2,818
Views
71
CrossRef citations to date
0
Altmetric
Reviews

Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications

, &

References

  • Afseth, N. K., M. Bloomfield, J. P. Wold, and P. Matousek. 2014. A novel approach for subsurface through-skin analysis of salmon using spatially offset Raman spectroscopy (SORS). Applied Spectroscopy 68 (2):255–62. doi: 10.1366/13-07215.
  • Badii, F., and N. K. Howell. 2002. Effect of antioxidants, citrate, and cryoprotectants on protein denaturation and texture of frozen cod (Gadus morhua). Journal of Agricultural and Food Chemistry 50 (7):2053–61. doi: 10.1021/jf010824f.
  • Badii, F., and N. K. Howell. 2003. Elucidation of the effect of formaldehyde and lipids on frozen stored cod collagen by FT-Raman spectroscopy and differential scanning calorimetry. Journal of Agricultural and Food Chemistry 51 (5):1440–6. doi: 10.1021/jf020492u.
  • Berhe, D. T., C. E. Eskildsen, R. Lametsch, M. S. Hviid, F. van den Berg, and S. B. Engelsen. 2016. Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters. Meat Science 111:18–26.
  • Boireau-Adamezyk, E., A. Baillet-Guffroy, and G. N. Stamatas. 2014. Mobility of water molecules in the stratum corneum: Effects of age and chronic exposure to the environment. The Journal of Investigative Dermatology 134 (7):2046–9. doi: 10.1038/jid.2014.96.
  • Butler, H. J., L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, et al. 2016. Using Raman spectroscopy to characterize biological materials. Nature Protocols 11 (4):664–87. doi: 10.1038/nprot.2016.036.
  • Coulomb, D. 2008. Refrigeration and cold chain serving the global food industry and creating a better future: Two key IIR challenges for improved health and environment. Trends in Food Science & Technology 19 (8):413–7.
  • Cai, L., L. Nian, G. Zhao, Y. Zhang, L. Sha, and J. Li. 2019. Effect of herring antifreeze protein combined with chitosan magnetic nanoparticles on quality attributes in red sea bream (Pagrosomus major).Food and Bioprocess Technology 12 (3):409–21. doi: 10.1007/s11947-018-2220-4.
  • Camorani, P., E. Chiavaro, L. Cristofolini, M. Paciulli, M. Zaupa, A. Visconti, V. Fogliano, and N. Pellegrini. 2015. Raman spectroscopy application in frozen carrot cooked in different ways and the relationship with carotenoids. Journal of the Science of Food and Agriculture 95 (11):2185–91. doi: 10.1002/jsfa.7009.
  • Cao, M., J. Wang, A. Cao, D. Shiuan, R. Guan, L. Cai, and Y. Wang. 2018. The impact of recrystallisation on the freeze‐thaw cycles of red seabream (Pagrus major) fillets. International Journal of Food Science & Technology 54 (5):1642–50.
  • Careche, M., A. Herrero, and P. Carmona. 2002. Raman analysis of white spots appearing in the shell of argentine red shrimp (Pleoticus muelleri) during frozen storage. Food Chemistry and Toxicology 67 (8):2892–5.
  • Carey, D. M., and G. M. Korenowski. 1998. Measurement of the Raman spectrum of liquid water. The Journal of Chemical Physics 108 (7):2669–75. doi: 10.1063/1.475659.
  • Chao, K., S. Dhakal, J. Qin, M. Kim, and Y. Peng. 2018. A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation. Applied Sciences 8 (3):431–48. doi: 10.3390/app8030431.
  • Chen, Q., Y. Xie, J. Xi, Y. Guo, H. Qian, Y. Cheng, Y. Chen, and W. Yao. 2018. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy. Food Chemistry 243:58–64. doi: 10.1016/j.foodchem.2017.09.115.
  • Chen, Q., Y. Zhang, Y. Guo, Y. Cheng, H. Qian, W. Yao, Y. Xie, and Y. Ozaki. 2020. Non-destructive prediction of texture of frozen/thaw raw beef by Raman spectroscopy. Journal of Food Engineering 266:109693. doi: 10.1016/j.jfoodeng.2019.109693.
  • Cheng, J. H., B. Nicolai, and D.-W. Sun. 2017. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Science 123:182–91.
  • Cheng, S., X. Wang, R. Li, H. Yang, H. Wang, H. Wang, and M. Tan. 2019. Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: With emphasis on water status and distribution by LF-NMR and MRI. Meat Science 147:44–52. doi: 10.1016/j.meatsci.2018.08.020.
