2,198
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Buckwheat proteins: functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmed, A., N. Khalid, A. Ahmad, N. Abbasi, M. Latif, and M. Randhawa. 2014. Phytochemicals and biofunctional properties of buckwheat: A review. The Journal of Agricultural Science 152 (3):349–69. doi: 10.1017/S0021859613000166.
  • Arts, M. J., G. R. Haenen, L. C. Wilms, S. A. Beetstra, C. G. Heijnen, H.-P. Voss, and A. Bast. 2002. Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. Journal of Agricultural and Food Chemistry 50 (5):1184–7. doi: 10.1021/jf010855a.
  • Bai, J. C., M. Fried, G. R. Corazza, D. Schuppan, M. Farthing, C. Catassi, L. Greco, H. Cohen, C. Ciacci, R. Eliakim, World Gastroenterology Organization, et al. 2013. World Gastroenterology Organisation global guidelines on celiac disease. Journal of Clinical Gastroenterology 47 (2):121–6., doi: 10.1097/MCG.0b013e31827a6f83.
  • Bejosano, F. P., and H. Corke. 1999. Properties of protein concentrates and hydrolysates from Amaranthus and Buckwheat. Industrial Crops and Products 10 (3):175–83. doi: 10.1016/S0926-6690(99)00021-7.
  • Berryman, C. E., H. R. Lieberman, V. L. Fulgoni, III, and S. M. Pasiakos. 2018. Protein intake trends and conformity with the Dietary Reference Intakes in the United States: Analysis of the National Health and Nutrition Examination Survey, 2001–2014. The American Journal of Clinical Nutrition 108 (2):405–13.
  • Boachie, R., S. Yao, and C. C. Udenigwe. 2018. Molecular mechanisms of cholesterol-lowering peptides derived from food proteins. Current Opinion in Food Science 20:58–63. doi: 10.1016/j.cofs.2018.03.006.
  • Boye, J., R. Wijesinha-Bettoni, and B. Burlingame. 2012. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. British Journal of Nutrition 108 (S2):S183–S211. doi: 10.1017/S0007114512002309.
  • Cadée, J. A., C.-Y. Chang, C.-W. Chen, C.-N. Huang, S.-L. Chen, and C.-K. Wang. 2007. Bovine casein hydrolysate (C12 peptide) reduces blood pressure in prehypertensive subjects. American Journal of Hypertension 20:1–5.
  • Chen, P., Y. Guo, Q. Yan, and Y. Li. 2011. Molecular cloning and characterization of Fag t 2: A 16-kDa major allergen from Tartary buckwheat seeds . Allergy 66 (10):1393–5. doi: 10.1111/j.1398-9995.2011.02657.x.
  • Chen, X. W., Y. J. Chen, J. Y. Li, Y. H. Wang, and X. Q. Yang. 2019. Enzyme-assisted development of biofunctional polyphenol-enriched buckwheat protein: physicochemical properties, in vitro digestibility, and antioxidant activity. Journal of the Science of Food and Agriculture 99 (6):3176–85. doi: 10.1002/jsfa.9534.
  • Chen, X.-W., D.-Y. Luo, Y.-J. Chen, J.-M. Wang, J. Guo, and X.-Q. Yang. 2019. Dry fractionation of surface abrasion for polyphenol-enriched buckwheat protein combined with hydrothermal treatment. Food Chemistry 285:414–22. doi: 10.1016/j.foodchem.2019.01.182.
  • Choi, S. M., and C. Y. Ma. 2006. Extraction, purification and characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Research International 39 (9):974–81. doi: 10.1016/j.foodres.2006.06.004.
  • Cirkovic Velickovic, T. D., and D. J. Stanic‐Vucinic. 2018. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Comprehensive Reviews in Food Science and Food Safety 17 (1):82–103. doi: 10.1111/1541-4337.12320.
  • Clemente, A. 2000. Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology 11:254–62.
