8,670
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Understanding functionality of sucrose in cake for reformulation purposes

ORCID Icon & ORCID Icon

References

  • Agapov, A. L., V. N. Novikov, T. Hong, F. Fan, and A. P. Sokolov. 2018. Surprising temperature scaling of viscoelastic properties in polymers. Macromolecules 51 (13):4874–81. doi: 10.1021/acs.macromol.8b00454.
  • Allan, M. C., B. Rajwa, and L. J. Mauer. 2018. Effects of sugars and sugar alcohols on the gelatinization temperature of wheat starch. Food Hydrocolloids. 84:593–607. doi: 10.1016/j.foodhyd.2018.06.035.
  • Allan, M. C., M. C. Chamberlain, and L. J. Mauer. 2020. Effects of sugars and sugar alcohols on the gelatinization temperatures of wheat, potato, and corn starches. Foods 9 (6):757. doi: 10.3390/foods9060757.
  • Angell, C. A. 1995. Formation of glasses from liquids and biopolymers. Science 267 (5206):1924–35. doi: 10.1126/science.267.5206.1924.
  • Anton, M. 2013. Egg yolk: Structures, functionalities and processes. Journal of the Science of Food and Agriculture 93 (12):2871–80. doi: 10.1002/jsfa.6247.
  • Back, J. F., D. Oakenfull, and M. B. Smith. 1979. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18 (23):5191–6. doi: 10.1021/bi00590a025.
  • Biliaderis, C. G., C. M. Page, T. J. Maurice, and B. O. Juliano. 1986. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry 34 (1):6–14. doi: 10.1021/jf00067a002.
  • Blond, G. 1989. Water-galactose system-supplemented state diagram and unfrozen water. Cryo-Letters 10 (5):299–308.
  • Bohidar, H. B., and S. S. Jena. 1993. Kinetics of sol–gel transition in thermoreversible gelation of gelatin. The Journal of Chemical Physics 98 (11):8970–7. doi: 10.1063/1.464456.
  • Boischot, C., C. I. Moraru, and J. L. Kokini. 2003. Factors that influence the microwave expansion of glassy amylopectin extrudates. Cereal Chemistry Journal 80 (1):56–61. doi: 10.1094/CCHEM.2003.80.1.56.
  • Brooker, B. E. 1993. The stabilisation of air in cake batters-the role of fat. Food Structure 12 (3):2.
  • Cao, J., and F. Leroy. 2005. Depression of the melting temperature by moisture for alpha-form crystallites in human hair keratin . Biopolymers 77 (1):38–43. doi: 10.1002/bip.20186.
  • Chesterton, A. K. S., D. P. de Abreu, G. D. Moggridge, P. A. Sadd, and D. I. Wilson. 2013. Evolution of cake batter bubble structure and rheology during planetary mixing. Food and Bioproducts Processing 91 (3):192–206. doi: 10.1016/j.fbp.2012.09.005.
  • Christaki, M., P. Verboven, T. van Dyck, B. Nicolai, P. Goos, and J. Claes. 2017. The predictive power of batter rheological properties on cake quality-the effect of pregelatinized flour, leavening acid type and mixing time. Journal of Cereal Science 77:219–27. doi: 10.1016/j.jcs.2017.07.001.
  • Coppola, M., M. Djabourov, and M. Ferrand. 2012. Unified phase diagram of gelatin films plasticized by hydrogen bonded liquids. Polymer 53 (7):1483–93. doi: 10.1016/j.polymer.2012.02.016.
  • Cuq, B., J. Abecassis, and S. Guilbert. 2003. State diagrams to help describe wheat bread processing. International Journal of Food Science and Technology 38 (7):759–66. doi: 10.1046/j.1365-2621.2003.00748.x.
  • Deleu, L. J., E. Wilderjans, I. Van Haesendonck, K. Brijs, and J. A. Delcour. 2016. Protein network formation during pound cake making: The role of egg white proteins and wheat flour gliadins. Food Hydrocolloids 61:409–14. doi: 10.1016/j.foodhyd.2016.05.001.
