1,200
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Non-thermal technologies: Solution for hazardous pesticides reduction in fruits and vegetables

, &

References

  • Abdi, S., and S. Sobhan Ardakani. 2019. Determination of benomyl and diazinon residues in strawberry and its related health implications. Razi Journal of Medical Sciences 25 (11):42–51.
  • Abou-Arab, A. A. K. 1999. Behavior of pesticides in tomatoes during commercial and home preparation. Food Chemistry 65 (4):509–14. doi: 10.1016/S0308-8146(98)00231-3.
  • Ahmed, I., M. A. Rahman, T. A. A. El, and N. S. Khalil. 2016. Dietary intake of potential pesticide residues in tomato samples marketed in Egypt. Journal of Environmental Research 10 (4):213–9.
  • Akdemir Evrendilek, G., E. Keskin, and O. Golge. 2020. Interaction and multi‐objective effects of multiple non‐thermal treatments of sour cherry juice: Pesticide removal, microbial inactivation, and quality preservation. Journal of the Science of Food and Agriculture 100 (4):1653–61. doi: 10.1002/jsfa.10178.
  • Akhtar, S., G. Yaqub, and A. Hamid. 2018. Determination of pesticide residues in selected vegetables and fruits from a local market of Lahore, Pakistan 13 (2):242–50.
  • Al-Dabbas, M. M., A. A. Shaderma, T. M. Al-Antary, H. A. Ghazzawi, and H. J. Hamad. 2018. Effect of ozonation on cypermethrin and chlorpyrifos pesticides residues degradation in tomato fruits. Fresenius Environmental Bulletin 27 (10):6628–33.
  • Al-Nasir, F. M., A. G. Jiries, G. J. Al-Rabadi, M. H. Al-U, C. C. Tranchant, S. A. Al-Dalain, N. Alrabadi, O. Y. Madanat, and R. S. Al-Dmour. 2020. Determination of pesticide residues in selected citrus fruits and vegetables cultivated in the Jordan Valley. LWT - Food Science and Technology 123:109005. doi: 10.1016/j.lwt.2019.109005.
  • Alamgir, M., Z. Chowdhury, S. B. Hattacharjee, N. Fakhruddi, M. A. N, M. N. Islam, and M. K. Alam. 2013. Determination of cypermethrin, chlorpyrifos and diazinon residues in tomato and reduction of cypermethrin residues in tomato using rice bran. World Journal of Agricultural Research 1 (2):30–5. doi: 10.12691/wjar-1-2-2.
  • Atuanya, E. I., and T. Onuoha. 2018. Level of organochlorine pesticide residues in selected consumable vegetables commonly sold in Benin city markets. Journal of Applied Sciences and Environmental Management 22 (10):1625. doi: 10.4314/jasem.v22i10.17.
  • Azam, S. M. R., H. Ma, B. Xu, S. Devi, A. Bakar, S. L. Stanley, B. Bhandari, and J. Zhu. 2020. Efficacy of ultrasound treatment in the and removal of pesticide residues from fresh vegetables : A review. Trends in Food Science & Technology 97 (301):417–32. doi: 10.1016/j.tifs.2020.01.028.
  • Bai, Y., L. Zhou, and J. Wang. 2006. Organophosphorus pesticide residues in market foods in Shaanxi area, China. Food Chemistry 98 (2):240–2. doi: 10.1016/j.foodchem.2005.05.070.
  • Basfar, A. A., K. A. Mohamed, and O. A. Al-Saqer. 2012. De-contamination of pesticide residues in food by ionizing radiation. Radiation Physics and Chemistry 81 (4):473–8. doi: 10.1016/j.radphyschem.2011.12.040.
  • Bhandari, G., P. Zomer, K. Atreya, H. G. J. Mol, X. Yang, and V. Geissen. 2019. Pesticide residues in Nepalese vegetables and potential health risks. Environmental Research 172:511–21. doi: 10.1016/j.envres.2019.03.002.
  • Bhilwadikar, T., S. Pounraj, S. Manivannan, N. K. Rastogi, and P. S. Negi. 2019. Decontamination of microorganisms and pesticides from fresh fruits and vegetables : A comprehensive review from common household processes to modern techniques. Comprehensive Reviews in Food Science and Food Safety 18 (4):1003–38. doi: 10.1111/1541-4337.12453.