  • Deng, Y., O. Padilla-Zakour, Y. Zhao, and S. Tao. 2015. Influences of high hydrostatic pressure, microwave heating, and boiling on chemical compositions, antinutritional factors, fatty acids, in vitro protein digestibility, and microstructure of buckwheat. Food and Bioprocess Technology 8 (11):2235–45.
  • Duodu, K., A. Nunes, I. Delgadillo, M. Parker, E. Mills, P. Belton, and J. Taylor. 2002. Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. Journal of Cereal Science 35 (2):161–74. doi: 10.1006/jcrs.2001.0411.
  • Fagbemi, T., A. Oshodi, and K. Ipinmoroti. 2005. Processing effects on some antinutritional factors and in vitro multienzyme protein digestibility (IVPD) of three tropical seeds: Breadnut (Artocarpus altilis), cashewnut (Anacardium occidentale) and fluted pumpkin (Telfairia occidentalis). Pakistan Journal of Nutrition 4:250–6.
  • FAO. 2011. Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. Food Nutrition Paper 92:1–66. http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf.
  • FAO, IFAD, UNICEF, WFP and WHO. 2019. The state of food security and nutrition in the world 2019. Safeguarding against economic slowdowns and downturns. Rome: FAO. https://www.wfp.org/publications/2019-state-food-security-and-nutrition-world-sofi-safeguarding-against-economic.
  • FAOSTAT (Statistics Division of Food and Agriculture Organization of the United Nations). 2018. http://www.fao.org/faostat/en/#data/QC
  • Fujimura, M., Y. Minami, K. Watanabe, and K. Tadera. 2003. Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Bioscience, Biotechnology, and Biochemistry 67 (8):1636–42. ( doi: 10.1271/bbb.67.1636.
  • Fuller, S. J. 1989. Effect of tannins on the in vitro digestibility of jojoba meal proteins. MSc thesis., San Jose State University. http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=4064&context=etd_theses.
  • Guo, Y. Z., Q. F. Chen, L. Y. Yang, and Y. H. Huang. 2007. Analyses of the seed protein contents on the cultivated and wild buckwheat Fagopyrum esculentum resources. Genetic Resources and Crop Evolution 54 (7):1465–72. doi: 10.1007/s10722-006-9135-z.
  • Guo, X., and H. Yao. 2006. Fractionation and characterization of tartary buckwheat flour proteins. Food Chemistry 98 (1):90–4. doi: 10.1016/j.foodchem.2005.05.055.
  • Guo, X., K. Zhu, H. Zhang, and H. Yao. 2007. Purification and characterization of the antitumor protein from Chinese tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts. Journal of Agricultural and Food Chemistry 55 (17):6958–61. doi: 10.1021/jf071032+.
  • Guo, X., K. Zhu, H. Zhang, and H. Yao. 2010. Anti-tumor activity of a novel protein obtained from tartary buckwheat. International Journal of Molecular Sciences 11 (12):5201–11. doi: 10.3390/ijms11125201.
  • Guo, X., and Y. L. Xiong. 2013. Characteristics and functional properties of buckwheat protein–sugar Schiff base complexes. Lwt - Food Science and Technology 51 (2):397–404. doi: 10.1016/j.lwt.2012.12.003.
  • Han, S.-W., K.-M. Chee, and S.-J. Cho. 2015. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry 172:766–9. doi: 10.1016/j.foodchem.2014.09.127.
  • Hassan, H., A. Afify, A. Basyiony, A. Ahmed, and T. Ghada. 2010. Nutritional and functional properties of defatted wheat protein isolates. Australian Journal of Basic and Applied Sciences 4:348–58.
  • Hübner, F., and E. K. Arendt. 2010. Studies on the influence of germination conditions on protein breakdown in buckwheat and oats. Journal of the Institute of Brewing 116 (1):3–13. doi: 10.1002/j.2050-0416.2010.tb00392.x.
  • Ikeda, K., and M. Kishida. 1993. Digestibility of proteins in buckwheat seed. Fagopyrum 13:21–4.