  • Cheng, W., D.-W. Sun, H. Pu, and Q. Wei. 2018. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chemistry 248:119–27.
  • Dou, Z., L. Wang, J. Hu, W. Fang, C. Sun, and Z. Men. 2020. Hydrogen bonding effect on Raman modes of Formic acid-water binary solutions. Journal of Molecular Liquids 313:113595. doi: 10.1016/j.molliq.2020.113595.
  • Dong, J., X. Li, L. Zhao, H. Xiao, F. Wang, X. Guo, and Y. Zhang. 2007. Raman observation of the interactions between NH4+, SO42-, and H2O in supersaturated (NH4)2SO4 droplets. The Journal of Physical Chemistry B 111 (42):12170–6. doi: 10.1021/jp072772o.
  • Đuričković, I., R. Claverie, P. Bourson, M. Marchetti, J.-M. Chassot, and M. D. Fontana. 2011. Water-ice phase transition probed by Raman spectroscopy. Journal of Raman Spectroscopy 42 (6):1408–12. doi: 10.1002/jrs.2841.
  • Egelandsdal, B., S. M. Abie, S. Bjarnadottir, H. Zhu, H. Kolstad, F. Bjerke, O. G. Martinsen, A. Mason, and D. Munch. 2019. Detectability of the degree of freeze damage in meat depends on analytic-tool selection. Meat Science 152:8–19. doi: 10.1016/j.meatsci.2019.02.002.
  • Ember, K. J. I., M. A. Hoeve, S. L. McAughtrie, M. S. Bergholt, B. J. Dwyer, M. M. Stevens, K. Faulds, S. J. Forbes, and C. J. Campbell. 2017. Raman spectroscopy and regenerative medicine: A review. NPJ Regenerative Medicine 2:12. doi: 10.1038/s41536-017-0014-3.
  • Esmonde-White, K. A., M. Cuellar, C. Uerpmann, B. Lenain, and I. R. Lewis. 2017. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem 409 (3):637–49. doi: 10.1007/s00216-016-9824-1.
  • Ewen, S., and D. Geoffrey. 2019. Modern Raman Spectroscopy: A practical approach (2nd ed.). UK: Wiley Blackwell Press, John Wiley & Sons.
  • Ezeanaka, M. C., J. Nsor-Atindana, and M. Zhang. 2019. Online low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) for food quality optimization in food processing. Food and Bioprocess Technology 12 (9):1435–51. doi: 10.1007/s11947-019-02296-w.
  • Fan, K., and M. Zhang. 2019. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology. Critical Reviews in Food Science and Nutrition 59 (14):2202–13. doi: 10.1080/10408398.2018.1441124.
  • Fowler, S. M., H. Schmidt, R. van de Ven, P. Wynn, and D. L. Hopkins. 2015. Predicting meat quality traits of ovine m. semimembranosus, both fresh and following freezing and thawing, using a hand held Raman spectroscopic device. Meat Science 108:138–44.
  • Fu, G., D.-W. Sun, H. Pu, and Q. Wei. 2019. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 195:841–9. doi:10.1016/j.talanta.2018.11.114. 30625626
  • Fuentes, A., R. Masot, I. Fernández-Segovia, M. Ruiz-Rico, M. Alcañiz, and J. M. Barat. 2013. Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies 19:210–7.
  • Gao, W., Y. Huang, X. A. Zeng, and M. A. Brennan. 2019. Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing. International Journal of Biological Macromolecules 135:839–44. doi: 10.1016/j.ijbiomac.2019.05.186.
  • Gomes da Costa, S., A. Richter, U. Schmidt, S. Breuninger, and O. Hollricher. 2019. Confocal Raman microscopy in life sciences. Morphologie: Bulletin de L'Association Des Anatomistes 103 (341):11–6. doi: 10.1016/j.morpho.2018.12.003.
  • Hassoun, A., A. Sahar, L. Lakhal, and A. Aït-Kaddour. 2019. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT - Food Science and Technology 103:279–92. doi: 10.1016/j.lwt.2019.01.021.
  • He, H., D.-W. Sun, H. Pu, and L. Huang. 2020. Corrigendum to ''Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1" [Food Chem. 324 (2020) 126832]. Food Chemistry 332:127443 doi:10.1016/j.foodchem.2020.127443. PMC: 32622187
  • He, H.,. D.-W. Sun, H. Pu, L. Chen, and L. Lin. 2019. Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments. Critical Reviews in Food Science and Nutrition 59 (5):770–93. doi: 10.1080/10408398.2018.1528436.