  • Deleu, L. J., S. Melis, E. Wilderjans, I. van Haesendonck, K. Brijs, and J. A. Delcour. 2017. Protein network formation during pound cake baking: The role of egg yolk and its fractions. Food Hydrocolloids 63:226–32. doi: 10.1016/j.foodhyd.2016.07.036.
  • Deleu, L. J., A. Luyts, E. Wilderjans, I. van Haesendonck, K. Brijs, and J. A. Delcour. 2019. Ohmic versus conventional heating for studying molecular changes during pound cake baking. Journal of Cereal Science 89:102708. doi: 10.1016/j.jcs.2019.01.008.
  • Desam, G. P., J. Li, G. Chen, O. Campanella, and G. Narsimhan. 2018. A mechanistic model for swelling kinetics of waxy maize starch suspension. Journal of Food Engineering 222:237–49. doi: 10.1016/j.jfoodeng.2017.11.017.
  • Evans, I. D., and A. Lips. 1992. Viscoelasticity of gelatinized starch dispersions. Journal of Texture Studies 23 (1):69–86. doi: 10.1111/j.1745-4603.1992.tb00512.x.
  • Farhat, I. A., and J. M. Blanshard. 1997. On the extrapolation of the melting temperature of dry starch from starch-water data using the Flory-Huggins equation. Carbohydrate Polymers 34 (4):263–5. doi: 10.1016/S0144-8617(97)00086-6.
  • Flory, P. J., and R. R. Garrett. 1958. Phase transitions in collagen and gelatin systems1. Journal of the American Chemical Society 80 (18):4836–45. doi: 10.1021/ja01551a020.
  • Foegeding, E. A., P. J. Luck, and J. P. Davis. 2006. Factors determining the physical properties of protein foams. Food Hydrocolloids 20 (2-3):284–92. doi: 10.1016/j.foodhyd.2005.03.014.
  • Godefroidt, T., N. Ooms, B. Pareyt, K. Brijs, and J. A. Delcour. 2019. Ingredient functionality during foam-type cake making: A review. Comprehensive Reviews in Food Science and Food Safety 18 (5):1550–62. doi = 10.1111/1541-4337.12488. doi: 10.1111/1541-4337.12488.
  • Habeych, E., X. Guo, J. van Soest, A. J. van der Goot, and R. Boom. 2009. On the applicability of Flory–Huggins theory to ternary starch–water–solute systems. Carbohydrate Polymers 77 (4):703–12. doi: 10.1016/j.carbpol.2009.02.012.
  • Hao, Y., F. Wang, W. Huang, X. Tang, Q. Zou, Z. Li, and A. Ogawa. 2016. Sucrose substitution by polyols in sponge cake and their effects on the foaming and thermal properties of egg protein. Food Hydrocolloids 57:153–9. doi: 10.1016/j.foodhyd.2016.01.006.
  • Hesso, N., C. Loisel, S. Chevallier, and A. Le-Bail. 2014. Impact of pregelatinized starches on the texture and staling of conventional and degassed pound cake. Food and Bioprocess Technology 7 (10):2923–30. doi: 10.1007/s11947-014-1254-5.
  • Hesso, N., C. Garnier, C. Loisel, S. Chevallier, B. Bouchet, and A. Le-Bail. 2015. Formulation effect study on batter and cake microstructure: Correlation with rheology and texture. Food Structure 5:31–41. doi: 10.1016/j.foostr.2015.03.002.
  • Hesso, N., C. Loisel, S. Chevallier, A. Marti, P. Le-Bail, A. Le-Bail, and K. Seetharaman. 2015. The role of ingredients on thermal and rheological properties of cake batters and the impact on microcake texture. LWT - Food Science and Technology 63 (2):1171–8. doi: 10.1016/j.lwt.2015.04.041.
  • Heymans, R., I. Tavernier, K. Dewettinck, and P. van der Meeren. 2017. Crystal stabilization of edible oil foams. Trends in Food Science & Technology 69:13–24. doi: 10.1016/j.tifs.2017.08.015.