  • Ikeda, K., K. Arioka, S. Fujii, T. Kusano, and M. Oku. 1984. Effect on buckwheat protein quality of seed germination and changes in trypsin inhibitor content [Fagopyrum esculentum]. Cereal Chemistry 61:236–8.
  • Ivanciuc, O., C. H. Schein, T. Garcia, N. Oezguen, S. S. Negi, and W. Braun. 2009. Structural analysis of linear and conformational epitopes of allergens. Regulatory Toxicology and Pharmacology: RTP 54 (3 Suppl):S11–S19. doi: 10.1016/j.yrtph.2008.11.007.
  • Janssen, F., A. Pauly, I. Rombouts, K. J. Jansens, L. J. Deleu, and J. A. Delcour. 2017. Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective. Comprehensive Reviews in Food Science and Food Safety 16 (1):39–58. doi: 10.1111/1541-4337.12240.
  • Jin, J., O. D. Okagu, A. E. A. Yagoub, and C. C. Udenigwe. 2021. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry 70:105348 doi: 10.1016/j.ultsonch.2020.105348.
  • Jin, J., H. Ma, C. Zhou, M. Luo, W. Liu, W. Qu, R. He, L. Luo, and A. E. G. A. Yagoub. 2015. Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates. Journal of the Science of Food and Agriculture 95 (12):2501–9. doi: 10.1002/jsfa.6982.
  • Joye, I. 2019. Protein digestibility of cereal products. Foods 8 (6):199.
  • Jurkovic, N., and I. Colic. 1993. Effect of thermal processing on the nutritive value of wheat germ protein. Die Nahrung 37 (6):538–43. doi: 10.1002/food.19930370604.
  • Kayashita, J., H. Nagai, and N. Kato. 1996. Buckwheat protein extract suppression of the growth depression in rats induced by feeding amaranth (Food Red No. 2). Bioscience, Biotechnology, and Biochemistry 60 (9):1530–1. doi: 10.1271/bbb.60.1530.
  • Kayashita, J., I. Shimaoka, and M. Nakajyoh. 1995. Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enriched diets. Nutrition Research 15 (5):691–8. doi: 10.1016/0271-5317(95)00036-I.
  • Kayashita, J., I. Shimaoka, M. Nakajoh, and N. Kato. 1996. Feeding of buckwheat protein extract reduces hepatic triglyceride concentration, adipose tissue weight, and hepatic lipogenesis in rats. The Journal of Nutritional Biochemistry 7 (10):555–9. doi: 10.1016/S0955-2863(96)00110-6.
  • Kayashita, J., I. Shimaoka, M. Nakajoh, N. Kishida, and N. Kato. 1999. Consumption of a buckwheat protein extract retards 7,12-dimethylbenz[alpha]anthracene-induced mammary carcinogenesis in rats. Bioscience, Biotechnology, and Biochemistry 63 (10):1837–9. doi: 10.1271/bbb.63.1837.
  • Kayashita, J., I. Shimaoka, M. Nakajoh, M. Kondoh, K. Hayashi, and N. Kato. 1999. Muscle hypertrophy in rats fed on a buckwheat protein extract. Bioscience, Biotechnology, and Biochemistry 63 (7):1242–5. doi: 10.1271/bbb.63.1242.
  • Kayashita, J., I. Shimaoka, M. Nakajoh, M. Yamazaki, and N. Kato. 1997. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. The Journal of Nutrition 127 (7):1395–400.
  • Kayashita, J., I. Shimaoka, M. Yamazaki, and N. Kato. 1995. Buckwheat protein extract ameliorates atropine-induced constipation in rats. Cellulose 5:941–6.
  • Koyama, M., S. Hattori, Y. Amano, M. Watanabe, and K. Nakamura. 2014. Blood pressure-lowering peptides from neo-fermented buckwheat sprouts: A new approach to estimating ACE-inhibitory activity. PLOS One 9 (9):e105802 doi: 10.1371/journal.pone.0105802.