  • Burchat, C. S., B. D. Ripley, P. D. Leishman, G. M. Ritcey, Y. Kakuda, and G. R. Stephenson. 1998. The distribution of nine pesticides between the juice and pulp of carrots and tomatoes after home processing. Food Additives and Contaminants 15 (1):61–71. doi: 10.1080/02652039809374599.
  • Cengiz, M. F., M. Başlar, O. Basançelebi, and M. Kılıçlı. 2018. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications. Food Chemistry 267:60–6. doi: 10.1016/j.foodchem.2017.08.031.
  • Chanukya, B. S., and N. K. Rastogi. 2016. Ultrasound assisted forward osmosis concentration of fruit juice and natural colorant. Ultrasonics – Sonochemistry. 34:426–35. doi: 10.1016/j.ultsonch.2016.06.020.
  • Chavarri, M. J., A. Herrera, and A. Arino. 2005. The decrease in pesticides in fruit and vegetables during commercial processing. International Journal of Food Science and Technology 40 (2):205–11. doi: 10.1111/j.1365-2621.2004.00932.x.
  • Cheftel, J. C. 1995. Review : High-pressure, microbial inactivation and food preservation Revisi. Food Science and Technology International 1 (2-3):75–90. doi: 10.1177/108201329500100203.
  • Chen, C., Y. Qian, Q. Chen, C. Tao, C. Li, and Y. Li. 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control. 22 (7):1114–20. doi: 10.1016/j.foodcont.2011.01.007.
  • Chen, F., L. Zeng, Y. Zhang, X. Liao, Y. Ge, X. Hu, and L. Jiang. 2009. Degradation behaviour of methamidophos and chlorpyrifos in apple juice treated with pulsed electric fields. Food Chemistry 112 (4):956–61. doi: 10.1016/j.foodchem.2008.07.016.
  • Chen, J. H. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use 16:20.
  • Chen, J. Y., Y. J. Lin, and W. C. Kuo. 2013. Pesticide residue removal from vegetables by ozonation. Journal of Food Engineering 114 (3):404–11. doi: 10.1016/j.jfoodeng.2012.08.033.
  • Chowdhury, M. A. Z., I. Jahan, N. Karim, M. K. Alam, M. A. Rahman, M. Moniruzzaman, S. H. Gan, and A. N. M. Fakhruddin. 2014. Determination of carbamate and organophosphorus pesticides in vegetable samples and the efficiency of gamma-radiation in their removal. BioMed Research International 2014:145159. doi: 10.1155/2014/145159.
  • Delsart, C., Franc, C. Grimi, N. Revel, G. De, Vorobiev, E. Peuchot, M. M. Materials. and A. 2016. 1st World Congress on electroporation and pulsed electric fields in biology, medicine and food and environmental technologies, WC 2015. IFMBE Proceedings 53:1–448. doi: 10.1007/978-981-287-817-5.
  • Dorraki, N., V. Mahdavi, H. Ghomi, and A. Ghasempour. 2016. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma. Biointerphases 11 (4):041007. doi: 10.1116/1.4971382.
  • Elgueta, S., S. Moyano, P. Sepúlveda, C. Quiroz, and A. Correa. 2017. Pesticide residues in leafy vegetables and human health risk assessment in North Central agricultural areas of Chile. Food Additives & Contaminants. Part B, Surveillance 10 (2):105–12. doi: 10.1080/19393210.2017.1280540.
  • Fahey, J. E., P. E. Nelson, and D. L. Ballee. 1970. Removal of Gardona from fruit by commercial preparative methods. Journal of Agricultural and Food Chemistry 18 (5):866–8. doi: 10.1021/jf60171a024.
  • Fan, X. D., W. L. Zhang, H. Y. Xiao, T. Q. Qiu, and J. G. Jiang. 2015. Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce. RSC Advances 5 (57):45622–30. doi: 10.1039/c5ra03024b.
  • Feng, H., G. V. Barbosa-Cánovas, and J. Weiss. 2011. Ultrasound technologies for food and bioprocessing, Vol. 1. New York: Springer.
