines. Food Chemistry 112 (1):197–204. doi: 10.1016/j.foodchem.2008.05.058.
  • Gris, E. F., Mattivi, F. F. E. A. Ferreira, U. Vrhovsek, R. C. Pedrosa, and M. T. Bordignon-Luiz. 2011. Proanthocyanidin profile and antioxidant capacity of Brazilian Vitis vinifera red wines. Food Chemistry 126 (1):213–20. doi: 10.1016/j.foodchem.2010.10.102.
  • Czemmel, S., R. Stracke, B. Weisshaar, N. Cordon, N. N. Harris, A. R. Walker, S. P. Robinson, and J. Bogs. 2009. The grapevine R2R3-myb transcription factor VvMybF1 regulates flavonol synthesis in developing grape berries. Plant Physiology 151 (3):1513–30. doi: 10.1104/pp.109.142059.
  • Dardick, C. D., A. M. Callahan, R. Chiozzotto, R. J. Schaffer, M. C. Piagnani, and R. Scorza. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology 8:13. doi: 10.1186/1741-7007-8-13.
  • Davies, C., R. Shin, W. Liu, M. R. Thomas, and P. Schachtman. 2006. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Journal of Experimental Botany 57 (12):3209–16. doi: 10.1093/jxb/erl091.
  • Debeaujon, I., A. J. Peeters, K. M. Leon-Kloosterziel, and M. Koornneef. 2001. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell 13 (4):853–71. doi: 10.2307/3871345.
  • Deluc, L., F. Barrieu, C. Marchive, V. Lauvergeat, A. Decendit, T. Richard, J. P. Carde, J. M. Mérillon, and S. Hamdi. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology 140 (2):499–511. doi: 10.1104/pp.105.067231.
  • Deluc, L., J. Bogs, A. R. Walker, T. Ferrier, A. Decendit, J. M. Merillon, S. P. Robinson, and F. Barrieu. 2008. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiology 147 (4):2041–53. doi: 10.1104/pp.108.118919.
  • Ding, Y. Q., X. C. Li, and D. Ferreira. 2010. 4-Arylflavan-3-ols as proanthocyanidin models: Absolute configuration via density functional calculation of electronic circular dichroism. Journal of Natural Products 73 (3):435–40. doi: 10.1021/np900645c.
  • Dixon, R. A., L. Achnine, P. Kota, C. J. Liu, M. S. S. Reddy, and L. J. Wang. 2002. The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology 3 (5):371–90. doi: 10.1046/j.1364-3703.2002.00131.x.
  • Downey, M. O., J. S. Harvey, and S. P. Robinson. 2003. Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Australian Journal of Grape and Wine Research 9 (1):15–27. doi: 10.1111/j.1755-0238.2003.tb00228.x.
  • Emmerlich, V., N. Linka, T. Reinhold, M. A. Hurth, M. Traub, E. Martinoia, and H. E. Neuhaus. 2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proceedings of the National Academy of Sciences of the United States of America 100 (19):11122–6. doi: 10.1073/pnas.1832002100.
  • Esatbeyoglu, T., and P. Winterhalter. 2010. Preparation of dimeric procyanidins b1, b2, b5, and b7 from a polymeric procyanidin fraction of black chokeberry (Aronia melanocarpa). Journal of Agricultural and Food Chemistry 58 (8):5147–53. doi: 10.1021/jf904354n.
  • Fernández, K., M. Vega, and E. Aspé. 2015. An enzymatic extraction of proanthocyanidins from País grape seeds and skins. Food Chemistry 168:7–13. doi: 10.1016/j.foodchem.2014.07.021.
  • Ferreira, D., and D. Slade. 2002. Oligomeric proanthocyanidins: Naturally occurring o-heterocycles. Natural Product Reports 19 (5):517–41. doi: 10.1039/b008741f.
  • Francisco, R. M., A. Regalado, A. Ageorges, B. J. Burla, B. Bassin, C. Eisenach, O. Zarrouk, S. Vialet, T. Marlin, T. M. Chaves, et al. 2013. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. The Plant Cell 25 (5):1840–54. doi: 10.1105/tpc.112.102152.
  • Fujita, A., N. Goto-Yamamoto, I. Aramaki, and K. Hashizume. 2006. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Bioscience, Biotechnology, and Biochemistry 70 (3):632–8. doi: 10.1271/bbb.70.632.
  • Fontes, N., H. Gerós, and S. Delrot. 2011. Grape Berry Vacuole: A complex and heterogeneous membrane system specialized in the accumulation of solutes. American Journal of Enology and Viticulture 62 (3):270–8. doi: 10.5344/ajev.2011.10125.
  • Fornalé, S., X. H. Shi, C. L. Chai, A. Encina, S. Irar, M. Capellades, E. Fuguet, J. L. Torres, P. Rovira, P. Puigdomènech, et al. 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant Journal: For Cell and Molecular Biology 64 (4):633–44. doi: 10.1111/j.1365-313X.2010.04363.x.
