2,804
Views
101
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging

, , , , , , , , , , , & show all

References

  • Abdollahi, M., M. Rezaei, and G. Farzi. 2012. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering 111 (2):343–50. doi: 10.1016/j.jfoodeng.2012.02.012.
  • Akbari-Alavijeh, S., R. Shaddel, and S. M. Jafari. 2020. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids 105:105774. doi: 10.1016/j.foodhyd.2020.105774.
  • Al-Naamani, L., S. Dobretsov, and J. Dutta. 2016. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science & Emerging Technologies 38:231–7. doi: 10.1016/j.ifset.2016.10.010.
  • Albanese, A., and W. C. Chan. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5 (7):5478–89. doi: 10.1021/nn2007496.
  • Almasi, H., P. Jafarzadeh, and L. Mehryar. 2018. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydrate Polymers 186:273–81. doi: 10.1016/j.carbpol.2018.01.067.
  • Amjadi, S., S. Emaminia, S. H. Davudian, S. Pourmohammad, H. Hamishehkar, and L. Roufegarinejad. 2019. Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydrate Polymers 216:376–84. doi: 10.1016/j.carbpol.2019.03.062.
  • Amjadi, S., M. Nazari, S. A. Alizadeh, and H. Hamishehkar. 2020. Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Science 167:108161. doi: 10.1016/j.meatsci.2020.108161.
  • Antoniou, J., F. Liu, H. Majeed, and F. Zhong. 2015. Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocolloids 44:309–19. doi: 10.1016/j.foodhyd.2014.09.023.
  • Aresta, A., C. D. Calvano, A. Trapani, S. Cellamare, C. G. Zambonin, and E. De Giglio. 2013. Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications. Journal of Nanoparticle Research 15 (4):1592. doi: 10.1007/s11051-013-1592-7.
  • Arpagaus, C., A. Collenberg, D. Rütti, E. Assadpour, and S. M. Jafari. 2018. Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics 546 (1–2):194–214. doi: 10.1016/j.ijpharm.2018.05.037.
  • Assadpour, E., and S. M. Jafari. 2019. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annual Review of Food Science and Technology 10 (1):103–31. doi: 10.1146/annurev-food-032818-121641.
  • Augustin, M., and C. Oliver. 2012. An overview of the development and applications of nanoscale materials in the food industry. In Nanotechnology in the food, beverage and nutraceutical industries, ed. H. Qingrong, 3–39. Cambridge, UK: Woodhead Publishing.
  • Augustin, M. A., and P. Sanguansri. 2009. Nanostructured materials in the food industry. Advances in Food and Nutrition Research 58:183–213. doi: 10.1016/S1043-4526(09)58005-9.
  • Baalousha, M., and J. Lead. 2012. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: Sample preparation, polydispersity, and particle structure. Environmental Science & Technology 46 (11):6134–42. doi: 10.1021/es301167x.
  • Bahram, S., M. Rezaei, M. Soltani, A. Kamali, S. M. Ojagh, and M. Abdollahi. 2014. Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Preservation 38 (3):1251–8. doi: 10.1111/jfpp.12086.
  • Bahrami, A., R. Delshadi, E. Assadpour, S. M. Jafari, and L. Williams. 2020. Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science 278:102140. doi: 10.1016/j.cis.2020.102140.
  • Baldassarre, F., M. Cacciola, and G. Ciccarella. 2015. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application. Journal of Nanoparticle Research 17 (9):377. doi: 10.1007/s11051-015-3163-6.
  • Baldrick, P. 2010. The safety of chitosan as a pharmaceutical excipient. Regulatory Toxicology and Pharmacology: RTP 56 (3):290–9. doi: 10.1016/j.yrtph.2009.09.015.
  • Balouiri, M., M. Sadiki, and S. K. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6 (2):71–9. doi: 10.1016/j.jpha.2015.11.005.
  • Bao, S., S. Xu, and Z. Wang. 2009. Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. Journal of the Science of Food and Agriculture 89 (15):2692–700. doi: 10.1002/jsfa.3775.
  • Barikloo, H., and E. Ahmadi. 2018. Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae 240:496–508. doi: 10.1016/j.scienta.2018.06.012.
  • Beikzadeh, S., A. Khezerlou, S. M. Jafari, Z. Pilevar, and A. M. Mortazavian. 2020. Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science 280:102164. doi: 10.1016/j.cis.2020.102164.
  • Benucci, I., C. Lombardelli, I. Cacciotti, K. Liburdi, F. Nanni, and M. Esti. 2016. Chitosan beads from microbial and animal sources as enzyme supports for wine application. Food Hydrocolloids 61:191–200. doi: 10.1016/j.foodhyd.2016.05.016.
  • Bilbao-Sainz, C., J. Bras, T. Williams, T. Sénechal, and W. Orts. 2011. HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers 86 (4):1549–57. doi: 10.1016/j.carbpol.2011.06.060.
  • Branda, F., B. Silvestri, A. Costantini, and G. Luciani. 2015. Effect of exposure to growth media on size and surface charge of silica based Stöber nanoparticles: A DLS and ζ-potential study. Journal of Sol-Gel Science and Technology 73 (1):54–61. doi: 10.1007/s10971-014-3494-2.
  • Brunel, F., L. Véron, L. David, A. Domard, and T. Delair. 2008. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 24 (20):11370–7. doi: 10.1021/la801917a.
  • Bugnicourt, L., and C. Ladavière. 2016. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Progress in Polymer Science 60:1–17. doi: 10.1016/j.progpolymsci.2016.06.002.
  • Cabrera, G. L., and D. Rodriguez. 1999. Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mutation Research 426 (2):211–4. doi: 10.1016/S0027-5107(99)00070-6.
  • Cacciotti, I., C. Lombardelli, I. Benucci, and M. Esti. 2019. Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. Journal of Materials Research and Technology 8 (4):3644–52. doi: 10.1016/j.jmrt.2019.06.002.
  • Caro, N., E. Medina, M. Díaz-Dosque, L. López, L. Abugoch, and C. Tapia. 2016. Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocolloids 52:520–32. doi: 10.1016/j.foodhyd.2015.07.028.