  • Hughes, D. J., G. B. Bönisch, T. Zwick, C. Schäfer, C. Tedeschi, B. Leuenberger, F. Martini, G. Mencarini, M. A. Geppi, M. Alam, et al. 2018. Phase separation in amorphous hydrophobically modified starch–sucrose blends: Glass transition, matrix dynamics and phase behavior. Carbohydrate Polymers 199:1–10. doi: 10.1016/j.carbpol.2018.06.056.
  • Huson, M. G., E. V. Strounina, C. S. Kealley, M. K. Rout, J. S. Church, I. A. M. Appelqvist, M. J. Gidley, and E. P. Gilbert. 2011. Effects of thermal denaturation on the solid-state structure and molecular mobility of glycinin. Biomacromolecules 12 (6):2092–102. doi: 10.1021/bm200080h.
  • Kamat, V. B., G. A. Lawrence, C. J. Hart, and R. Yoell. 1973. Contribution of egg yolk lipoproteins to cake structure. Journal of the Science of Food and Agriculture 24 (1):77–88. doi: 10.1002/jsfa.2740240112.
  • Kocer, D., Z. Hicsasmaz, A. Bayindirli, and S. Katnas. 2007. Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar-and fat-replacer. Journal of Food Engineering 78 (3):953–64. doi: 10.1016/j.jfoodeng.2005.11.034.
  • Kweon, M., L. Slade, and H. Levine. 2011. Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding–A review. Cereal Chemistry Journal 88 (6):537–52. doi: 10.1094/CCHEM-07-11-0092.
  • Kweon, M., L. Slade, H. Levine, and D. Gannon. 2014. Cookie- versus cracker-baking-what's the difference? Flour functionality requirements explored by SRC and alveography . Critical Reviews in Food Science and Nutrition 54 (1):115–38. doi: 10.1080/10408398.2011.578469.
  • Kweon, M., L. Slade, and H. Levine. 2016. Cake baking with alternative carbohydrates for potential sucrose replacement. I. functionality of small sugars and their effects on high-ratio cake-baking performance. Cereal Chemistry Journal 93 (6):562–7. doi: 10.1094/CCHEM-02-16-0032-R.
  • Lambrecht, M. A., L. J. Deleu, I. Rombouts, and J. A. Delcour. 2018. Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocolloids 79:352–70. doi: 10.1016/j.foodhyd.2017.12.032.
  • Lee, C. C., and R. C. Hoseney. 1982. Optimization of the fat-emulsifier system and the gum-egg white-water system for a laboratory scale single stage cake mix. Cereal Chemistry 59 (5):392–5.
  • Lee, E. J., Y. Moon, and M. Kweon. 2020. Processing suitability of healthful carbohydrates for potential sucrose replacement to produce muffins with staling retardation. LWT 131:109565. doi: 10.1016/j.lwt.2020.109565.
  • Lelievre, J. 1974. Starch gelatinization. Journal of Applied Polymer Science 18 (1):293–6. doi: 10.1002/app.1974.070180124.
  • Lin, Y., C. Xu, A. Guan, and G. Wu. 2019. Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions. Polymer 161:190–6. doi: 10.1016/j.polymer.2018.12.025.
  • Liu, C. Y., J. He, R. Keunings, and C. Bailly. 2006. New linearized relation for the universal viscosity- temperature behavior of polymer melts. Macromolecules 39 (25):8867–9. doi: 10.1021/ma061969w.
  • Luyten, H., J. Plijter, and T. v Vliet. 2005. Crispy/crunchy crusts of cellular solid foods: A literature review with discussion. Journal of Texture Studies 35 (5):445–92. doi: 10.1111/j.1745-4603.2004.35501.x.
  • Marcet, I., B. Paredes, and M. Díaz. 2015. Egg yolk granules as low-cholesterol replacer of whole egg yolk in the preparation of gluten-free muffins. LWT - Food Science and Technology 62 (1):613–9. doi: 10.1016/j.lwt.2014.08.031.