  • Fournand, D., A. Vicens, L. Sidhoum, J. M. Souquet, M. Moutounet, and V. Cheynier. 2006. Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. Journal of Agricultural and Food Chemistry 54 (19):7331–8. doi: 10.1021/jf061467h.
  • Gagne, S., S. Lacampagne, O. Claisse, and L. Geny. 2009. Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development. Plant Physiology and Biochemistry : PPB 47 (4):282–90. doi: 10.1016/j.plaphy.2008.12.004.
  • Garcia-Alonso, M., G. Rimbach, M. Sasai, M. Nakahara, S. Matsugo, Y. Uchida, J. C. Rivas-Gonzalo, and S. De Pascual-Teresa. 2005. Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins. Molecular Nutrition & Food Research 49 (12):1112–9. doi: 10.1002/mnfr.200500100.
  • Grotewold, E. 2004. The challenges of moving chemicals within and out of cells: Insights into the transport of plant natural products. Planta 219 (5):906–9. doi: 10.1007/s00425-004-1336-0.
  • Gollop, R., S. Even, V. Colova-Tsolova, and A. Perl. 2002. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. Journal of Experimental Botany 53 (373):1397–409. doi: 10.1093/jexbot/53.373.1397.
  • Gombau, J., P. Nadal, N. Canela, S. Gómez-Alonso, E. García-Romero, P. Smith, I. Hermosín-Gutiérrez, J. M. Canals, and F. Zamora. 2019. Measurement of the interaction between mucin and oenological tannins by Surface Plasmon Resonance (SPR); relationship with astringency. Food Chemistry 275:397–406. doi: 10.1016/j.foodchem.2018.09.075.
  • Gomez, C., G. Conejero, L. Torregrosa, V. Cheynier, N. Terrier, and A. Ageorges. 2011. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. The Plant Journal: For Cell and Molecular Biology 67 (6):960–70. doi: 10.1111/j.1365-313X.2011.04648.x.
  • Gomez, C., N. Terrier, L. Torregrosa, S. Vialet, A. Fournier-Level, C. Verriès, J. M. Souquet, J. P. Mazauric, M. Klein, V. Cheynier, et al. 2009. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology 150 (1):402–15. doi: 10.1104/pp.109.135624.
  • Gonzalez, A., M. Brown, G. Hatlestad, N. Akhavan, T. Smith, A. Hembd, J. Moore, D. Montes, T. Mosley, J. Resendez, et al. 2016. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Developmental Biology 419 (1):54–63. doi: 10.1016/j.ydbio.2016.03.031.
  • González-Centeno, M. R., M. Jourdes, A. Femenia, S. Simal, C. Rosselló, and P. L. Teissedre. 2012. Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry 60 (48):11850–8. doi: 10.1021/jf303047k.
  • Guan, C. F., X. Y. Du, Q. L. Zhang, F. W. Ma, Z. R. Luo, and Y. Yang. 2017. DkPK genes promote natural deastringency in c-pcna persimmon by up-regulating DkPDC and DkADH expression. Frontiers in Plant Science 8:149doi: 10.3389/fpls.2017.00149.
  • Ha, J., M. Kim, M. Y. Kim, T. Lee, M. Y. Yoon, J. Lee, Y.-H. Lee, Y.-G. Kang, J. S. Park, J. H. Lee, et al. 2018. Transcriptomic variation in proanthocyanidin biosynthesis pathway genes in soybean (Glycine spp.). Journal of the Science of Food and Agriculture 98 (6):2138–46.,doi: 10.1002/jsfa.8698.
  • Hagerman, A. E., and L. G. Butler. 1981. The specificity of proanthocyanidin-protein interactions. The Journal of Biological Chemistry 256 (9):4494–7. doi: 10.1016/0165-022X(81)90075-0.
  • Hanlin, R. L., M. Kelm, L. M. Ilkinson, and M. O. Downey. 2011. Detailed characterization of proanthocyanidins in skin, seeds, and wine of Shiraz and Cabernet Sauvignon wine grapes (Vitis vinifera)). Journal of Agricultural and Food Chemistry 59 (24):13265–76. doi: 10.1021/jf203466u.
  • Hanlin, R. L., M. Hrmova, J. F. Harbertson, and M. O. Downey. 2010. Review: Condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Australian Journal of Grape and Wine Research 16 (1):173–88. doi: 10.1111/j.1755-0238.2009.00068.x.
  • Hichri, I., S. C. Heppel, J. Pillet, C. Leon, S. Czemmel, S. Delrot, V. Lauvergeat, and J. Bogs. 2010. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in Grapevine. Molecular Plant 3 (3):509–23. doi: 10.1093/mp/ssp118.
  • Himi, E., Y. Yamashita, N. Haruyama, T. Yanagisawa, M. Maekawa, and S. Taketa. 2012. Ant28 gene for proanthocyanidin synthesis encoding the R2T3 Myb domain protein (HvMyb10) highly affects grain dormancy in barley. Euphytica 188 (1):141–51. doi: 10.1007/s10681-011-0552-5.