  • Carreno-Gomez, B., and R. Duncan. 1997. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. International Journal of Pharmaceutics 148 (2):231–40. doi: 10.1016/S0378-5173(96)04847-8.
  • Chang, P. R., R. Jian, J. Yu, and X. Ma. 2010a. Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry 120 (3):736–40. doi: 10.1016/j.foodchem.2009.11.002.
  • Chang, P. R., R. Jian, J. Yu, and X. Ma. 2010b. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers 80 (2):420–5. doi: 10.1016/j.carbpol.2009.11.041.
  • Cheon, J., and J.-H. Lee. 2008. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Accounts of Chemical Research 41 (12):1630–40. doi: 10.1021/ar800045c.
  • Choudhary, R. C., R. Kumaraswamy, S. Kumari, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2017. Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In Nanotechnology, eds. R. Prasad, M. Kumar, and V. Kumar, 227–47. Singapore: Springer.
  • Choudhary, R. C., R. Kumaraswamy, S. Kumari, S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2017. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports 7 (1):1–11. doi: 10.1038/s41598-017-08571-0.
  • Chuah, A. M., T. Kuroiwa, S. Ichikawa, I. Kobayashi, and M. Nakajima. 2009. Formation of biocompatible nanoparticles via the self‐assembly of chitosan and modified lecithin. Journal of Food Science 74 (1):N1–8. doi: 10.1111/j.1750-3841.2008.00985.x.
  • Chuah, L. H., C. J. Roberts, N. Billa, S. Abdullah, R. Rosli, and S. Manickam. 2014. Using Nanoparticle Tracking Analysis (NTA) to decipher mucoadhesion propensity of curcumin-containing chitosan nanoparticles and curcumin release. Journal of Dispersion Science and Technology 35 (9):1201–7. doi: 10.1080/01932691.2013.800458.
  • Corcione, C. E., and M. Frigione. 2012. Characterization of nanocomposites by thermal analysis. Materials 5 (12):2960–80. doi: 10.3390/ma5122960.
  • Cui, H., D. Surendhiran, C. Li, and L. Lin. 2020. Biodegradable zein active film containing chitosan nanoparticle encapsulated with pomegranate peel extract for food packaging. Food Packaging and Shelf Life 24:100511. doi: 10.1016/j.fpsl.2020.100511.
  • Dandekar, P., R. Jain, T. Stauner, B. Loretz, M. Koch, G. Wenz, and C. M. Lehr. 2012. A Hydrophobic Starch Polymer for nanoparticle-mediated delivery of docetaxel. Macromolecular Bioscience 12 (2):184–94. doi: 10.1002/mabi.201100244.
  • De Azeredo, H. M. 2009. Nanocomposites for food packaging applications. Food Research International 42 (9):1240–53. doi: 10.1016/j.foodres.2009.03.019.
  • de Barros‐Alexandrino, T. T., M. M. Tosi, and O. B. G. Assis. 2019. Comparison between chitosan nanoparticles and cellulose nanofibers as reinforcement fillers in papaya puree films: Effects on mechanical, water vapor barrier, and thermal properties. Polymer Engineering & Science 59 (S1):E287–92. doi: 10.1002/pen.24938.
  • De Lima, R., L. Feitosa, A. d E. S. Pereira, M. R. De Moura, F. A. Aouada, L. H. C. Mattoso, and L. F. Fraceto. 2010. Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films. Journal of Food Science 75 (6):N89–96. doi: 10.1111/j.1750-3841.2010.01682.x.
  • de Moura, M. R., F. A. Aouada, R. J. Avena-Bustillos, T. H. McHugh, J. M. Krochta, and L. H. Mattoso. 2009. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering 92 (4):448–53. doi: 10.1016/j.jfoodeng.2008.12.015.
  • de Moura, M. R., M. V. Lorevice, L. H. Mattoso, and V. Zucolotto. 2011. Highly stable, edible cellulose films incorporating chitosan nanoparticles. Journal of Food Science 76 (2):N25–9. doi: 10.1111/j.1750-3841.2010.02013.x.
  • Dehnad, D., H. Mirzaei, Z. Emam-Djomeh, S. M. Jafari, and S. Dadashi. 2014. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers 109:148–54. doi: 10.1016/j.carbpol.2014.03.063.
  • Depan, D., A. P. Kumar, and R. P. Singh. 2009. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomaterialia 5 (1):93–100. doi: 10.1016/j.actbio.2008.08.007.
  • Divya, K., and M. Jisha. 2018. Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters 16 (1):101–12. doi: 10.1007/s10311-017-0670-y.
  • Dudhani, A. R., and S. L. Kosaraju. 2010. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydrate Polymers 81 (2):243–51. doi: 10.1016/j.carbpol.2010.02.026.
  • Dutta, P. K., S. Tripathi, G. K. Mehrotra, and J. Dutta. 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry 114 (4):1173–82. doi: 10.1016/j.foodchem.2008.11.047.
  • El-Aziz, M. A., S. Morsi, D. M. Salama, M. Abdel-Aziz, M. S. A. Elwahed, E. Shaaban, and A. Youssef. 2019. Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. International Journal of Biological Macromolecules 123:856–65. doi: 10.1016/j.ijbiomac.2018.11.155.
  • El Bourakadi, K., N. Merghoub, M. Fardioui, M. E. M. Mekhzoum, I. M. Kadmiri, E. M. Essassi, A. el Kacem Qaiss, and R. Bouhfid. 2019. Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Composites Part B: Engineering 172:103–10. doi: 10.1016/j.compositesb.2019.05.042.
  • Elsabee, M. Z., H. F. Naguib, and R. E. Morsi. 2012. Chitosan based nanofibers. Review. Materials Science and Engineering: C 32 (7):1711–26. doi: 10.1016/j.msec.2012.05.009.
  • Elsawy, M. A., G. R. Saad, and A. M. Sayed. 2016. Mechanical, thermal, and dielectric properties of Poly (lactic acid)/chitosan nanocomposites. Polymer Engineering & Science 56 (9):987–94. doi: 10.1002/pen.24328.