  • Koyama, M., K. Naramoto, T. Nakajima, T. Aoyama, M. Watanabe, and K. Nakamura. 2013. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. Journal of Agricultural and Food Chemistry 61 (12):3013–21. doi: 10.1021/jf305157y.
  • Lee, C., S. In, Y. Han, and S. Oh. 2016. Reactivity change of IgE to buckwheat protein treated with high‐pressure and enzymatic hydrolysis. Journal of the Science of Food and Agriculture 96 (6):2073–9. doi: 10.1002/jsfa.7321.
  • Leung, E. H., and T. Ng. 2007. A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. Journal of Peptide Science: An Official Publication of the European Peptide Society 13 (11):762–7. doi: 10.1002/psc.891.
  • Li, C. H., T. Matsui, K. Matsumoto, R. Yamasaki, and T. Kawasaki. 2002. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein . Journal of Peptide Science: An Official Publication of the European Peptide Society 8 (6):267–74. doi: 10.1002/psc.387.
  • Ličen, M., and I. Kreft. 2005. Buckwheat (Fagopyrum esculentum Moench) low molecular weight seed proteins are restricted to the embryo and are not detectable in the endosperm. Plant Physiology and Biochemistry 43 (9):862–5. doi: 10.1016/j.plaphy.2005.08.002.
  • Liu, K., J. Zheng, and F. Chen. 2019. Effect of domestic cooking on rice protein digestibility. Food Science & Nutrition 7 (2):608–16. doi: 10.1002/fsn3.884.
  • Lohi, S., K. Mustalahti, K. Kaukinen, K. Laurila, P. Collin, H. Rissanen, O. Lohi, E. Bravi, M. Gasparin, A. Reunanen, et al. 2007. Increasing prevalence of coeliac disease over time. Alimentary Pharmacology & Therapeutics 26 (9):1217–25., doi: 10.1111/j.1365-2036.2007.03502.x.
  • Ma, M.-S., I. Y. Bae, H. G. Lee, and C.-B. Yang. 2006. Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chemistry 96 (1):36–42. doi: 10.1016/j.foodchem.2005.01.052.
  • Ma, Y., and Y. L. Xiong. 2009. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. Journal of Agricultural and Food Chemistry 57 (10):4372–80. doi: 10.1021/jf803670u.
  • Ma, Y., Y. L. Xiong, J. Zhai, H. Zhu, and T. Dziubla. 2010. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chemistry 118 (3):582–8. doi: 10.1016/j.foodchem.2009.05.024.
  • Maat‐Bleeker, F. D., and S. Stapel. 1998. Cross‐reactivity between buckwheat and latex. Allergy 53:538–9.
  • Manninen, A. H. 2009. Protein hydrolysates in sports nutrition. Nutrition & Metabolism 6:38. doi: 10.1186/1743-7075-6-38.
  • Markus, G. 1965. Protein substrate conformation and proteolysis. Proceedings of the National Academy of Sciences of the United States of America 54 (1):253–8. doi: 10.1073/pnas.54.1.253.
  • Martín-Cabrejas, M. A., Y. Aguilera, M. M. Pedrosa, C. Cuadrado, T. Hernández, S. Díaz, and R. M. Esteban. 2009. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry 114 (3):1063–8. doi: 10.1016/j.foodchem.2008.10.070.
  • Matsumoto, R., K. Fujino, Y. Nagata, S. Hashiguchi, Y. Ito, Y. Aihara, Y. Takahashi, K. Maeda, and K. Sugimura. 2004. Molecular characterization of a 10-kDa buckwheat molecule reactive to allergic patients' IgE . Allergy 59 (5):533–8. doi: 10.1046/j.1398-9995.2003.00412.x.
  • McCarthy, A., Y. O'Callaghan, and N. O'Brien. 2013. Protein hydrolysates from agricultural crops—bioactivity and potential for functional food development. Agriculture 3 (1):112–30. doi: 10.3390/agriculture3010112.