  • Huang, Y. F., S. Vialet, J. L. Guiraud, L. Torregrosa, Y. Bertrand, V. Cheynier, P. This, and N. Terrier. 2014. A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytologist 201 (3):795–809. doi: 10.1111/nph.12557.
  • Ikegami, A., S. Eguchi, A. Kitajima, K. Inoue, and K. Yonemori. 2007. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Science 172 (5):1037–47. doi: 10.1016/j.plantsci.2007.02.010.
  • Ishikawa, M., K. Maki, I. Tofani, K. Kimura, and M. Kimura. 2005. Grape seed proanthocyanidins extract promotes bone formation in rat's mandibular condyle. European Journal of Oral Sciences 113 (1):47–52. doi: 10.1111/j.1600-0722.2004.00176.x.
  • Jamuna, S., R. Ashokkumar, M. S. S. Sadullah, and S. N. Devaraj. 2019. Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of Class III PI3K/Beclin1-complex mediated cholesterol efflux. BioFactors (Oxford, England) 45 (5):763–73. doi: 10.1002/biof.1537.
  • Jeon, J., J. K. Kim, Q. Wu, and S. U. Park. 2018. Effects of cold stress on transcripts and metabolites in tartary buckwheat (Fagopyrum tataricum). Environmental and Experimental Botany 155:488–96. doi: 10.1016/j.envexpbot.2018.07.027.
  • Jeong, S. T., N. Goto-Yamamoto, K. Hashizume, and M. Esaka. 2008. Expression of multi-copy flavonoid pathway genes coincides with anthocyanin, flavonol and flavan-3-ol accumulation of grapevine. Vitis 47 (3):135–40.
  • Jeong, S. T., N. Goto-Yamamoto, S. Kobayashi, and M. Esaka. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science 167 (2):247–52. doi: 10.1016/j.plantsci.2004.03.021.
  • Jin, H., E. Cominelli, P. Bailey, A. Parr, F. Mehrtens, J. Jones, C. Tonelli, B. Weisshaar, and C. Martin. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal 19 (22):6150–61. doi: 10.1093/emboj/19.22.6150.
  • Karonen, M., J. Loponen, V. Ossipov, and K. Pihlaja. 2004. Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatographyeelectrospray ionization mass spectrometry. Analytica Chimica Acta 522 (1):105–12. doi: 10.1016/j.aca.2004.06.041.
  • Karthikeyan, K., B. R. S. Bai, and S. N. Devaraj. 2007. Grape seed proanthocyanidins ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes: An in vivo study. Life Sciences 81 (23-24):1615–21. doi: 10.1016/j.lfs.2007.09.033.
  • Kelm, M. A., J. C. Johnson, R. J. Robbins, J. F. Hammerstone, and H. H. Schmitz. 2006. High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. Journal of Agricultural and Food Chemistry 54 (5):1571–6. doi: 10.1021/jf0525941.
  • Kennedy, J. A., M. A. Matthews, and A. L. Waterhouse. 2000. Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55 (1):77–85. doi: 10.1016/S0031-9422(00)00196-5.
  • Kitamura, S., F. Matsuda, T. Tohge, K. Yonekura-Sakakibara, M. Yamazaki, K. Saito, and I. Narumi. 2010. Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. The Plant Journal: For Cell and Molecular Biology 62 (4):549–59. doi: 10.1111/j.1365-313X.2010.04174.x.
  • Kitamura, S., N. Shikazono, and A. Tanaka. 2004. Transparent testa 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal: For Cell and Molecular Biology 37 (1):104–14. doi: 10.1046/j.1365-313X.2003.01943.x.
  • Koes, R., W. Verweij, and F. Quattrocchio. 2005. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10 (5):236–42. doi: 10.1016/j.tplants.2005.03.002.
  • Kovermann, P., S. Meyer, S. Hörtensteiner, C. Picco, J. Scholz-Starke, S. Ravera, Y. Lee, and E. Martinoia. 2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal: For Cell and Molecular Biology 52 (6):1169–80. doi: 10.1111/j.1365-313x.2007.03367.x.
  • Koyama, K., H. Ikeda, P. R. Poudel, and N. Goto-Yamamoto. 2012. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54–64. doi: 10.1016/j.phytochem.2012.02.026.
  • Koyama, K., M. Numata, I. Nakajima, N. Goto-Yamamoto, H. Matsumura, and N. Tanaka. 2014. Functional characterization of a new grapevine myb transcription factor and regulation of proanthocyanidin biosynthesis in grapes. Journal of Experimental Botany 65 (15):4433–49. doi: 10.1093/jxb/eru213.
  • Kumar, N. S., W. M. Wijekoon, V. Kumar, P. A. N. Punyasiri, and I. S. B. Abeysinghe. 2009. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. Journal of Chromatography A 1216 (19):4295–302. doi: 10.1016/j.chroma.2008.12.025.
  • Kyraleou, M., Y. Kotseridis, S. Koundouras, K. Chira, P. L. Teissedre, and S. Kallithraka. 2016. Effect of irrigation regime on perceived astringency and proanthocyanidin composition of skins and seeds of Vitis vinifera L. cv. syrah grapes under semiarid conditions. Food Chemistry 203:292–300. doi: 10.1016/j.foodchem.2016.02.052.