  • Herrero, A. M. 2008a. Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chemistry 107 (4):1642–51. doi: 10.1016/j.foodchem.2007.10.014.
  • Herrero, A. M. 2008b. Raman spectroscopy for monitoring protein structure in muscle food systems. Critical Reviews in Food Science and Nutrition 48 (6):512–23.
  • Herrero, A. M., P. Carmona, and M. Careche. 2004. Raman spectroscopic study of structural changes in hake (Merluccius merluccius l.) muscle proteins during frozen storage. Journal of Agricultural and Food Chemistry 52 (8):2147–53. doi: 10.1021/jf034301e.
  • Hu, B., D.-W. Sun, H. Pu, and Q. Wei. 2020a. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 217:120998 doi:10.1016/j.talanta.2020.120998. PMC: 32498854
  • Hu, B., D.-W. Sun, H. Pu, and Q. Wei. 2020b. A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta 218:121188 doi:10.1016/j.talanta.2020.121188. PMC: 32797928
  • Hubbard, T. J. E., A. Shore, and N. Stone. 2019. Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens. The Analyst 144 (22):6479–96. doi: 10.1039/c9an01163c.
  • Huen, J., C. Weikusat, M. Bayer-Giraldi, I. Weikusat, L. Ringer, and K. Lösche. 2014. Confocal Raman microscopy of frozen bread dough. Journal of Cereal Science 60 (3):555–60. doi: 10.1016/j.jcs.2014.07.012.
  • Hussain, A., D.-W. Sun, and H. Pu. 2019. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (6):851–62. doi:10.1080/19440049.2019.1591643. 31034331
  • Hussain, A., D.-W. Sun, and H. Pu. 2020a. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chemistry 317:126429 doi:10.1016/j.foodchem.2020.126429. PMC: 32109658
  • Hussain, A., H. Pu, and D.-W. Sun. 2020b. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 229:117994 doi:10.1016/j.saa.2019.117994. PMC: 31951941
  • Hussain, A., H. Pu, and D.-W. Sun. 2020c. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. Journal of Food Measurement and Characterization 14 (4):2021–9. doi:10.1007/s11694-020-00448-7.
  • Hussain, N., H. Pu, A. Hussain, and D.-W. Sun. 2020. Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 236:118357 doi:10.1016/j.saa.2020.118357. PMC: 32375074
  • Jayan, H., H. Pu, and D.-W. Sun. 2020. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends in Food Science & Technology 95:233–46. doi:10.1016/j.tifs.2019.11.007.
  • Jermyn, M., J. Desroches, K. Aubertin, K. St-Arnaud, W. J. Madore, E. De Montigny, M. C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, et al. 2016. A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology. Physics in Medicine and Biology 61 (23):R370–R400. doi: 10.1088/0031-9155/61/23/R370.
  • Jin, H., Q. Lu, X. Chen, H. Ding, H. Gao, and S. Jin. 2016. The use of Raman spectroscopy in food processes: A review. Applied Spectroscopy Reviews 51 (1):12–22. doi: 10.1080/05704928.2015.1087404.
  • Kang, T., Y. You, and S. Jun. 2020. Supercooling preservation technology in food and biological samples: A review focused on electric and magnetic field applications. Food Science and Biotechnology 29 (3):303–21. doi: 10.1007/s10068-020-00750-6.
  • Kang, Z. L., P. Wang, X. L. Xu, C. Z. Zhu, K. Li, and G. H. Zhou. 2014. Effect of beating processing, as a means of reducing salt content in frankfurters: A physico-chemical and Raman spectroscopic study. Meat Science 98 (2):171–7. doi: 10.1016/j.meatsci.2014.05.025.
  • Karoui, R., and C. Blecker. 2011. Fluorescence spectroscopy measurement for quality assessment of food systems—A review. Food and Bioprocess Technology 4 (3):364–86. doi: 10.1007/s11947-010-0370-0.
  • Krimm, S., and J. Bandekar. 1986. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry 38:181–364. doi: 10.1016/s0065-3233(08)60528-8.