  • Escamilla-García, M., G. Calderon-Dominguez, J. J. Chanona-Perez, R. R. Farrera-Rebollo, J. A. Andraca-Adame, I. Arzate-Vazquez, J. V. Mendez-Mendez, and L. Moreno-Ruiz. 2013. Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. International Journal of Biological Macromolecules 61:196–203. doi: 10.1016/j.ijbiomac.2013.06.051.
  • Falsafi, S. R., H. Rostamabadi, E. Assadpour, and S. M. Jafari. 2020. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science 280:102166. doi: 10.1016/j.cis.2020.102166.
  • Fathi, M., A. Martin, and D. J. McClements. 2014. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology 39 (1):18–39. doi: 10.1016/j.tifs.2014.06.007.
  • Fauzi, B., M. G. M. Nawawi, R. Fauzi, and S. N. L. Mamauod. 2019. Physicochemical Characteristics of Sago Starch-Chitosan Nanofillers Film. BioResources 14 (4):8324–30.
  • FDA. 2005. Guidance for industry: Nonclinical studies for the safety evaluation of pharmaceutical excipients.
  • Filipe, V., A. Hawe, and W. Jiskoot. 2010. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical Research 27 (5):796–810. doi: 10.1007/s11095-010-0073-2.
  • Garavand, F., M. Rouhi, S. H. Razavi, I. Cacciotti, and R. Mohammadi. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules 104 (Pt A):687–707. doi: 10.1016/j.ijbiomac.2017.06.093.
  • Garg, U., S. Chauhan, U. Nagaich, and N. Jain. 2019. Current advances in chitosan nanoparticles based drug delivery and targeting. Advanced Pharmaceutical Bulletin 9 (2):195–204. doi: 10.15171/apb.2019.023.
  • George, A., M. R. Sanjay, R. Srisuk, J. Parameswaranpillai, and S. Siengchin. 2020. A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules 154:329–38. doi: 10.1016/j.ijbiomac.2020.03.120. [32179114]
  • Ghaderi, J., S. F. Hosseini, N. Keyvani, and M. C. Gómez-Guillén. 2019. Polymer blending effects on the physicochemical and structural features of the chitosan/poly (vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids 95:122–32. doi: 10.1016/j.foodhyd.2019.04.021.
  • Gharanjig, H., K. Gharanjig, M. Hosseinnezhad, and S. M. Jafari. 2020. Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules 148:31–40. doi: 10.1016/j.ijbiomac.2020.01.115.
  • Haldorai, Y., and J.-J. Shim. 2013a. Chitosan-zinc oxide hybrid composite for enhanced dye degradation and antibacterial activity. Composite Interfaces 20 (5):365–77. doi: 10.1080/15685543.2013.806124.
  • Haldorai, Y., and J.-J. Shim. 2013b. Multifunctional chitosan-copper oxide hybrid material: Photocatalytic and antibacterial activities. International Journal of Photoenergy 2013:1–8. doi: 10.1155/2013/245646.
  • Hashimoto, A., P. Wang, M. Shimojo, K. Mitsuishi, P. D. Nellist, A. I. Kirkland, and M. Takeguchi. 2012. Three-dimensional analysis of nanoparticles on carbon support using aberration-corrected scanning confocal electron microscopy. Applied Physics Letters 101 (25):253108. doi: 10.1063/1.4772514.
  • Hassan, E. A., M. L. Hassan, R. E. Abou-Zeid, and N. A. El-Wakil. 2016. Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Industrial Crops and Products 93:219–26. doi: 10.1016/j.indcrop.2015.12.006.
  • Hermawan, D., T. K. Lai, S. Jafarzadeh, D. A. Gopakumar, M. Hasan, F. T. Owolabi, N. S. Aprilia, S. Rizal, and H. A. Khalil. 2019. Development of seaweed-based bamboo microcrystalline cellulose films intended for sustainable food packaging applications. BioResources 14 (2):3389–410.
  • Hirano, S. 1988. Bio-compatibility of chitosan by oral and intravenous administrations. Polymeric Materials Engineering and Science 59:897–901.
  • Hirano, S., M. Iwata, K. Yamanaka, H. Tanaka, T. Toda, and H. Inui. 1991. Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbits. Agricultural and Biological Chemistry 55 (10):2623–5.
  • Hoo, C. M., N. Starostin, P. West, and M. L. Mecartney. 2008. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research 10 (S1):89–96. doi: 10.1007/s11051-008-9435-7.
  • Hoseyni, S. Z., S. M. Jafari, H. Shahiri Tabarestani, M. Ghorbani, E. Assadpour, and M. Sabaghi. 2020. Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol. Carbohydrate Polymers 235:115979. doi: 10.1016/j.carbpol.2020.115979.
  • Hosseini, S. F., M. Rezaei, M. Zandi, and F. Farahmandghavi. 2015. Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids 44:172–82. doi: 10.1016/j.foodhyd.2014.09.004.
  • Hosseini, S. F., M. Rezaei, M. Zandi, and F. Farahmandghavi. 2016a. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry 194:1266–74. doi: 10.1016/j.foodchem.2015.09.004.
  • Hosseini, S. F., M. Rezaei, M. Zandi, and F. Farahmandghavi. 2016b. Preparation and characterization of chitosan nanoparticles‐loaded fish gelatin‐based edible films. Journal of Food Process Engineering 39 (5):521–30. doi: 10.1111/jfpe.12246.
  • Hosseinnejad, M., and S. M. Jafari. 2016. Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules 85:467–75. doi: 10.1016/j.ijbiomac.2016.01.022.
  • Hu, X., X. Jia, C. Zhi, Z. Jin, and M. Miao. 2019. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydrate Polymers 210:204–9. doi: 10.1016/j.carbpol.2019.01.043.
  • Hu, Y.-L., W. Qi, F. Han, J.-Z. Shao, and J.-Q. Gao. 2011. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. International Journal of Nanomedicine 6:3351–9. doi: 10.2147/IJN.S25853.
  • Huang, W., H. Xu, Y. Xue, R. Huang, H. Deng, and S. Pan. 2012. Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International 48 (2):784–91. doi: 10.1016/j.foodres.2012.06.026.