  • Lea, A. G. 1992. Flavor, color, and stability in fruit products: The effect of polyphenols. Plant Polyphenols 59:827–47. doi: 10.1007/978-1-4615-3476-1-49.
  • Lee, J. 2010. Degradation kinetics of grape skin and seed proanthocyanidins in a model wine system. Food Chemistry 123 (1):51–6. doi: 10.1016/j.foodchem.2010.03.126.
  • Li, H., J. Tian, Y. Y. Yao, J. Zhang, T. T. Song, K. T. Li, and Y. C. Yao. 2019. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry: PPB 139:141–51. doi: 10.1016/j.plaphy.2019.03.003.
  • Li, S. J., W. C. Liu, Y. H. Chang, X. R. Liu, C. L. Chang, C. P. Lin, and R. J. Chung. 2019. Preparation and in vivo investigation of oligomeric proanthocyanidins cross-linked collagen serving as synthesized tissue regeneration membrane. Materials Science & Engineering. C, Materials for Biological Applications 101:640–9. doi: 10.1016/j.msec.2019.03.112.
  • Liu, M. Y., C. Z. Song, M. Chi, T. M. Wang, L. L. Zuo, X. L. Li, Z. W. Zhang, and Z. M. Xi. 2016. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins of Vitis vinifera berries. Plant Growth Regulation 79 (3):377–90. doi: 10.1007/s10725-015-0141-z.
  • Liu, Y., Z. Shi, S. Maximova, M. J. Payne, and M. J. Guiltinan. 2013. Proanthocyanidin synthesis in Theobroma cacao: Genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC Plant Biology 13 (1):202–19. doi: 10.1186/1471-2229-13-202.
  • Luo, L. X., Y. Cui, J. H. Cheng, B. R. Fang, Z. M. Wei, and B. S. Sun. 2018. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid. Food Chemistry 256:203–11. doi: 10.1016/j.foodchem.2018.02.097.
  • Ma, T. T., T. Lan, Y. L. Ju, G. Cheng, Z. L. Que, T. H. Geng, Y. L. Fang, and X. Y. Sun. 2019. Comparison of the nutritional properties and biological activities of kiwifruit (Actinidia) and their different forms of products: towards making kiwifruit more nutritious and functional. Food & Function 10 (3):1317–29. doi: 10.1039/C8FO02322K.
  • Ma, W., A. Guo, Y. Zhang, H. Wang, Y. Liu, and H. Li. 2014. A review on astringency and bitterness perception of tannins in wine. Trends in Food Science & Technology 40 (1):6–19. doi: 10.1016/j.tifs.2014.08.001.
  • Ma, W., W. T. Pierre, J. Michael, H. Li, and T. Pierre-Louis. 2016. Chemical affinity between tannin size and salivary protein binding abilities: Implications for wine astringency in wine. Plos One 11 (8):e0161095. doi: 10.1371/journal.pone.0161095.
  • Mané, C., J. M. Souquet, D. Ollé, C. Verriés, F. Veran, G. Mazerolles, V. Cheynier, and H. Fulcrand. 2007. Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of champagne grape varieties. Journal of Agricultural and Food Chemistry 55 (18):7224–33. doi: 10.1021/jf071301w.
  • Mann, M. E., J. D. Woodruff, J. P. Donnelly, and Z. H. Zhang. 2009. Atlantic hurricanes and climate over the past 1,500 years. Nature 460 (7257):880–3. doi: 10.1038/nature08219.
  • Mantena, S. K., and S. K. Katiyar. 2006. Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes. Free Radical Biology & Medicine 40 (9):1603–14. doi: 10.1016/j.freeradbiomed.2005.12.032.
  • Martinoia, E., M. Maeshima, and H. E. Neuhaus. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58 (1):83–102. doi: 10.1093/jxb/erl183.
  • Marty, F. 2001. Plant cell vacuoles: An introduction. Plant Science 160 (4):757–8. doi: 10.1134/S1990747809010048.
  • McRae, J. M., and J. A. Kennedy. 2011. Wine and grape tannin interactions with salivary proteins and their impact on astringency: A review of current research. Molecules (Basel, Switzerland) 16 (3):2348–64. Doi: 10.3390/molecules16042348.
  • Mellway, R. D., L. T. Tran, M. B. Prouse, M. M. Campbell, and C. P. Constabel. 2009. The wound-, pathogen-, and ultraviolet b-responsive myb134 gene encodes an r2r3 myb transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiology 150 (2):924–41. doi: 10.4161/psb.4.8.9237.
  • Mo, R. L., Y. M. Huang, S. C. Yang, Q. L. Zhang, and Z. R. Luo. 2015. Development of Agrobacterium-mediated transient transformation in persimmon (Diospyros kaki Thunb). Scientia Horticulturae 192:29–37. doi: 10.1016/j.scienta.2015.05.013.