  • Leelapongwattana, K., S. Benjakul, W. Visessanguan, and N. K. Howell. 2008. Raman spectroscopic analysis and rheological measurements on natural actomyosin from haddock (Melanogrammus aeglefinus) during refrigerated (4 °C) and frozen (−10 °C) storage in the presence of trimethylamine-N-oxide demethylase from kidney of lizardfish (Saurida tumbil). Food Chemistry 106 (3):1253–63. doi: 10.1016/j.foodchem.2007.06.061.
  • Li-Chan, E. C. Y. 1996. The applications of Raman spectroscopy in food science. Trends in Food Science & Technology 7 (11):361–70.
  • Li, D., Z. Zhu, and D.-W. Sun. 2018a. Effects of freezing on cell structure of fresh cellular food materials: A review. Trends in Food Science & Technology 75:46–55. doi: 10.1016/j.tifs.2018.02.019.
  • Li, D., Z. Zhu, and D.-W. Sun. 2020b. Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. The Analyst 145 (3):897–907.
  • Li, B., and P. J. Larkin. 2020. Chemical bleaching to minimize Fluorescence interference in Raman spectroscopic measurements for sulfonated polystyrene solutions. Applied Spectroscopy 74 (7):741–50.
  • Li, Y. S., and J. S. Church. 2014. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis 22 (1):29–48. doi: 10.1016/j.jfda.2014.01.003.
  • López-Maestresalas, A., K. Insausti, C. Jarén, C. Pérez-Roncal, O. Urrutia, M. J. Beriain, and S. Arazuri. 2019. Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control 98:465–73. doi: 10.1016/j.foodcont.2018.12.003.
  • Ma, C., and D. L. Phillips. 2002. FT-Raman spectroscopy and its applications in cereal science. Cereal Chemistry Journal 79 (2):171–7. doi: 10.1094/CCHEM.2002.79.2.171.
  • Ma, J., H. Pu, D.-W. Sun, W. Gao, J.-H. Qu, and K.-Y. Ma. 2015. Application of Vis–NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles. International Journal of Refrigeration 50:10–8. doi: 10.1016/j.ijrefrig.2014.10.024.
  • Matousek, P. 2018. Spatially offset Raman spectroscopy for non-invasive analysis of turbid samples. TrAC Trends in Analytical Chemistry 103:209–14. doi: 10.1016/j.trac.2018.04.002.
  • Matousek, P., and N. Stone. 2016. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chemical Society Reviews 45 (7):1794–802. doi: 10.1039/c5cs00466g.
  • Muik, B., B. Lendl, A. Molina-Díaz, and M. J. Ayora-Canada. 2005. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chemistry and Physics of Lipids 134 (2):173–82. doi: 10.1016/j.chemphyslip.2005.01.003.
  • Nian, L., A. Cao, L. Cai, H. Ji, and S. Liu. 2019. Effect of vacuum impregnation of red sea bream (Pagrosomus major) with herring AFP combined with CS@Fe3O4 nanoparticles during freeze-thaw cycles. Food Chemistry 291:139–48. doi: 10.1016/j.foodchem.2019.04.017.
  • Nian, Y., M. Zhao, C. P. O'Donnell, G. Downey, J. P. Kerry, and P. Allen. 2017. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Food Research International (Ottawa, Ont.) 99 (Pt 1):778–89.
  • Ostovar Pour, S., S. M. Fowler, D. L. Hopkins, P. J. Torley, H. Gill, and E. W. Blanch. 2019. Investigation of chemical composition of meat using spatially off-set Raman spectroscopy. The Analyst 144 (8):2618–27. doi: 10.1039/c8an01958d.
  • Qu, J.-H., J.-H. Cheng, D.-W. Sun, H. Pu, Q.-J. Wang, and J. Ma. 2015a. Discrimination of shelled shrimp (Metapenaeus ensis) among fresh, frozen-thawed and cold-stored by hyperspectral imaging technique. LWT - Food Science and Technology 62 (1):202–9. doi: 10.1016/j.lwt.2015.01.018.
  • Qu, J. H., D. Liu, J. H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X. A. Zeng. 2015b. Applications of near-infrared spectroscopy in food safety evaluation and control: A review of recent research advances. Critical Reviews in Food Science and Nutrition 55 (13):1939–54.
  • Ratcliffe, C. I., and D. E. Irish. 1982. Vibrational spectral studies of solutions at elevated temperatures and pressures. 5. Raman studies of liquid water up to 300.degree.C. Journal of Solution Chemistry 17 (9):805–24.
  • Rygula, A., K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska. 2013. Raman spectroscopy of proteins: A review. Journal of Raman Spectroscopy 44 (8):1061–76. doi: 10.1002/jrs.4335.