  • Ichikawa, S., S. Iwamoto, and J. Watanabe. 2005. Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Bioscience, Biotechnology, and Biochemistry 69 (9):1637–42. doi: 10.1271/bbb.69.1637.
  • Ilium, L. 1998. Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research 15 (9):1326–31. doi: 10.1023/A:1011929016601.
  • Islam, N., I. Dmour, and M. O. Taha. 2019. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 5 (5):e01684. doi: 10.1016/j.heliyon.2019.e01684.
  • Jafari, S. M., and D. J. McClements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. Advances in Food and Nutrition Research 81:1–30.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, and S. Mahmud. 2018. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties 21 (1):983–95. doi: 10.1080/10942912.2018.1474056.
  • Jafarzadeh, S., S. M. Jafari, A. Salehabadi, A. M. Nafchi, U. S. Uthaya Kumar, and H. P. S. A. Khalil. 2020. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology 100:262–77. doi: 10.1016/j.tifs.2020.04.017.
  • Jayakumar, R., D. Menon, K. Manzoor, S. V. Nair, and H. Tamura. 2010. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate Polymers 82 (2):227–32. doi: 10.1016/j.carbpol.2010.04.074.
  • Jia-Hui, Y., D. Yu-Min, and Z. Hua. 1999. Blend films of chitosan-gelatin. Wuhan University Journal of Natural Sciences 4 (4):476. doi: 10.1007/BF02832288.
  • Jimtaisong, A., and N. Saewan. 2014. Utilization of carboxymethyl chitosan in cosmetics. International Journal of Cosmetic Science 36 (1):12–21. doi: 10.1111/ics.12102.
  • Kashyap, P. L., X. Xiang, and P. Heiden. 2015. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36–51. doi: 10.1016/j.ijbiomac.2015.02.039.
  • Katouzian, I., and S. M. Jafari. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology 53:34–48. doi: 10.1016/j.tifs.2016.05.002.
  • Kaur, P., A. Choudhary, and R. Thakur. 2013. Synthesis of chitosan-silver nanocomposites and their antibacterial activity. International Journal of Scientific and Engineering Research 4 (4):869.
  • Kean, T., S. Roth, and M. Thanou. 2005. Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. Journal of Controlled Release 103 (3):643–653. doi: 10.1016/j.jconrel.2005.01.001.
  • Kean, T., and M. Thanou. 2010. Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews 62 (1):3–11. doi: 10.1016/j.addr.2009.09.004.
  • Khoshnoudi-Nia, S., N. Sharif, and S. M. Jafari. 2020. Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends in Food Science & Technology 95:59–74. doi: 10.1016/j.tifs.2019.11.013.
  • Kim, F., S. Connor, H. Song, T. Kuykendall, and P. Yang. 2004. Platonic gold nanocrystals. Angewandte Chemie (International ed. in English) 43 (28):3673–7. doi: 10.1002/anie.200454216.
  • Kola-Mustapha, A. T. 2019. Microscopy of nanomaterial for drug delivery. In Characterization and biology of nanomaterials for drug delivery, eds. S. Thomas, S. Ranjan, N. Dasgupta, R. K. Mishra, and S. S. Mohapatra, 265–80. Amsterdam, the Netherlands: Elsevier.
  • Korin, E., N. Froumin, and S. Cohen. 2017. Surface analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS Biomaterials Science & Engineering 3 (6):882–9. doi: 10.1021/acsbiomaterials.7b00040.
  • Koshani, R., S. M. Jafari, and T. G. M. van de Ven. 2020. Going deep inside bioactive-loaded nanocarriers through nuclear magnetic resonance (NMR) spectroscopy. Trends in Food Science and Technology 101:198–212. doi: 10.1016/j.tifs.2020.05.010.
  • Kubota, N., and Y. Kikuchi. 1998. Macromolecular complexes of chitosan. ChemInform 29 (52). doi: 10.1002/chin.199852357.
  • Kumar, M. N. R. 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers 46 (1):1–27.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology 97:196–209.
  • Kumaraswamy, R., S. Kumari, R. C. Choudhary, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2018. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113:494–506. doi: 10.1016/j.ijbiomac.2018.02.130.
  • Kumari, M., A. Mukherjee, and N. Chandrasekaran. 2009. Genotoxicity of silver nanoparticles in Allium cepa. The Science of the Total Environment 407 (19):5243–5246. doi: 10.1016/j.scitotenv.2009.06.024.
  • Lamarra, J., S. Rivero, and A. Pinotti. 2020. Nanocomposite bilayers based on poly(vinyl alcohol) and chitosan functionalized with gallic acid. International Journal of Biological Macromolecules 146:811–820. doi: 10.1016/j.ijbiomac.2019.10.049.
  • Langevin, D., O. Lozano, A. Salvati, V. Kestens, M. Monopoli, E. Raspaud, S. Mariot, A. Salonen, S. Thomas, M. Driessen, et al. 2018. Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact 10:97–107. doi: 10.1016/j.impact.2017.12.004.
  • Leceta, I., P. Guerrero, and K. De la Caba. 2013. Functional properties of chitosan-based films. Carbohydrate Polymers 93 (1):339–346. doi: 10.1016/j.carbpol.2012.04.031.
  • Li, J., S. Zivanovic, P. a Davidson, and K. Kit. 2010. Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydrate Polymers 79 (3):786–791. doi: 10.1016/j.carbpol.2009.09.028.
  • Liburdi, K., I. Benucci, F. Palumbo, and M. Esti. 2016. Lysozyme immobilized on chitosan beads: Kinetic characterization and antimicrobial activity in white wines. Food Control 63:46–52. doi: 10.1016/j.foodcont.2015.11.015.
  • Lin, L., Y. Gu, and H. Cui. 2019. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packaging and Shelf Life 19:86–93. doi: 10.1016/j.fpsl.2018.12.005.
  • Lorevice, M. V., M. R. d Moura, F. A. Aouada, and L. H. Mattoso. 2012. Development of novel guava puree films containing chitosan nanoparticles. Journal of Nanoscience and Nanotechnology 12 (3):2711–2717. doi: 10.1166/jnn.2012.5716.