  • Metzger, B. T., D. M. Barnes, and J. D. Reed. 2007. Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells. Journal of Agricultural and Food Chemistry 55 (15):6032–8. doi: 10.1021/jf0709496.
  • Nagaoka, H., and H. Kayahara. 2000. Resolution and synthesis of optically active alcohols with immobilized water-soluble proteins from green pea, soybean and buckwheat as new bio-catalysts. Bioscience. Bioscience, Biotechnology, and Biochemistry 64 (4):781–4. doi: 10.1271/bbb.64.781.
  • Noma, T., I. Yoshizawa, N. Ogawa, M. Ito, K. Aoki, and Y. Kawano. 2001. Fatal buckwheat dependent exercisedinduced anaphylaxis. Asian Pacific Journal of Allergy and Immunology 19:283–6.
  • Nosworthy, M. G., A. Franczyk, A. Zimoch-Korzycka, P. Appah, A. Utioh, J. Neufeld, and J. D. House. 2017. Impact of processing on the protein quality of pinto bean (Phaseolus vulgaris) and buckwheat (Fagopyrum esculentum Moench) flours and blends, as determined by in vitro and in vivo methodologies. Journal of Agricultural and Food Chemistry 65 (19):3919–25. doi: 10.1021/acs.jafc.7b00697.
  • Nwachukwu, I. D., and R. E. Aluko. 2019. Structural and functional properties of food protein-derived antioxidant peptides . Journal of Food Biochemistry 43 (1):e12761 doi: 10.1111/jfbc.12761.
  • Ogodo, A. C., O. C. Ugbogu, R. A. Onyeagba, and H. C. Okereke. 2019. Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia. Chemical and Biological Technologies in Agriculture 6 (1):7. doi: 10.1186/s40538-019-0145-4.
  • Ohanenye, I. C., A. Tsopmo, C. E. Ejike, and C. C. Udenigwe. 2020. Germination as a bioprocess for enhancing the quality and nutritional prospects of Legume proteins. Trends in Food Science & Technology 101:213–22.
  • Okolie, C., A. Aryee, and C. Udenigwe. 2018. Detection and deactivation of allergens in food. In Proteins in food processing, 367–87. Duxford: Elsevier/Woodhead Publishing.
  • Oparin, P. B., K. S. Mineev, Y. E. Dunaevsky, A. S. Arseniev, M. A. Belozersky, E. V. Grishin, T. A. Egorov, and A. A. Vassilevski. 2012. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem J 446 (1):69–77. doi: 10.1042/BJ20120548.
  • Park, J., D. Kang, C. Kim, S. Ko, H. Yum, K. Kim, C. S. Hong, and K. Lee. 2000. Identification and characterization of the major allergens of buckwheat. Allergy 55 (11):1035–41. doi: 10.1034/j.1398-9995.2000.00763.x.
  • Park, S.-S., K. Abe, M. Kimura, A. Urisu, and N. Yamasaki. 1997. Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat (Fagopyrum esculentum Moench). FEBS Letters 400 (1):103–7. doi: 10.1016/s0014-5793(96)01367-1.
  • Phiarais, B. N., B. D. Schehl, and E. K. Arendt. 2008. Protein changes during malting of buckwheat. Journal of the American Society of Brewing Chemists 66 (2):127–35. doi: 10.1094/ASBCJ-2008-0102-01.
  • Radović, S. R., V. R. Maksimović, and E. I. Varkonji-Gašić. 1996. Characterization of buckwheat seed storage proteins. Journal of Agricultural and Food Chemistry 44 (4):972–4. doi: 10.1021/jf950655x.
  • Rajendran, S. R. C. K., C. E. C. C. Ejike, M. Gong, W. Hannah, and C. C. Udenigwe. 2017. Preclinical evidence on the anticancer properties of food peptides. Protein and Peptide Letters 24 (2):126–36. doi: 10.2174/0929866523666160816152755.
  • Riedl, K. M., and A. E. Hagerman. 2001. Tannin-protein complexes as radical scavengers and radical sinks. Journal of Agricultural and Food Chemistry 49 (10):4917–23. doi: 10.1021/jf010683h.