  • Masavang, S., G. Roudaut, and D. Champion. 2019. Identification of complex glass transition phenomena by DSC in expanded cereal-based food extrudates: Impact of plasticization by water and sucrose. Journal of Food Engineering 245:43–52. doi: 10.1016/j.jfoodeng.2018.10.008.
  • Meza, B. E., A. K. S. Chesterton, R. A. Verdini, A. C. Rubiolo, P. A. Sadd, G. D. Moggridge, and D. I. Wilson. 2011. Rheological characterisation of cake batters generated by planetary mixing: Comparison between untreated and heat-treated wheat flours. Journal of Food Engineering 104 (4):592–602. doi: 10.1016/j.jfoodeng.2011.01.022.
  • Mizukoshi, M. 1983a. Model studies of cake baking. III. Effects of silicone on foam stability of cake batter. Cereal Chemistry 60 (5):399.
  • Mizukoshi, M. 1983b. Model studies of cake baking. IV. Foam drainage in cake batter. Cereal Chemistry 60 (5):400–2.
  • Mizukoshi, M. 1985a. Model studies of cake baking. V. Cake shrinkage and shear modulus of cake batter during baking. Cereal Chemistry 62 (4):242–6.
  • Mizukoshi, M. 1985b. Model studies of cake baking. Vi. Effects of cake ingredients. Cereal Chemistry 62 (4):247–51.
  • Mizukoshi, M.,. T. Kawada, and N. Matsui. 1979. Model studies of cake baking. I. Continuous observations of starch gelatinization and protein coagulation during baking. Cereal Chemistry 56 (4):305–9.
  • Mizukoshi, M.,. H. Maeda, and H. Amano. 1980. Model studies of cake baking. II. Expansion and heat set of cake batter during baking. Cereal Chemistry 57 (5):352–5.
  • Nafchi, A. M., R. H. Tabatabaei, B. Pashania, H. Z. Rajabi, and A. A. Karim. 2013. Effects of ascorbic acid and sugars on solubility, thermal, and mechanical properties of egg white protein gels. International Journal of Biological Macromolecules 62:397–404. doi: 10.1016/j.ijbiomac.2013.09.050.
  • Nakanishi, M., and R. Nozaki. 2011. Systematic study of the glass transition in polyhydric alcohols. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 83 (5 Pt 1):051503. doi: 10.1103/PhysRevE.83.051503.
  • O'Charoen, S., S. Hayakawa, Y. Matsumoto, and M. Ogawa. 2014. Effect of d-psicose used as sucrose replacer on the characteristics of meringue. Journal of Food Science 79 (12):E2463–E2469. doi: 10.1111/1750-3841.12699.
  • Ooms, N., B. Pareyt, K. Brijs, and J. A. Delcour. 2016. Ingredient functionality in multilayered dough-margarine systems and the resultant pastry products: A review. Critical Reviews in Food Science and Nutrition 56 (13):2101–14. doi: 10.1080/10408398.2014.928259.
  • Painter, K. A. 1981. Functions and requirements of fats and emulsifiers in prepared cake mixes. Journal of the American Oil Chemist’s Society 58 (2):92–5. doi: 10.1007/BF02672188.
  • Pareyt, B., and J. A. Delcour. 2008. The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: A review on sugar-snap cookies. Critical Reviews in Food Science and Nutrition 48 (9):824–39. doi: 10.1080/10408390701719223.
  • Purlis, E. 2010. Browning development in bakery products–A review. Journal of Food Engineering 99 (3):239–49. doi: 10.1016/j.jfoodeng.2010.03.008.
  • Rao, Q., and T. P. Labuza. 2012. Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders. Food Chemistry 132 (1):373–84. doi: 10.1016/j.foodchem.2011.10.107.
  • Renzetti, S., and A. Jurgens. 2016. Rheological and thermal behavior of food matrices during processing and storage: Relevance for textural and nutritional quality of food. Current Opinion in Food Science 9:117–25. doi: 10.1016/j.cofs.2016.10.003.