  • Lorevice, M. V., C. G. Otoni, M. R. de Moura, and L. H. C. Mattoso. 2016. Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high-and low-methyl pectin films. Food Hydrocolloids 52:732–740. doi: 10.1016/j.foodhyd.2015.08.003.
  • Lu, L. T. 2011. Water-dispersible magnetic nanoparticles for biomedical applications: synthesis and characterisation. University of Liverpool.
  • Ma, Q., T. Liang, L. Cao, and L. Wang. 2018. Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. International Journal of Biological Macromolecules 108:576–584. doi: 10.1016/j.ijbiomac.2017.12.049.
  • Ma, Q., Y. Zhang, and Q. Zhong. 2016. Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Science and Technology 65:173–179. doi: 10.1016/j.lwt.2015.08.012.
  • Majidi, H. J., A. Babaei, Z. A. Bafrani, D. Shahrampour, E. Zabihi, and S. M. Jafari. 2019. Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydrate Polymers 225:115220. doi: 10.1016/j.carbpol.2019.115220.
  • Majidi, H. J., A. Mirzaee, S. M. Jafari, M. Amiri, M. Shahrousvand, and A. Babaei. 2020. Fabrication and characterization of graphene oxide-chitosan-zinc oxide ternary nano-hybrids for the corrosion inhibition of mild steel. International Journal of Biological Macromolecules 148:1190–1200. doi: 10.1016/j.ijbiomac.2019.11.060.
  • Marta, B., M. Potara, M. Iliut, E. Jakab, T. Radu, F. Imre-Lucaci, G. Katona, O. Popescu, and S. Astilean. 2015. Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids and Surfaces A: Physicochemical and Engineering Aspects 487:113–120. doi: 10.1016/j.colsurfa.2015.09.046.
  • Martelli, M. R., T. T. Barros, M. R. de Moura, L. H. Mattoso, and O. B. Assis. 2013. Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. Journal of Food Science 78 (1):N98–104. doi: 10.1111/j.1750-3841.2012.03006.x.
  • McClements, D. J. 2015. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science 80 (7):N1602–11. doi: 10.1111/1750-3841.12919.
  • McHugh, T. H., and J. M. Krochta. 1994. Water vapor permeability properties of edible whey protein-lipid emulsion films. Journal of the American Oil Chemists' Society 71 (3):307–312. doi: 10.1007/BF02638058.
  • Medina, E., N. Caro, L. Abugoch, A. Gamboa, M. Díaz-Dosque, and C. Tapia. 2019. Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. Journal of Food Engineering 240:191–198. doi: 10.1016/j.jfoodeng.2018.07.023.
  • Mehrad, B., B. Shabanpour, S. Jafari, and P. Pourashouri. 2015. Characterization of dried fish oil from Menhaden encapsulated by spray drying. AACL Bioflux 8 (1):57–69.
  • Melo, P. T. S., J. C. Nunes, C. G. Otoni, F. A. Aouada, and M. R. de Moura. 2019. Combining cupuassu (Theobroma grandiflorum) puree, pectin, and chitosan nanoparticles into novel edible films for food packaging applications. Journal of Food Science 84 (8):2228–2233. doi: 10.1111/1750-3841.14685.
  • Minami, S., M. Oh-Oka, Y. Okamoto, K. Miyatake, A. Matsuhashi, Y. Shigemasa, and Y. Fukumoto. 1996. Chitosan-inducing hemorrhagic pneumonia in dogs. Carbohydrate Polymers 29 (3):241–246. doi: 10.1016/0144-8617(95)00157-3.
  • Mirzaei-Mohkam, A., F. Garavand, D. Dehnad, J. Keramat, and A. Nasirpour. 2019. Optimisation, antioxidant attributes, stability and release behaviour of carboxymethyl cellulose films incorporated with nanoencapsulated vitamin E. Progress in Organic Coatings 134:333–341. doi: 10.1016/j.porgcoat.2019.05.026.
  • Mirzaei-Mohkam, A., F. Garavand, D. Dehnad, J. Keramat, and A. Nasirpour. 2020. Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Progress in Organic Coatings 138:105383. doi: 10.1016/j.porgcoat.2019.105383.
  • Mohamed, R. M., and K. Yusoh. 2016. A review on the recent research of polycaprolactone (PCL). Advanced Materials Research 1134:249–255. doi: 10.4028/www.scientific.net/AMR.1134.249.
  • Mohammadi, M., S. Mirabzadeh, R. Shahvalizadeh, and H. Hamishehkar. 2020. Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. International Journal of Biological Macromolecules 149:11–20. doi: 10.1016/j.ijbiomac.2020.01.083.
  • Mohsenabadi, N., A. Rajaei, M. Tabatabaei, and A. Mohsenifar. 2018. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules 112:148–155. doi: 10.1016/j.ijbiomac.2018.01.034.
  • Morin-Crini, N., E. Lichtfouse, G. Torri, and G. Crini. 2019. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters 17 (4):1667–26. doi: 10.1007/s10311-019-00904-x.
  • Morris, G. A., J. Castile, A. Smith, G. G. Adams, and S. E. Harding. 2011. The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)–chitosan nanoparticles. Carbohydrate Polymers 84 (4):1430–1434. doi: 10.1016/j.carbpol.2011.01.044.
  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65 (1-2):55–63. doi: 10.1016/0022-1759(83)90303-4.
  • Mourdikoudis, S., R. M. Pallares, and N. T. Thanh. 2018. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 10 (27):12871–12934. doi: 10.1039/c8nr02278j.
  • Mukhopadhyay, P., R. Mishra, D. Rana, and P. P. Kundu. 2012. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Progress in Polymer Science 37 (11):1457–1475. doi: 10.1016/j.progpolymsci.2012.04.004.
  • Munnawar, I., S. S. Iqbal, M. N. Anwar, M. Batool, S. Tariq, N. Faitma, A. L. Khan, A. U. Khan, U. Nazar, T. Jamil, et al. 2017. Synergistic effect of chitosan-zinc oxide Hybrid Nanoparticles on antibiofouling and water disinfection of mixed matrix polyethersulfone nanocomposite membranes. Carbohydrate Polymers 175:661–670. doi: 10.1016/j.carbpol.2017.08.036.