  • Sanchez-Alonso, I., P. Carmona, and M. Careche. 2012. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chemistry 132 (1):160–7.
  • Sánchez-González, I., P. Carmona, P. Moreno, J. Borderías, I. Sánchez-Alonso, A. Rodríguez-Casado, and M. Careche. 2008. Protein and water structural changes in fish surimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy. Food Chemistry 106 (1):56–64. doi: 10.1016/j.foodchem.2007.05.067.
  • Sarkardei, S., and N. K. Howell. 2007. The effects of freeze-drying and storage on the FT-Raman spectra of Atlantic mackerel (Scomber scombrus) and horse mackerel (Trachurus trachurus). Food Chemistry 103 (1):62–70. doi: 10.1016/j.foodchem.2006.06.065.
  • Schmidt, H., R. Scheier, and D. L. Hopkins. 2013. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss. Meat Science 93 (1):138–43. doi: 10.1016/j.meatsci.2012.08.019.
  • Schulz, H., M. Baranska, and R. Baranski. 2005. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77 (4):212–21. doi: 10.1002/bip.20215.
  • Sun, Q. 2009. The Raman OH stretching bands of liquid water. Vibrational Spectroscopy 51 (2):213–7. doi: 10.1016/j.vibspec.2009.05.002.
  • Sun, W., Q. Zhao, M. Zhao, B. Yang, C. Cui, and J. Ren. 2011. Structural evaluation of myofibrillar proteins during processing of Cantonese sausage by Raman spectroscopy. Journal of Agricultural and Food Chemistry 59 (20):11070–7. doi: 10.1021/jf202560s.
  • Tao, F., and M. Ngadi. 2018. Recent advances in rapid and nondestructive determination of fat content and fatty acids composition of muscle foods. Critical Reviews in Food Science and Nutrition 58 (9):1565–93. doi: 10.1080/10408398.2016.1261332.
  • Teixeira Dos Santos, C. A., R. Pascoa, M. C. Sarraguca, P. Porto, A. L. Cerdeira, J. M. Gonzalez-Saiz, C. Pizarro, and J. A. Lopes. 2017. Merging vibrational spectroscopic data for wine classification according to the geographic origin. Food Research International (Ottawa, Ont.) 102:504–10. doi: 10.1016/j.foodres.2017.09.018.
  • Tenyang, N., B. Tiencheu, F. Tonfack Djikeng, A. T. Morfor, and H. M. Womeni. 2019. Alteration of the lipid of red carp (Cyprinus carpio) during frozen storage. Food Science & Nutrition 7 (4):1371–8. doi: 10.1002/fsn3.971.
  • Thygesen, L. G., M. M. Løkke, E. Micklander, and S. B. Engelsen. 2003. Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science & Technology 14 (1-2):50–7.
  • Tian, Y., Z. Chen, Z. Zhu, and D.-W. Sun. 2020a. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. Ultrasonics Sonochemistry 67:105162.
  • Tian, Y., D. Li, W. Luo, Z. Zhu, W. Li, Z. Qian, G. Li, and D.-W. Sun. 2020b. Rapid freezing using atomized liquid nitrogen spray followed by frozen storage below glass transition temperature for Cordyceps sinensis preservation: Quality attributes and storage stability. LWT - Food Science and Technology 123:109066. doi: 10.1016/j.lwt.2020.109066.
  • Tian, Y., P. Zhang, Z. Zhu, and D.-W. Sun. 2020c. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes. Journal of Food Engineering 286:110112. doi: 10.1016/j.jfoodeng.2020.110112.
  • Velioglu, H. M., H. T. Temiz, and I. H. Boyaci. 2015. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis. Food Chemistry 172:283–90.
  • Wang, K., D.-W. Sun, H. Pu, Q. Wei, and L. Huang. 2019a. Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array. ACS Applied Materials & Interfaces 11 (32):29177–86. doi:10.1021/acsami.9b09746. 31317741
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2019b. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications. Talanta 195:506–15. doi:10.1016/j.talanta.2018.11.057. 30625576
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2019c. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 191:449–56. doi:10.1016/j.talanta.2018.08.005.
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2020a. A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol-functionalized core-shell Au@Ag nanoparticles. The Analyst 145 (5):1801–9. doi:10.1039/c9an02185j. 31951224
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2020b. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chemistry 310:125923 doi:10.1016/j.foodchem.2019.125923. PMC: 31837530
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. 2017. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends in Food Science & Technology 67:207–19.