  • Monagas, M., J. E. Quintanilla-López, C. Gómez-Cordovés, B. Bartolomé, and R. Lebrón-Aguilar. 2010. MALDI-TOF MS analysis of plant proanthocyanidins. Journal of Pharmaceutical and Biomedical Analysis 51 (2):358–72. doi: 10.1016/j.jpba.2009.03.035.
  • Nunes, M. A., F. Pimentel, A. S. G. Costa, R. C. Alves, and M. B. P. P. Oliveira. 2016. Cardioprotective properties of grape seed proanthocyanidins: An update. Trends in Food Science & Technology 57:31–9. doi: 10.1016/j.tifs.2016.08.017.
  • Osakabe, Y., Z. Liang, C. Ren, K. Nishitani, K. Osakabe, M. Wada, S. Komori, M. Malnoy, R. Velasco, M. Poli, et al. 2018. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nature Protocols 13 (12):2844–63. doi: 10.1038/s41596-018-0067-9.
  • Pajovic-Šcepanovic, R., S. Wendelin, A. Forneck, and R. Eder. 2019. Suitability of flavan-3-ol analysis to differentiate grapes from Vranac, Kratošija and Cabernet Sauvignon (Vitis vinifera L.) grown in Montenegro. Australian Journal of Grape and Wine Research 25 (4):376–83. doi: 10.1111/ajgw.12406.
  • Pang, Y., G. J. Peel, S. B. Sharma, Y. Tang, and R. A. Dixon. 2008. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America 105 (37):14210–5. doi: 10.1073/pnas.0805954105.
  • Pang, Y., G. J. Peel, E. Wright, Z. Wang, and R. A. Dixon. 2007. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiology 145 (3):601–15. doi: 10.1104/pp.107.107326.
  • Paolocci, F., M. P. Robbins, L. Madeo, S. Arcioni, S. Martens, and F. Damiani. 2007. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. Plant Physiology 143 (1):504–16. doi: 10.1104/pp.106.090886.
  • Pappas, C., M. Kyraleou, E. Voskidi, Y. Kotseridis, P. A. Taranilis, and S. Kallithraka. 2015. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance Fourier transform-infrared spectroscopy. Journal of Food Science 80 (2):C298–306. doi: 10.1111/1750-3841.12770.
  • Pedan, V., C. Weber, T. Do, N. Fischer, E. Reich, and S. Rohn. 2018. HPTLC fingerprint profile analysis of cocoa proanthocyanidins depending on origin and genotype. Food Chemistry 267:277–87. doi: 10.1016/j.foodchem.2017.08.109.
  • Pekić, B., V. Kovac, E. Alonso, and E. Revilla. 1998. Study of the extraction of proanthocyanidins from grape seeds. Food Chemistry 61 (1-2):201–6. doi: 10.1016/S0308-8146(97)00128-3.
  • Petropoulos, S., A. Kanellopoulou, I. Paraskevopoulos, Y. Kotseridis, and S. Kallithraka. 2017. Characterization of grape and wine proanthocyanidins of agiorgitiko (Vitis vinifera L. cv.) cultivar grown in different regions of Nemea. Journal of Food Composition and Analysis 63:98–110. doi: 10.1016/j.jfca.2017.07.038.
  • Petrussa, E., E. Braidot, M. Zancani, C. Peresson, A. Bertolini, S. Patui, and A. Vianello. 2013. Plant flavonoids-biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences 14 (7):14950–73. doi: 10.3390/ijms140714950.
  • Pfeiffer, J., C. Kühnel, J. Brandt, D. Duy, P. A. Punyasiri, G. Forkmann, and T. C. Fischer. 2006. Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crops. Plant Physiology and Biochemistry: PPB 44 (5-6):323–34. doi: 10.1016/j.plaphy.2006.06.001.
  • Pinelo, M., A. Arnous, and A. S. Meyer. 2006. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology 17 (11):579–90. doi: 10.1016/j.tifs.2006.05.003.
  • Plundrich, N. J., B. T. Cook, S. J. Maleki, D. Fourches, and M. A. Lila. 2019. Binding of peanut allergen Ara h 2 with Vaccinium fruit polyphenols. Food Chemistry 284:287–95. doi: 10.1016/j.foodchem.2019.01.081.
  • Porto, C. D., D. Decorti, and A. Natolino. 2014. Water and ethanol as co-solvent in supercritical fluid extraction of proanthocyanidins from grape marc: A comparison and a proposal. The Journal of Supercritical Fluids 87:1–8. doi: 10.1016/j.supflu.2013.12.019.
  • Li, J., P. Yang, Q. Yang, X. Gong, H. Ma, K. Dang, G. Chen, X. Gao, and B. Feng. 2019. Analysis of Flavonoid Metabolites in Buckwheat Leaves Using UPLC-ESI-MS/MS. Molecules 24 (7):1310. doi: 10.3390/molecules24071310.
  • Quijada-Morin, N., J. Regueiro, J. Simal-Gandara, E. Tomas, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailόn. 2012. Relationship between the sensory-determined astringency and the flavanolic composition of red wines. Journal of Agricultural and Food Chemistry 60 (50):12355–61. doi: 10.1021/jf3044346.