  • Murakami, Y., and Y. Shimoyama. 2017. Production of nanosuspension functionalized by chitosan using supercritical fluid extraction of emulsion. The Journal of Supercritical Fluids 128:121–127. doi: 10.1016/j.supflu.2017.05.014.
  • Ojagh, S. M., M. Rezaei, S. H. Razavi, and S. M. H. Hosseini. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry 122 (1):161–166. doi: 10.1016/j.foodchem.2010.02.033.
  • Orellano, M. S., C. Porporatto, J. J. Silber, R. D. Falcone, and N. M. Correa. 2017. AOT reverse micelles as versatile reaction media for chitosan nanoparticles synthesis. Carbohydrate Polymers 171:85–93. doi: 10.1016/j.carbpol.2017.04.074.
  • Othman, S. H., N. R. Kechik, R. A. Shapi’i, R. A. Talib, and I. S. Tawakkal. 2019. Water sorption and mechanical properties of starch/chitosan nanoparticle films. Journal of Nanomaterials 2019:1–12. doi: 10.1155/2019/3843949.
  • Pallares, R. M., S. L. Kong, T. H. Ru, N. T. Thanh, Y. Lu, and X. Su. 2015. A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chemical Communications (Cambridge, England) 51 (77):14524–14527. doi: 10.1039/c5cc05331e.
  • Pan, Y., Neuss, S. Leifert, A. Fischler, M. Wen, F. Simon, U. Schmid, G. Brandau, W. Jahnen, ‐Dechent. and W. 2007. Size-dependent cytotoxicity of gold nanoparticles . Small (Weinheim an Der Bergstrasse, Germany) 3 (11):1941–1949. doi: 10.1002/smll.200700378.
  • Papageorgiou, I., C. Brown, R. Schins, S. Singh, R. Newson, S. Davis, J. Fisher, E. Ingham, and C. Case. 2007. The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro . Biomaterials 28 (19):2946–2958. doi: 10.1016/j.biomaterials.2007.02.034.
  • Papis, E., R. Gornati, M. Prati, J. Ponti, E. Sabbioni, and G. Bernardini. 2007. Gene expression in nanotoxicology research: Analysis by differential display in BALB3T3 fibroblasts exposed to cobalt particles and ions. Toxicology Letters 170 (3):185–192. doi: 10.1016/j.toxlet.2007.03.005.
  • Pistone, S., F. M. Goycoolea, A. Young, G. Smistad, and M. Hiorth. 2017. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. European Journal of Pharmaceutical Sciences 96:381–389. doi: 10.1016/j.ejps.2016.10.012.
  • Priya, D. S., R. Suriyaprabha, R. Yuvakkumar, and V. Rajendran. 2014. Chitosan-incorporated different nanocomposite HPMC films for food preservation. Journal of Nanoparticle Research 16 (2):2248. doi: 10.1007/s11051-014-2248-y.
  • Priyadarshi, R., and J.-W. Rhim. 2020. Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science and Emerging Technologies 62:102346. doi: 10.1016/j.ifset.2020.102346.
  • Qi, L., and Z. Xu. 2004. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 251 (1-3):183–190. doi: 10.1016/j.colsurfa.2004.10.010.
  • Qi, L., Z. Xu, X. Jiang, C. Hu, and X. Zou. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 339 (16):2693–2700. doi: 10.1016/j.carres.2004.09.007.
  • Rahman, P. M., V. A. Mujeeb, and K. Muraleedharan. 2017. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules 97:382–391. doi: 10.1016/j.ijbiomac.2017.01.052.
  • Rajabi, H., S. M. Jafari, G. Rajabzadeh, M. Sarfarazi, and S. Sedaghati. 2019. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A: Physicochemical and Engineering Aspects 578:123644. doi: 10.1016/j.colsurfa.2019.123644.
  • Ralston, G., M. Tracey, and P. M. Wrench. 1964. The inhibition of fermentation in baker's yeast by chitosan. Biochimica et Biophysica Acta (BBA)-General Subjects 93 (3):652–655. doi: 10.1016/0304-4165(64)90350-2.
  • Rambabu, K., G. Bharath, F. Banat, P. L. Show, and H. H. Cocoletzi. 2019. Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules 126:1234–43. doi: 10.1016/j.ijbiomac.2018.12.196.
  • Rana, V. K., M. C. Choi, J. Y. Kong, G. Y. Kim, M. J. Kim, S. H. Kim, S. Mishra, R. P. Singh, and C. S. Ha. 2011. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromolecular Materials and Engineering 296 (2):131–140. doi: 10.1002/mame.201000307.
  • Rasulu, H., D. Praseptiangga, I. Joni, and A. Ramelan. 2019. Preparation and preliminary characterization of sago flour and semi refined kappa carrageenan-based biocomposite film incorporated with coconut crabs chitosan nanoparticles. IOP Conference Series: Materials Science and Engineering 633:012044. doi: 10.1088/1757-899X/633/1/012044.
  • Rehman, A., T. Ahmad, R. M. Aadil, M. J. Spotti, A. M. Bakry, I. M. Khan, L. Zhao, T. Riaz, and Q. Tong. 2019. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science and Technology 90:35–46.
  • Rehman, A., S. M. Jafari, R. M. Aadil, E. Assadpour, M. A. Randhawa, and S. Mahmood. 2020. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science and Technology 101:106–121. doi: 10.1016/j.tifs.2020.05.001.
  • Rehman, A., Q. Tong, S. M. Jafari, E. Assadpour, Q. Shehzad, R. M. Aadil, M. W. Iqbal, M. M. Rashed, B. S. Mushtaq, and W. Ashraf. 2020. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 275:102048. doi: 10.1016/j.cis.2019.102048.
  • Ren, X. D., Q. S. Liu, H. Feng, and X. Y. Yin. 2014. The characterization of chitosan nanoparticles by Raman spectroscopy. Applied Mechanics and Materials 665:367–370. doi: 10.4028/www.scientific.net/AMM.665.367.
  • Rhim, J.-W., and P. K. Ng. 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition 47 (4):411–433. doi: 10.1080/10408390600846366.