  • Rizzello, C. G., L. Nionelli, R. Coda, M. De Angelis, and M. Gobbetti. 2010. Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chemistry 119 (3):1079–89. doi: 10.1016/j.foodchem.2009.08.016.
  • Roberts, P. R., J. Burney, K. W. Black, and G. P. Zaloga. 1999. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 60 (4):332–7. doi: 10.1159/000007679.
  • Sadhu, S., R. Thirumdas, R. Deshmukh, and U. Annapure. 2017. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT- Food Science and Technology 78:97–104. doi: 10.1016/j.lwt.2016.12.026.
  • Schiffner, R., B. Przybilla, T. Burgdorff, M. Landthaler, and W. Stolz. 2001. Anaphylaxis to buckwheat. Allergy 56 (10):1020–2021. doi: 10.1034/j.1398-9995.2001.00386.x.
  • Seppo, L., T. Jauhiainen, T. Poussa, and R. Korpela. 2003. A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition 77 (2):326–30. doi: 10.1093/ajcn/77.2.326.
  • Sharrett, A. R., C. Ballantyne, S. Coady, G. Heiss, P. Sorlie, D. Catellier, and W. Patsch. 2001. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein (a), apolipoproteins AI and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 104 (10):1108–13. doi: 10.1161/hc3501.095214.
  • Silk, D., G. Grimble, and R. Rees. 1985. Protein digestion and amino acid and peptide absorption. Proceedings of the Nutrition Society, 44, 63–72.
  • Sivam, A., D. Sun-Waterhouse, C. Perera, and G. Waterhouse. 2013. Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Research International 50 (2):574–85. doi: 10.1016/j.foodres.2011.03.039.
  • Škrabanja, V., and I. Kreft. 2016. Nutritional value of buckwheat proteins and starch. In Molecular breeding and nutritional aspects of buckwheat, 169–76. Elsevier/Academic Press, London, United Kingdom.
  • Skrabanja, V., H. N. Laerke, and I. Kreft. 2000. Protein-polyphenol interactions and in vivo digestibility of buckwheat groat proteins. Pflugers Archiv : European Journal of Physiology 440 (5 Suppl):R129–R131.
  • Starzyńska‐Janiszewska, A., B. Stodolak, R. Duliński, M. Bączkowicz, B. Mickowska, A. Wikiera, and Ł. Byczyński. 2016. Effect of solid‐state fermentation tempe type on antioxidant and nutritional parameters of buckwheat groats as compared with hydrothermal processing. Journal of Food Processing and Preservation 40:298–305.
  • Stember, R. H. 2006.Buckwheat allergy. Allergy and Asthma Proceedings 27 (4):393–5. doi:10.2500/aap.2006.27.2879.
  • Tang, C. H. 2007. Functional properties and in vitro digestibility of buckwheat protein products: Influence of processing. Journal of Food Engineering 82 (4):568–76.
  • Tang, C.-H., J. Peng, D.-W. Zhen, and Z. Chen. 2009. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chemistry 115 (2):672–8. doi: 10.1016/j.foodchem.2008.12.068.
  • Tang, C. H., X. Y. Wang, F. Liu, and C. S. Wang. 2009. Physicochemical and conformational properties of buckwheat protein isolates: Influence of polyphenol removal with cold organic solvents from buckwheat seed flours. Journal of Agricultural and Food Chemistry 57 (22):10740–8. doi: 10.1021/jf901928h.
  • Tavares, T., M. Á. Sevilla, M. J. Montero, R. Carrón, and F. X. Malcata. 2012. Acute effect of whey peptides upon blood pressure of hypertensive rats, and relationship with their angiotensin-converting enzyme inhibitory activity. Molecular Nutrition & Food Research 56 (2):316–24. doi: 10.1002/mnfr.201100381.
  • Tomotake, H., I. Shimaoka, J. Kayashita, M. Nakajoh, and N. Kato. 2002. Physicochemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry 50 (7):2125–9. doi: 10.1021/jf011248q.