  • Renzetti, S., I. A. F. van den Hoek, and R. G. M. van der Sman. 2020a. Amino acids, polyols and soluble fibres as sugar replacers in pound cake: Egg white proteins denaturation described by hydrogen bond density and implications for protein network formation. Food Hydrocolloids 108:106034. doi = 10.1016/j.foodhyd.2020. doi: 10.1016/j.foodhyd.2020.106034.
  • Renzetti, S., I. A. F. van den Hoek, and R. G. M. van der Sman. 2020b. Mechanisms controlling starch gelatinization and pasting behaviour in presence of sugars, polyols, soluble fibers and amino acids. Food Hydrocolloids. To be submitted.
  • Rodríguez-García, J., S. S. Sahi, and I. Hernando. 2014. Optimizing mixing during the sponge cake manufacturing process. Cereal Foods World 59 (6):287–92. doi: 10.1094/CFW-59-6-0287.
  • Rothfuss, N. E., and M. D. Petters. 2017. Influence of functional groups on the viscosity of organic aerosol. Environmental Science & Technology 51 (1):271–9. doi: 10.1021/acs.est.6b04478.
  • Roudaut, G., and J. Wallecan. 2015. New insights on the thermal analysis of low moisture composite foods. Carbohydrate Polymers 115:10–5. doi: 10.1016/j.carbpol.2014.08.066.
  • Roudaut, G., C. Dacremont, B. Pàmies Vallès, B. Colas, and M. Le Meste. 2002. Crispness: A critical review on sensory and material science approaches. Trends in Food Science & Technology 13 (6-7):217–27. doi: 10.1016/S0924-2244(02)00139-5.
  • Rüegg, M., U. Moor, and B. Blanc. 1975. Hydration and thermal denaturation of β-lactoglobulin. a calorimetric study. Biochimica et Biophysica Acta (Bba) - Protein Structure 400 (2):334–42. doi: 10.1016/0005-2795(75)90188-9.
  • Sahi, S. S., and J. M. Alava. 2003. Functionality of emulsifiers in sponge cake production. Journal of the Science of Food and Agriculture 83 (14):1419–29. doi: 10.1002/jsfa.1557.
  • Schirmer, M., M. Jekle, E. Arendt, and T. Becker. 2012. Physicochemical interactions of polydextrose for sucrose replacement in pound cake. Food Research International 48 (1):291–8. doi: 10.1016/j.foodres.2012.05.003.
  • Slade, L., and H. Levine. 1987. Recent advances in starch retrogradation. Industrial Polysaccharides, 387–430.
  • Slade, L., and H. Levine. 1988. Non-equilibrium melting of native granular starch: Part I. temperature location of the glass transition associated with gelatinization of a-type cereal starches. Carbohydrate Polymers 8 (3):183–208. doi: 10.1016/0144-8617(88)90002-1.
  • Slade, L., and H. Levine. 1994a. Structure-function relationships of cookie and cracker ingredients. The Science of Cookie and Cracker Production, 23–141.
  • Slade, L., and H. Levine. 1994b. Water and the glass transition–dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking. In Water in foods, 143–88. Amsterdam: Elsevier.
  • Slade, L., H. Levine, and D. S. Reid. 1991. Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science & Nutrition 30 (2-3):115–360.
  • Sokolov, A. P., and K. S. Schweizer. 2009. Resolving the mystery of the chain friction mechanism in polymer liquids. Physical Review Letters 102 (24):248301. doi: 10.1103/PhysRevLett.102.248301.
  • Struck, S., L. Gundel, S. Zahn, and H. Rohm. 2016. Fiber enriched reduced sugar muffins made from iso-viscous batters. Lwt - Food Science and Technology 65:32–8. doi: 10.1016/j.lwt.2015.07.053.
  • Takahashi, A., and T. Yamada. 1998. Crystalline copolymer approach for melting behaviour of starch. Starch - Stärke 50 (9):386–296. doi: 10.1002/(SICI)1521-379X(199809)50:9<386::AID-STAR386>3.0.CO;2-C.
  • Tedeschi, C., B. Leuenberger, and J. Ubbink. 2016. Amorphous–amorphous phase separation in hydrophobically-modified starch–sucrose blends i. phase behavior and thermodynamic characterization. Food Hydrocolloids 58:75–88. doi: 10.1016/j.foodhyd.2016.02.021.