  • Ramsay, N. A., and B. J. Glover. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10 (2):63–70. doi: 10.1016/j.tplants.2004.12.011.
  • Revilla, E., M. Bourzeix, and E. Alonso. 1991. Analysis of catechins and proanthocyanidins in grape seeds by HPLC with photodiode array detection. Chromatographia 31 (9-10):465–8. doi: 10.1007/BF02262390.
  • Ribéreau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. 2006. Handbook of Enology. 2 ed. doi: 10.1002/0470010398.ch5..
  • Rinaldi, A., M. Jourdes, P. L. Teissedre, and L. Moio. 2014. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. Food Chemistry 164:142–9. doi: 10.1016/j.foodchem.2014.05.050.
  • Ristic, R., M. O. Downey, P. G. Iland, K. Bindon, I. L. Francis, M. Herderich, and S. P. Robinson. 2007. Exclusion of sunlight from Shiraz grapes alters wine colour, tannin and sensory properties. Australian Journal of Grape and Wine Research 13 (2):53–65. doi: 10.1111/j.1755-0238.2007.tb00235.x.
  • Rousserie, P., A. Rabot, and L. Geny-Denis. 2019. From flavanols biosynthesis to wine tannins: What place for grape seeds? Journal of Agricultural and Food Chemistry 67 (5):1325–43. −doi: 10.1021/acs.jafc.8b05768.
  • Roy, A. M., M. S. Baliga, C. A. Elmets, and S. K. Katiyar. 2005. Grape seed proanthocyanidins induce apoptosis through p53, bax, and caspase 3 pathways. Neoplasia (New York, N.Y.) 7 (1):24–36. doi: 10.1593/neo.04412.
  • Ruiz-Garcia, Y., P. A. Smith, and K. A. Bindon. 2014. Selective extraction of polysaccharide affects the adsorption of proanthocyanidin by grape cell walls. Carbohydrate Polymers 114:102–14. doi: 10.1016/j.carbpol.2014.07.024.
  • Rustioni, L., S. Fiori, and O. Failla. 2014. Evaluation of tannins interactions in grape (Vitis vinifera L.) skins. Food Chemistry 159 (9):323–7. doi: 10.1016/j.foodchem.2014.03.027.
  • Samuelian, S. K., C. Camps, C. Kappel, E. P. Simova, S. Delrot, and V. M. Colova. 2009. Differential screening of overexpressed genes involved in flavonoid biosynthesis in North American native grapes: ‘Noble’ muscadinia var. and ‘Cynthiana’ aestivalis var. Plant Science 177 (3):211–21. doi: 10.1016/j.plantsci.2009.05.013.
  • Sangiovanni, E., S. Piazza, U. Vrhovsek, M. Fumagalli, S. Khalilpour, D. Masuero, C. Di Lorenzo, L. Colombo, F. Mattivi, E. De Fabiani, et al. 2018. A bio-guided approach for the development of a chestnut-based proanthocyanidin-enriched nutraceutical with potential anti-gastritis properties. Pharmacological Research 134:145–55. doi: 10.1016/j.phrs.2018.06.016.
  • Santos, A. L., S. Chaves-Silva, L. N. Yang, L. G. S. Maia, A. Chalfun-Júnior, S. Sinharoy, J. Zhao, and V. A. Benedito. 2017. Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology 17 (1):185. doi: 10.1186/s12870-017-1115-2.
  • Saucier, C., M. Mirabel, F. Daviaud, A. Longieras, and Y. Glories. 2001. Rapid fractionation of grape seed proanthocyanidins. Journal of Agricultural and Food Chemistry 49 (12):5732–5. doi: 10.1021/jf010784f.
  • Shao, Y. F., Z. Q. Hu, Y. H. Yu, R. X. Mou, Z. W. Zhu, and T. Beta. 2018. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry 239:733–41. doi: 10.1016/j.foodchem.2017.07.009.
  • Shen, H., X. He, C. R. Poovaiah, W. A. Wuddineh, J. Ma, D. G. Mann, H. Wang, L. Jackson, Y. Tang, C. N. J. Stewart, et al. 2012. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. The New Phytologist 193 (1):121–36. doi: 10.1111/j.1469-8137.2011.03922.x.
  • Shin, J., E. Park, and G. Choi. 2007. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal: For Cell and Molecular Biology 49 (6):981–94. doi: 10.1111/j.1365-313x.2006.03021.x.
  • Sommella, E., N. Badolati, G. Riccio, E. Salviati, S. Bottone, M. Dentice, P. Campiglia, G. C. Tenore, M. Stornaiuolo, and E. Novellino. 2019. A boost in mitochondrial activity underpins the cholesterol-lowering effect of annurca apple polyphenols on hepatic cells. Nutrients 11 (1):163. doi: 10.3390/nu11010163.
  • Sonbol, F.-M., S. Fornalé, M. Capellades, A. Encina, S. Tourino, J. L. Torres, P. Rovira, K. Ruel, P. Puigdomènech, J. Rigau, et al. 2009. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology 70 (3):283–96. doi: 10.1007/s11103-009-9473-2.