  • Rhim, J. W. 2012. Physical‐mechanical properties of agar/κ‐carrageenan blend film and derived clay nanocomposite film. Journal of Food Science 77 (12):N66–73. doi: 10.1111/j.1750-3841.2012.02988.x.
  • Richardson, S. W., H. J. Kolbe, and R. Duncan. 1999. Potential of low molecular mass chitosan as a DNA delivery system: Biocompatibility, body distribution and ability to complex and protect DNA. International Journal of Pharmaceutics 178 (2):231–243. doi: 10.1016/S0378-5173(98)00378-0.
  • Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science 31 (7):603–632. doi: 10.1016/j.progpolymsci.2006.06.001.
  • Rostamabadi, H., E. Assadpour, H. S. Tabarestani, S. R. Falsafi, and S. M. Jafari. 2020. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science and Technology 100:190–209. doi: 10.1016/j.tifs.2020.04.012.
  • Rostami, M., M. Yousefi, A. Khezerlou, M. Aman Mohammadi, and S. M. Jafari. 2019. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids 97:105170. doi: 10.1016/j.foodhyd.2019.06.015.
  • Rupareliya, D., J. Patel, K. Patel, P. Upadhyay, and S. Shah. 2015. Chitosan: A promising agent for formulation of nanoparticle. Journal of Pharmaceutical Science and Bioscientific Research 5 (4):394–398.
  • Safari, M., M. Ghiaci, M. Jafari-Asl, and A. A. Ensafi. 2015. Nanohybrid organic–inorganic chitosan/dopamine/TiO2 composites with controlled drug-delivery properties. Applied Surface Science 342:26–33. doi: 10.1016/j.apsusc.2015.03.028.
  • Saharan, V., A. Mehrotra, R. Khatik, P. Rawal, S. Sharma, and A. Pal. 2013. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules 62:677–683. doi: 10.1016/j.ijbiomac.2013.10.012.
  • Saharan, V., G. Sharma, M. Yadav, M. K. Choudhary, S. Sharma, A. Pal, R. Raliya, and P. Biswas. 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules 75:346–353. doi: 10.1016/j.ijbiomac.2015.01.027.
  • Sahraee, S., B. Ghanbarzadeh, J. M. Milani, and H. Hamishehkar. 2017. Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food and Bioprocess Technology 10 (8):1441–1453. doi: 10.1007/s11947-017-1907-2.
  • Sahraee, S., J. M. Milani, B. Ghanbarzadeh, and H. Hamishehkar. 2017. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International Journal of Biological Macromolecules 97:373–381. doi: 10.1016/j.ijbiomac.2016.12.066.
  • Sangeetha, J., D. Thangadurai, R. Hospet, E. R. Harish, P. Purushotham, M. A. Mujeeb, J. Shrinivas, M. David, A. C. Mundaragi, and S. C. Thimmappa. 2017. Nanoagrotechnology for soil quality, crop performance and environmental management. In Nanotechnology, eds. R. Prasad, M. Kumar, and V. Kumar, 73–97. Singapore: Springer.
  • Santos, D. T., Á. Martín, M. A. A. Meireles, and M. J. Cocero. 2012. Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids 61:167–174. doi: 10.1016/j.supflu.2011.09.011.
  • Schipper, N. G., S. Olsson, J. A. Hoogstraate, A. G. deBoer, K. M. Vårum, and P. Artursson. 1997. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharmaceutical Research 14 (7):923–929. doi: 10.1023/a:1012160102740.
  • Sekiguchi, S., Y. Miura, H. Kaneko, S. Nishimura, N. Nishi, M. Iwase, and S. Tokura. 1994. Molecular weight dependency of antimicrobial activity by chitosan oligomers. In Food hydrocolloids, eds. K. Nishinari and E. Doi, 71–6. Boston, MA: Springer.
  • Senthilkumar, P., G. Yaswant, S. Kavitha, E. Chandramohan, G. Kowsalya, R. Vijay, B. Sudhagar, and D. R. S. Kumar. 2019. Preparation and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. International Journal of Biological Macromolecules 141:290–297. doi: 10.1016/j.ijbiomac.2019.08.234.
  • Seyedpour, S. F., A. Rahimpour, H. Mohsenian, and M. J. Taherzadeh. 2018. Low fouling ultrathin nanocomposite membranes for efficient removal of manganese. Journal of Membrane Science 549:205–216. doi: 10.1016/j.memsci.2017.12.012.
  • Shaddel, R., J. Hesari, S. Azadmard-Damirchi, H. Hamishehkar, B. Fathi-Achachlouei, and Q. Huang. 2018. Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules 107 (Pt B):1800–1810. doi: 10.1016/j.ijbiomac.2017.10.044.
  • Shankar, S., X. Teng, G. Li, and J.-W. Rhim. 2015. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids 45:264–271. doi: 10.1016/j.foodhyd.2014.12.001.
  • Shapi’i, R. A., S. H. Othman, N. Nordin, R. Kadir Basha, and M. Nazli Naim. 2020. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydrate Polymers 230:115602. doi: 10.1016/j.carbpol.2019.115602.
  • Sharif, N., S. Khoshnoudi-Nia, and S. M. Jafari. 2020. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International 132:109077. doi: 10.1016/j.foodres.2020.109077.
  • Sharma, R., S. M. Jafari, and S. Sharma. 2020. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086. doi: 10.1016/j.foodcont.2020.107086.
  • Shen, X. L., J. M. Wu, Y. Chen, and G. Zhao. 2010. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids 24 (4):285–290. doi: 10.1016/j.foodhyd.2009.10.003.
  • Shojaei, M., M. Eshaghi, and L. Nateghi. 2019. Characterization of hydroxypropyl methyl cellulose–whey protein concentrate bionanocomposite films reinforced by chitosan nanoparticles. Journal of Food Processing and Preservation 43 (10):e14158. doi: 10.1111/jfpp.14158.
  • Shukla, S. K., A. K. Mishra, O. A. Arotiba, and B. B. Mamba. 2013. Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules 59:46–58. doi: 10.1016/j.ijbiomac.2013.04.043.