  • This, H. 2005. Modelling dishes and exploring culinary ‘precisions’: The two issues of molecular gastronomy. British Journal of Nutrition 93 (S1):S139–S146. doi: 10.1079/BJN20041352.
  • Uitto, J. M., and C. J. Verbeek. 2019. The role of phase separation in determining the glass transition behaviour of thermally aggregated protein-based thermoplastics. Polymer Testing 76:119–26. doi: 10.1016/j.polymertesting.2019.03.010.
  • Ureta, M. M., D. F. Olivera, and V. O. Salvadori. 2017. Influence of baking conditions on the quality attributes of sponge cake. Food Science and Technology International 23 (2):156–65. doi: 10.1177/1082013216666618.
  • Valenzuela, C., and J. M. Aguilera. 2015. Effects of maltodextrin on hygroscopicity and crispness of apple leathers. Journal of Food Engineering 144:1–9. doi: 10.1016/j.jfoodeng.2014.07.010.
  • van der Plancken, I., A. van Loey, and M. E. Hendrickx. 2006. Effect of heat-treatment on the physico-chemical properties of egg white proteins: A kinetic study. Journal of Food Engineering 75 (3):316–26. doi: 10.1016/j.jfoodeng.2005.04.019.
  • van der Sman, R. 2013. Predictions of glass transition temperature for hydrogen bonding biomaterials. The Journal of Physical Chemistry. B 117 (50):16303–13. doi: 10.1021/jp408184u.
  • van der Sman, R. 2016a. Filler functionality in edible solid foams. Advances in Colloid and Interface Science 231:23–35. doi: 10.1016/j.cis.2016.03.003.
  • van der Sman, R. 2016b. Sugar and polyol solutions as effective solvent for biopolymers. Food Hydrocolloids. 56:144–9. doi: 10.1016/j.foodhyd.2015.12.001.
  • van der Sman, R. 2017. Predicting the solubility of mixtures of sugars and their replacers using the flory–huggins theory. Food & Function 8 (1):360–71. doi: 10.1039/c6fo01497f.
  • van der Sman, R. 2018a. Progress in understanding of supplemented state diagrams of hydrophilic food materials. Current Opinion in Food Science 21:32–8. doi: 10.1016/j.cofs.2018.05.006.
  • van der Sman, R. 2018b. Theoretical investigation of the swelling of polysaccharide microgels in sugar solutions. Food & Function 9 (5):2716–24. doi = 10.1039/C8FO00452H. doi: 10.1039/C8FO00452H.
  • van der Sman, R. 2019. Phase separation, antiplasticization and moisture sorption in ternary systems containing polysaccharides and polyols. Food Hydrocolloids. 87:360–70. doi: 10.1016/j.foodhyd.2018.07.051.
  • van der Sman, R., and J. Broeze. 2013. Structuring of indirectly expanded snacks based on potato ingredients: A review. Journal of Food Engineering 114 (4):413–25. doi: 10.1016/j.jfoodeng.2012.09.001.
  • van der Sman, R., and J. Broeze. 2014a. Effects of salt on the expansion of starchy snacks: A multiscale analysis. Food & Function 5 (12):3076–82. doi: 10.1039/C4FO00513A.
  • van der Sman, R., and J. Broeze. 2014b. Multiscale analysis of structure development in expanded starch snacks. Journal of Physics, Condensed Matter: An Institute of Physics Journal 26 (46):464103doi: 10.1088/0953-8984/26/46/464103.
  • van der Sman, R., and L. J. Mauer. 2019. Starch gelatinization temperature in sugar and polyol solutions explained by hydrogen bond density. Food Hydrocolloids 94:371–80. doi: 10.1016/j.foodhyd.2019.03.034.
  • van der Sman, R., and M. B. J. Meinders. 2011. Prediction of the state diagram of starch water mixtures using the flory–huggins free volume theory. Soft Matter 7 (2):429–42. doi: 10.1039/C0SM00280A.