  • Souquet, J. M., V. Cheynier, F. Brossaud, and M. Moutounet. 1996. Polymeric proanthocyanidins from grape skins. Phytochemistry 43 (2):509–12. doi: 10.1016/0031-9422(96)00301-9.
  • Sun, B. S., M. C. Leandro, J. M. Ricardo-da-Silva, and M. I. Spranger. 1998. Separation of grape and wine proanthocyanidins according to their degree of polymerization. Journal of Agricultural and Food Chemistry 46 (4):1390–6. doi: 10.1021/jf970753d.
  • Sun, B. S., M. C. Leandro, V. D. Freitas, and M. I. Spranger. 2006. Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography. Journal of Chromatography A 1128 (1-2):27–38. doi: 10.1016/j.chroma.2006.06.026.
  • Sun, B. S., and M. I. Spranger. 2005. Review: Quantitative extraction and analysis of grape and wine proanthocyanidins and stilbenes. Ciência e Técnica Vitivinícola 20:59–89.
  • Sun, X., X. Cheng, J. Zhang, Y. Ju, Z. Que, X. Liao, F. Lao, Y. Fang, and T. Ma. 2020. Letting wine polyphenols functional: Estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns. Food Research International (Ottawa, Ont.) 127:108704. doi: 10.1016/j.foodres.2019.108704.
  • Sun, X., X. Wei, J. Zhang, Q. Ge, Y. Liang, Y. Ju, A. Zhang, T. Ma, and Y. Fang. 2020. Biomass estimation and physicochemical characterization of winter vine prunings in the Chinese and global grape and wine industries. Waste Management 104:119–29. doi: 10.1016/j.wasman.2020.01.018.
  • Tamagnone, L., A. Merida, A. Parr, S. Mackay, F. A. Culianez-Macia, K. Roberts, and C. Martin. 1998. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. The Plant Cell 10 (2):135–54. doi: 10.2307/3870694.
  • Terrier, N., L. Torregrosa, A. Ageorges, S. Vialet, C. Verriés, V. Cheynier, and C. Romieu. 2009. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiology 149 (2):1028–41. doi: 10.1104/pp.108.131862.
  • Tira-Umphon, A., J. P. Roustan, and C. Chervin. 2007. The stimulation by ethylene of the UDP glucose-flavonoid 3-O-glucosyltransferase (UFGT) in grape tissues is independent from the MybA transcription factors. Vitis 46 (4):210–1.
  • Toro-Uribe, S., L. Montero, L. López-Giraldo, E. Ibáñez, and M. Herrero. 2018. Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Analytica Chimica Acta 1036:204–13. doi: 10.1016/j.aca.2018.06.068.
  • Tuominen, A., and M. Karonen. 2018. Variability between organs of proanthocyanidins in Geranium sylvaticum analyzed by off-line 2-dimensional HPLC-MS. Phytochemistry 150:106–17. doi: 10.1016/j.phytochem.2018.03.004.
  • Verriés, C., J. L. Guiraud, J. M. Souquet, S. Vialet, N. Terrier, and D. Ollé. 2008. Validation of an extraction method on whole pericarp of grape berry (Vitis vinifera L. cv. Shiraz) to study biochemical and molecular aspects of flavan-3-ol synthesis during berry development. Journal of Agricultural and Food Chemistry 56 (14):5896–904. doi: 10.1021/jf800028k.
  • Vidal, S., D. Cartalade, J. M. Souquet, H. Fulcrand, and V. Cheynier. 2002. Changes in proanthocyanidin chain length in winelike model solutions. Journal of Agricultural and Food Chemistry 50 (8):2261–6. doi: 10.1021/jf011180e.
  • Vivas, N., M. F. Nonier, N. V. Gaulejac, C. Absalon, A. Bertrand, and M. Mirabel. 2004. Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liquid chromatography/electrospray ionization mass spectrometry. Analytica Chimica Acta 513 (1):247–56. doi: 10.1016/j.aca.2003.11.085.
  • Watrelot, A. A., D. L. Schulz, and J. A. Kennedy. 2017. Wine polysaccharides influence tannin-protein interactions. Food Hydrocolloids. 63:571–9. doi: 10.1016/j.foodhyd.2016.10.010.
  • Wei, X. F., X. L. Ma, J. H. Cao, X. Y. Sun, and Y. L. Fang. 2018. Aroma characteristics and volatile compounds of distilled Crystal grape spirits of different alcohol concentrations: Wine sprits in the Shangri-La region of China. Food Science and Technology 38 (suppl 1):50–8. doi: 10.1590/fst.12117.
  • White, M. A., N. S. Diffenbaugh, G. V. Jones, J. S. Pal, and F. Giorgi. 2006. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proceedings of the National Academy of Sciences of the United States of America 103 (30):11217–22. doi: 10.1073/pnas.0603230103.
  • Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology 5 (3):218–23. doi: 10.1016/S1369-5266(02)00256-X.
  • Wu, H., Z. Chai, R. P. Hutabarat, Q. L. Zeng, L. Y. Niu, D. J. Li, H. Yu, and W. Y. Huang. 2019. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Research International (Ottawa, Ont.) 122:548–60. doi: 10.1016/j.foodres.2019.05.015.