  • Singh, S. C., H. Zeng, C. Guo, and W. Cai. 2012. Nanomaterials: Processing and characterization with lasers. Hoboken, NJ: John Wiley and Sons.
  • Soleimanifar, M., S. M. Jafari, and E. Assadpour. 2020. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocolloids 101:105572. doi: 10.1016/j.foodhyd.2019.105572.
  • Stoleru, E., S. B. Munteanu, R. P. Dumitriu, A. Coroaba, M. Drobotă, L. F. Zemljic, G. M. Pricope, and C. Vasile. 2016. Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications. Iranian Polymer Journal 25 (4):295–307. doi: 10.1007/s13726-016-0421-0.
  • Tago, K., Y. Naito, T. Nagata, T. Morimura, M. Furuya, T. Seki, H. Kato, and N. Ohara. 2007. A ninety-day feeding, subchronic toxicity study of oligo-N-acetylglucosamine in Fischer 344 rats. Food and Chemical Toxicology 45 (7):1186–1193. doi: 10.1016/j.fct.2006.12.027.
  • Tang, H., A. Lu, L. Li, W. Zhou, Z. Xie, and L. Zhang. 2013. Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Journal 234:124–131. doi: 10.1016/j.cej.2013.08.096.
  • Thanou, M., J. Verhoef, and H. Junginger. 2001. Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews 52 (2):117–126. doi: 10.1016/S0169-409X(01)00231-9.
  • Turi, E. 2012. Thermal characterization of polymeric materials. Amsterdam, the Netherlands: Elsevier.
  • Uchida, Y. 1989. Preparation of chitosan oligomers with purified chitosanase and its application. Proceeding of the 4th International Conference on Chitin/Chitosan.
  • Uranga, J., A. Puertas, A. Etxabide, M. Dueñas, P. Guerrero, and K. de la Caba. 2019. Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocolloids 86:95–103. doi: 10.1016/j.foodhyd.2018.02.018.
  • Vahedikia, N., F. Garavand, B. Tajeddin, I. Cacciotti, S. M. Jafari, T. Omidi, and Z. Zahedi. 2019. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids and Surfaces. B, Biointerfaces 177:25–32. doi: 10.1016/j.colsurfb.2019.01.045.
  • Villegas-Peralta, Y., M. A. Correa-Murrieta, E. R. Meza-Escalante, E. Flores-Aquino, J. Álvarez-Sánchez, and R. G. Sánchez-Duarte. 2019. Effect of the preparation method in the size of chitosan nanoparticles for the removal of allura red dye. Polymer Bulletin 76 (9):4415–4430. doi: 10.1007/s00289-018-2601-x.
  • Vinsova, J., and E. Vavrikova. 2011. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review. Current Pharmaceutical Design 17 (32):3596–3607. doi: 10.2174/138161211798194468.
  • Wang, J. J., Z. W. Zeng, R. Z. Xiao, T. Xie, G. L. Zhou, X. R. Zhan, and S. L. Wang. 2011. Recent advances of chitosan nanoparticles as drug carriers. International Journal of Nanomedicine 6:765–774. doi: 10.2147/IJN.S17296.
  • Wang, Y., R. N. Dave, and R. Pfeffer. 2004. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. The Journal of Supercritical Fluids 28 (1):85–99. doi: 10.1016/S0896-8446(03)00011-1.
  • Wang, Y., R. Zhang, W. Qin, J. Dai, Q. Zhang, K. Lee, and Y. Liu. 2020. Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Materials and Design 185:108277. doi: 10.1016/j.matdes.2019.108277.
  • Wardani, G., Mahmiah, and S. A. Sudjarwo. 2018. In vitro antibacterial activity of chitosan nanoparticles against Mycobacterium tuberculosis. Pharmacognosy Journal 10 (1):162–166. doi: 10.5530/pj.2018.1.27.
  • Wen, P., M.-H. Zong, R. J. Linhardt, K. Feng, and H. Wu. 2017. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science and Technology 70:56–68. doi: 10.1016/j.tifs.2017.10.009.
  • Williams, D. B., and C. B. Carter. 2009. High-resolution TEM. In Transmission electron microscopy, eds. D. B. Williams and C. B. Carter, 483–509. Boston, MA: Springer.
  • Woranuch, S., and R. Yoksan. 2013. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers 96 (2):578–585. doi: 10.1016/j.carbpol.2012.08.117.
  • Wu, Y., W. Yang, C. Wang, J. Hu, and S. Fu. 2005. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. International Journal of Pharmaceutics 295 (1-2):235–245. doi: 10.1016/j.ijpharm.2005.01.042.
  • Xu, Y., and Y. Du. 2003. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 250 (1):215–226. doi: 10.1016/S0378-5173(02)00548-3.
  • Yang, X., Y. Wang, and L. Chen. 2003. Chemistry of tea polyphenols. Shanghai, China: Shanghai Science and Technology Publishing House.
  • Youssef, K., A. G. de Oliveira, C. A. Tischer, I. Hussain, and S. R. Roberto. 2019. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules 141:247–258. doi: 10.1016/j.ijbiomac.2019.08.249.
  • Zabihi, E., A. Babaei, D. Shahrampour, Z. Arab-Bafrani, K. S. Mirshahidi, and H. J. Majidi. 2019. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. International Journal of Biological Macromolecules 131:107–116. doi: 10.1016/j.ijbiomac.2019.01.224.
  • Zhang, H-l, S-h Wu, Y. Tao, L-q Zang, and Z-q Su. 2010. Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. Journal of Nanomaterials 2010:1–5. doi: 10.1155/2010/898910.
  • Zhang, H., M. Oh, C. Allen, and E. Kumacheva. 2004. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5 (6):2461–2468. doi: 10.1021/bm0496211.
  • Zhao, L.-M., L.-E. Shi, Z.-L. Zhang, J.-M. Chen, D.-D. Shi, J. Yang, and Z.-X. Tang. 2011. Preparation and application of chitosan nanoparticles and nanofibers. Brazilian Journal of Chemical Engineering 28 (3):353–362. doi: 10.1590/S0104-66322011000300001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.