  • van der Sman, R., and M. B. J. Meinders. 2013. Moisture diffusivity in food materials. Food Chemistry 138 (2-3):1265–74. doi: 10.1016/j.foodchem.2012.10.062.
  • van der Sman, R., and S. Renzetti. 2019. Understanding functionality of sucrose in biscuits for reformulation purposes. Critical Reviews in Food Science and Nutrition 59 (14):2225–39. doi: 10.1080/10408398.2018.1442315.
  • van der Sman, R., and A. van der Goot. 2009. The science of food structuring. Soft Matter 5 (3):501–10. doi: 10.1039/B718952B.
  • van der Sman, R., H. M. Vollebregt, M. B. J. Meinders, and A. Beri. 2018. Effects of filler ingredients on the structure and texture of starchy, extruded snacks. Food Structure 18:1–13. doi: 10.1016/j.foostr.2018.10.001.
  • van der Sman, R., I. van der Hoek, and S. Renzetti. 2020. Sugar replacement with zwitterionic plasticizers like amino acids. Food Hydrocolloids 109:106113. doi = 10.1016/j.foodhyd.2020. doi: 10.1016/j.foodhyd.2020.106113.
  • van Nieuwenhuijzen, N. H., R. H. Tromp, J. R. Mitchell, C. Primo-Martín, R. J. Hamer, and T. Van Vliet. 2010. Relations between sensorial crispness and molecular mobility of model bread crust and its main components as measured by PTA, DSC AND NMR. Food Research International 43 (1):342–9. doi: 10.1016/j.foodres.2009.10.015.
  • Vanin, F. M., C. Michon, G. Trystram, and T. Lucas. 2010. Simulating the formation of bread crust in a DMTA rheometer. Journal of Cereal Science 51 (3):277–83. doi: 10.1016/j.jcs.2009.12.005.
  • Wilderjans, E., B. Pareyt, H. Goesaert, K. Brijs, and J. A. Delcour. 2008. The role of gluten in a pound cake system: A model approach based on gluten–starch blends. Food Chemistry 110 (4):909–15. doi: 10.1016/j.foodchem.2008.02.079.
  • Wilderjans, E., A. Luyts, H. Goesaert, K. Brijs, and J. A. Delcour. 2010. A model approach to starch and protein functionality in a pound cake system. Food Chemistry 120 (1):44–51. doi: 10.1016/j.foodchem.2009.09.067.
  • Wilderjans, E., A. Luyts, K. Brijs, and J. A. Delcour. 2013. Ingredient functionality in batter type cake making. Trends in Food Science & Technology 30 (1):6–15. doi: 10.1016/j.tifs.2013.01.001.
  • Wong DeRieux, W. S., Y. Li, P. Lin, J. Laskin, A. Laskin, A. K. Bertram, S. A. Nizkorodov, and M. Shiraiwa. 2018. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics 18 (9):6331–51. doi: 10.5194/acp-18-6331-2018.
  • Yang, X., and E. A. Foegeding. 2010. Effects of sucrose on egg white protein and whey protein isolate foams: Factors determining properties of wet and dry foams (cakes). Food Hydrocolloids 24 (2-3):227–38. doi: 10.1016/j.foodhyd.2009.09.011.
  • Yano, H., A. Fukui, K. Kajiwara, I. Kobayashi, K. Yoza, A. Satake, and M. Villeneuve. 2017. Development of gluten-free rice bread: Pickering stabilization as a possible batter-swelling mechanism. LWT - Food Science and Technology 79:632–9. doi: 10.1016/j.lwt.2016.11.086.
  • Zhang, Y. Y., Y. Song, X. S. Hu, X. J. Liao, Y. Y. Ni, and Q. H. Li. 2012. Effects of sugars in batter formula and baking conditions on 5-hydroxymethylfurfural and furfural formation in sponge cake models. Food Research International 49 (1):439–45. doi: 10.1016/j.foodres.2012.07.012.
  • Ziegler, G. R., D. B. Thompson, and J. Casasnovas. 1993. Dynamic measurement of starch granule swelling during gelatinization. Cereal Chemistry 70:247.