  • Wang, W. T., H. Zhang, Y. Yuan, Y. Guo, and S. X. He. 2018. Research Progress of Raman Spectroscopy in Drug Analysis. AAPS PharmSciTech 19 (7):2921–8. doi: 10.1208/s12249-018-1135-8.
  • Wu, L., H. Pu, L. Huang, and D.-W. Sun. 2020. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chemistry 328:127105 doi:10.1016/j.foodchem.2020.127105. PMC: 32464556
  • Xie, A., D.-W. Sun, Z. Xu, and Z. Zhu. 2015. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta 139:208–15. doi: 10.1016/j.talanta.2015.02.027.
  • Yang, D., and Y. Ying. 2011. Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review. Applied Spectroscopy Reviews 46 (7):539–60. doi: 10.1080/05704928.2011.593216.
  • Yao, Z. X., H. Su, Y. Han, J. G. Xu, X. C. Huang, and X. Xin. 2019. Fluorescence Fading Effect and Raman Spectrum Baseline Interference Cancellation. Spectroscopy and Spectral Analysis 39 (7):2034–9.
  • Yaseen, T., H. Pu, and D.-W. Sun. 2019c. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta 196:537–45. doi:10.1016/j.talanta.2018.12.030. 30683402
  • Yaseen, T., H. Pu, and D.-W. Sun. 2019b. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (5):762–78. doi:10.1080/19440049.2019.1582806. 30943113
  • Yu, N., B. H. Jo, and D. C. O'Shea. 1973. Laser Raman scattering of cobramine B, a basic protein from cobra venom. Archives of Biochemistry and Biophysics 156 (1):71–6. doi: 10.1016/0003-9861(73)90342-1.
  • Zhai, C., Y. Peng, Y. Li, and T. Xu. 2015. Nondestructive detection of chlorpyrifos in apples based on surface enhanced raman scattering. Acta Chimica Sinica 73 (11):1167–72. doi: 10.6023/A15050326.
  • Zhan, X., Z. Zhu, and D.-W. Sun. 2019. Effects of pretreatments on quality attributes of long-term deep frozen storage of vegetables: A review. Critical Reviews in Food Science and Nutrition 59 (5):743–57. doi: 10.1080/10408398.2018.1496900.
  • Zhang, T., Z. Li, Y. Wang, Y. Xue, and C. Xue. 2016. Effects of konjac glucomannan on heat-induced changes of physicochemical and structural properties of surimi gels. Food Research International 83:152–61. doi: 10.1016/j.foodres.2016.03.007.
  • Zhang, Y., and P. Ertbjerg. 2019. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chemistry 299:125104. doi: 10.1016/j.foodchem.2019.125104.
  • Zhao, M., G. Downey, and C. P. O'Donnell. 2015. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. Journal of Agricultural and Food Chemistry 63 (5):1433–41. doi: 10.1021/jf5041959.
  • Zhou, L., C. Zhang, Z. Qiu, and Y. He. 2020. Information fusion of emerging non-destructive analytical techniques for food quality authentication: A survey. TrAC Trends in Analytical Chemistry 127:115901. doi: 10.1016/j.trac.2020.115901.
  • Zhou, X., H. Chen, F. Lyu, H. Lin, Q. Zhang, and Y. Ding. 2019. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: Effects of fat type and concentration. Food Hydrocolloids 90:433–42. doi: 10.1016/j.foodhyd.2018.12.032.
  • Zhou, X., S. Jiang, D. Zhao, J. Zhang, S. Gu, Z. Pan, and Y. Ding. 2017. Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil. LWT - Food Science and Technology 84:562–71. doi: 10.1016/j.lwt.2017.03.026.
  • Zhu, Y., Y. Li, C. Wu, F. Teng, B. Qi, X. Zhang, L. Zhou, G. Yu, H. Wang, S. Zhang, et al. 2019. Stability mechanism of two soybean protein-phosphatidylcholine nanoemulsion preparation methods from a structural perspective: A Raman Spectroscopy analysis. Scientific Reports 9 (1):6985
  • Zhu, Z., P. Zhang, and D.-W. Sun. 2020a. Effects of multi-frequency ultrasound on freezing rates and quality attributes of potatoes. Ultrasonics Sonochemistry 60:104733.
  • Zhu, Z., Q. Zhou, and D.-W. Sun. 2019b. Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends in Food Science & Technology 90:13–25. doi: 10.1016/j.tifs.2019.05.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.