  • Tomotake, H., I. Shimaoka, J. Kayashita, F. Yokoyama, M. Nakajoh, and N. Kato. 2000. A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. The Journal of Nutrition 130 (7):1670–4.
  • Tomotake, H., N. Yamamoto, H. Kitabayashi, A. Kawakami, J. Kayashita, H. Ohinata, H. Karasawa, and N. Kato. 2007. Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol‐enriched diet. Journal of Food Science 72 (7):S528–S533.
  • Tomotake, H., N. Yamamoto, N. Yanaka, H. Ohinata, R. Yamazaki, J. Kayashita, and N. Kato. 2006. High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation in mice by hypercholesterolemic diet and body fat in rats because of its low protein digestibility. Nutrition 22 (2):166–73.
  • Udenigwe, C. C., and R. E. Aluko. 2011. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences 12 (5):3148–61. doi: 10.3390/ijms12053148.
  • Udenigwe, C. C., and R. E. Aluko. 2012. Food protein-derived bioactive peptides: production, processing, and potential health benefits . Journal of Food Science 77 (1):R11–R24. doi: 10.1111/j.1750-3841.2011.02455.x.
  • Udenigwe, C., and K. Rouvinen-Watt. 2015. The role of food peptides in lipid metabolism during dyslipidemia and associated health conditions. International Journal of Molecular Sciences 16 (5):9303–13. doi: 10.3390/ijms16059303.
  • Varga, E.-M., D. Kollmann, M. Zach, and B. Bohle. 2011. Anaphylaxis to buckwheat in an atopic child: A risk factor for severe allergy to nuts and seeds? International Archives of. International Archives of Allergy and Immunology 156 (1):112–6. doi: 10.1159/000321916.
  • Wang, C., S. Yuan, W. Zhang, T. Ng, and X. Ye. 2019. Buckwheat antifungal protein with biocontrol potential to inhibit fungal (Botrytis cinerea) infection of cherry tomato. Journal of Agricultural and Food Chemistry 67 (24):6748–56. doi: 10.1021/acs.jafc.9b01144.
  • Wang, T., S. Shyur, D. Wen, Y. Kao, and L. Huang. 2006. Buckwheat anaphylaxis: An unusual allergen in Taiwan. Asian Pacific Journal of Allergy and Immunology 24 (2–3):167–70.
  • Wang, X., N. Ullah, X. Sun, Y. Guo, L. Chen, Z. Li, and X. Feng. 2017. Development and characterization of bacterial cellulose reinforced biocomposite films based on protein from buckwheat distiller’s dried grains. International Journal of Biological Macromolecules 96:353–60. doi: 10.1016/j.ijbiomac.2016.11.106.
  • Wang, J., J. Xiao, X. Liu, F. Geng, Q. Huang, J. Zhao, D. Xiang, and G. Zhao. 2019. Analysis of tartary buckwheat (Fagopyrum tataricum) seed proteome using offline two-dimensional liquid chromatography and tandem mass spectrometry . Journal of Food Biochemistry 43 (7):e12863 doi: 10.1111/jfbc.12863.
  • Wieslander, G., and D. Norbäck. 2001. Buckwheat allergy. Allergy 56 (8):703–4. doi: 10.1034/j.1398-9995.2001.056008703.x.
  • Wijngaard, H., and E. K. Arendt. 2006. Buckwheat. Cereal Chemistry Journal 83 (4):391–401. doi: 10.1094/CC-83-0391.
  • Wüthrich, B., and A. Trojan. 1995. Wheatburger anaphylaxis due to hidden buckwheat. Clinical & Experimental Allergy 25 (12):1263 doi: 10.1111/j.1365-2222.1995.tb03052.x.
  • Xia, N., J.-M. Wang, Q. Gong, X.-Q. Yang, S.-W. Yin, and J.-R. Qi. 2012. Characterization and in vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: Comparison to alkaline extraction. Journal of Cereal Science 56 (2):482–489. doi: 10.1016/j.jcs.2012.06.008.