  • Wu, Q., M. Wang, and J. E. Simon. 2003. Determination of proanthocyanidins in grape products by liquid chromatography/mass spectrometric detection under low collision energy. Analytical Chemistry 75 (10):2440–4. doi: 10.1021/ac0262311.
  • Xi, Z. M., J. F. Meng, S. S. Huo, L. Y. Luan, L. N. Ma, and Z. W. Zhang. 2013. Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine. International Journal of Food Sciences and Nutrition 64 (4):444–51. doi: 10.3109/09637486.2012.746291.
  • Xu, F., X. Gao, Z-m Xi, H. Zhang, X-q Peng, Z-z Wang, T-m Wang, and Y. Meng. 2015. Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin. Plant Growth Regulation 75 (3):741–50. doi: 10.1007/s10725-014-9976-y.
  • Xu, H., C. F. Zhao, Y. T. Li, R. Y. Liu, M. Z. Ao, F. F. Li, Y. T. Yao, Z. Tao, and L. J. Yu. 2019. The ameliorative effect of the Pyracantha fortuneana (Maxim.) H. L. Li extract on intestinal barrier dysfunction through modulating glycolipid digestion and gut microbiota in high fat diet-fed rats. Food & Function 10 (10):6517–32. doi: 10.1039/c9fo01599j.
  • Yang, B., S. He, Y. Liu, B. Liu, Y. Ju, D. Kang, X. Sun, and Y. Fang. 2020. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in cabernet sauvignon grape berries. Food Chemistry 314:126170. doi: 10.1016/j.foodchem.2020.126170.
  • Yang, B., H. Yao, J. Zhang, Y. Li, Y. Ju, X. Zhao, X. Sun, and Y. Fang. 2020. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China. Food Chemistry 312:126020. doi: 10.1016/j.foodchem.2019.126020.
  • Yoshida, K., D. Ma, and C. P. Constabel. 2015. The MYB182 Protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiology 167 (3):693–710. doi: 10.1104/pp.114.253674.
  • Yu, K. J., J. H. Jun, C. Q. Duan, and R. A. Dixon. 2019. VvLAR1 and VvLAR2 are bifunctional enzymes for proanthocyanidin biosynthesis in grapevine. Plant Physiology 180 (3):1362–74. doi: 10.1104/pp.19.00447.
  • Yun, S. J., X. S. He, W. F. Zhang, D. Y. Chu, and C. P. Feng. 2020. Alleviation effect of grape seed proanthocyanidins on neuronal apoptosis in rats with iron overload. Biological Trace Element Research 194 (1):210–20. doi: 10.1007/s12011-019-01766-8.
  • Zhang, S. T., L. X. Li, Y. Cui, L. X. Luo, Y. Y. Li, P. Z. Zhou, and B. S. Sun. 2017. Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chemistry 219 (15):399–407. doi: 10.1016/j.foodchem.2016.09.170.
  • Zhang, S. T., Y. Cui, L. X. Li, Y. Y. Li, P. Y. Zhou, L. X. Luo, and B. S. Sun. 2015. Preparative HSCCC isolation of phloroglucinolysis products from grape seed polymeric proanthocyanidins as new powerful antioxidants. Food Chemistry 188:422–9. doi: 10.1016/j.foodchem.2015.05.030.
  • Zhang, Z. Z., X. N. Che, Q. H. Pan, X. X. Li, and C. Q. Duan. 2013. Transcriptional activation of flavan-3-ols biosynthesis in grape berries by UV irradiation depending on developmental stage. Plant Science: An International Journal of Experimental Plant Biology 208:64–74. doi: 10.1016/j.plantsci.2013.03.013c
  • Zhao, J. 2015. Flavonoid transport mechanisms: How to go, and with whom. Trends in Plant Science 20 (9):576–85. doi: 10.1016/j.tplants.2015.06.007.
  • Zhao, J., and R. A. Dixon. 2009. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell 21 (8):2323–40. doi: 10.2307/25680105.
  • Zhao, J., D. Huhman, G. Shadle, X. Z. He, L. W. Sumner, Y. Tang, and R. A. Dixon. 2011. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. The Plant Cell 23 (4):1536–55. doi: 10.2307/41433408.
  • Zhao, J., Y. Z. Pang, and R. A. Dixon. 2010. The mysteries of proanthocyanidin transport and polymerization. Plant Physiology 153 (2):437–43. doi: 10.1104/pp.110.155432.
  • Zhao, T., J. Wu, J. Meng, P. Shi, Y. Fang, Z. Zhang, and X. Sun. 2019. Harvesting at the right time: Maturity and its effects on the aromatic characteristics of Cabernet sauvignon wine. Molecules 24:2777. doi: 10.3390/molecules24152777.
  • Zhu, J. X., and C. G. Du. 2019. Could grape-based food supplements prevent the development of chronic kidney disease? Critical Reviews in Food Science and Nutrition :1–9. doi: 10.1080/10408398.2019.1676195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.