  • Xue, F., Z. Wu, J. Tong, J. Zheng, and C. Li. 2017. Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, Biotechnology, and Biochemistry 81 (10):1891–1898. doi: 10.1080/09168451.2017.1361805.
  • Yang, Z. H., C. Li, Y. Y. Li, and Z. H. Wang. 2013. Effects of Maillard reaction on allergenicity of buckwheat allergen Fag t 3 during thermal processing. Journal of the Science of Food and Agriculture 93 (6):1510–1515. doi: 10.1002/jsfa.5928.
  • Yano, M., R. Nakamura, S. Hayakawa, and S. Torii. 1989. Purification and properties of allergenic proteins in buckwheat seeds. Agricultural and Biological Chemistry 53:2387–2392.
  • Yiming, Z., W. Hong, C. Linlin, Z. Xiaoli, T. Wen, and S. Xinli. 2015. Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chemistry 186:244–248. doi: 10.1016/j.foodchem.2015.03.115.
  • Yousif, N. E., and A. H. El Tinay. 2000. Effect of fermentation on protein fractions and in vitro protein digestibility of maize. Food Chemistry 70 (2):181–184. doi: 10.1016/S0308-8146(00)00069-8.
  • Yousif, N. E., and A. H. El Tinay. 2001. Effect of fermentation on sorghum protein fractions and in vitro protein digestibility. Plant Foods for Human Nutrition 56 (2):175–182. doi: 10.1023/A:1011140602122.
  • Zhang, C., R. Zhang, Y. M. Li, N. Liang, Y. Zhao, H. Zhu, Z. He, J. Liu, W. Hao, R. Jiao, et al. 2017. Cholesterol-lowering activity of Tartary buckwheat protein. Journal of Agricultural and Food Chemistry 65 (9):1900–1906., doi: 10.1021/acs.jafc.7b00066.
  • Zhang, X., J. M. Yuan, X. D. Cui, and Z. H. Wang. 2008. Molecular cloning, recombinant expression, and immunological characterization of a novel allergen from tartary buckwheat. Journal of Agricultural and Food Chemistry 56 (22):10947–10953. doi: 10.1021/jf801855a.
  • Zhang, Z., X. Zhang, W. Chen, and P. Zhou. 2018. Conformation stability, in vitro digestibility and allergenicity of tropomyosin from shrimp (Exopalaemon modestus) as affected by high intensity ultrasound. Food Chemistry 245:997–1009. doi: 10.1016/j.foodchem.2017.11.072.
  • Zhou, X., S. Cheng, Y. Yang, Y. Zhou, W. Tang, X. Zhang, Q. Wang, and Z. Li. 2011. Toward a novel understanding of buckwheat self-defensive strategies during seed germination and preliminary investigation on the potential pharmacological application of its malting products. Journal of Medicinal Plants Research 5:6946–6954.
  • Zhou, X., L. Huang, W. Tang, Y. Zhou, Q. Wang, and Z. Li. 2013. A novel buckwheat protein with a beneficial effect in atherosclerosis was purified from Fagopyrum tataricum (L.) Gaertn. Archives of Biological Sciences 65 (2):767–772. doi: 10.2298/ABS1302767Z.
  • Zhou, X., L. Wen, Z. Li, Y. Zhou, Y. Chen, and Y. Lu. 2015. Advance on the benefits of bioactive peptides from buckwheat. Phytochemistry Reviews 14 (3):381–388. doi: 10.1007/s11101-014-9390-0.
  • Zhou, X.-L., B.-B. Yan, Y. Xiao, Y.-M. Zhou, and T.-Y. Liu. 2018. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 119:296–301. doi: 10.1016/j.fct.2018.02.052.
  • Zhu, F. 2016. Chemical composition and health effects of Tartary buckwheat. Food Chemistry 203:231–245. doi: 10.1016/j.foodchem.2016.02.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.