  • Fosu, P. O., A. Donkor, C. Ziwu, B. Dubey, R. Kingsford-Adaboh, I. Asante, S. Nyarko, R. Tawiah, and N. Nazzah. 2017. Surveillance of pesticide residues in fruits and vegetables from Accra Metropolis markets, Ghana, 2010 – 2012 : A case study in Sub-Saharan Africa. 2010–2012. doi: 10.1007/s11356-017-9287-8
  • Hanafi, A., H. E. Elsheshetawy, and S. F. Faied. 2016. Reduction of pesticides residues on okra fruits by different processing treatments. Journal Für Verbraucherschutz Und Lebensmittelsicherheit 11 (4):337–43. doi: 10.1007/s00003-016-1054-0.
  • Hanley, T. R., E. W. Carney, and E. M. Johnson. 2000. Developmental toxicity studies in rats and rabbits with 3,5,6-trichloro-2-pyridinol, the major metabolite of chlorpyrifos. Toxicological Sciences: An Official Journal of the Society of Toxicology 53 (1):100–8. doi: 10.1093/toxsci/53.1.100.
  • Hayashi, T. 1991. Comparative effectiveness of gamma-rays and electron beams in food irradiation. Food Irradiation 23:169–206.
  • Heo, N. S., M. K. Lee, G. W. Kim, S. J. Lee, J. Y. Park, and T. J. Park. 2014. Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments. Journal of Bioscience and Bioengineering 117 (1):81–5. doi: 10.1016/j.jbiosc.2013.06.007.
  • Hollingshaus, J. G., D. Armstrong, R. F. Toia, L. McCloud, and T. R. Fukuto. 1981. Delayed toxicity and delayed neurotoxicity of phosphonothioate and phosphonothioate esters. Journal of Toxicology and Environmental Health 8 (4):619–27. doi: 10.1080/15287398109530096.
  • Horuz, E., H. J. Jaafar, and M. Maskan. 2017. Ultrasonication as pretreatment for drying of tomato slices in a hot air – microwave hybrid oven. Drying Technology 35 (7):849–59. doi: 10.1080/07373937.2016.1222538.
  • Hu, Y., Y. Bai, X. Li, and J. Chen. 2013. Application of dielectric barrier discharge plasma for degradation and pathways of dimethoate in aqueous solution. Separation and Purification Technology 120:191–7. doi: 10.1016/j.seppur.2013.10.005.
  • Ibrahim, E. G., N. Yakubu, L. Nnamonu, and J. M. Yakubu. 2018. Prevalence of organophosphorous pesticide residues in pumpkin, spinach and sorrel leaves grown in Akwanga, Nasarawa State, Nigeria. Journal of Environmental Protection 09 (05):516–24. doi: 10.4236/jep.2018.95032.
  • Idrovo, A. M., C. D. Pérez, P. Alzate, E. Zukowski, L. N. Gerschenson, A. M. Rojas, and E. N. Fissore. 2019. High-power ultrasound pretreatment for efficient extraction of fractions enriched in pectins and antioxidants from discarded carrots (Daucus carota L.). Journal of Food Engineering 256:28–36. doi: 10.1016/j.jfoodeng.2019.03.007.
  • Iizuka, T., S. Maeda, and A. Shimizu. 2013. Removal of pesticide residue in cherry tomato by hydrostatic pressure. Journal of Food Engineering 116 (4):796–800. doi: 10.1016/j.jfoodeng.2013.01.035.
  • Ikeura, H., S. Hamasaki, and M. Tamaki. 2013. Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves. Food Chemistry 138 (1):366–71. doi: 10.1016/j.foodchem.2012.09.139.
  • Ikeura, H., F. Kobayashi, and M. Tamaki. 2011. Removal of residual pesticides in vegetables using ozone microbubbles. Journal of Hazardous Materials 186 (1):956–9. doi: 10.1016/j.jhazmat.2010.11.094.
  • Illyassou, K. M., L. D. P. L. De, U. A. Moumouni, R. Adamou, L. De, E. Lamee, U. A. Moumouni, B. Schiffers, L. De, G. A. Tech, et al. 2018. First diet survey in Niger River Valley and acute risk assessment for consumers exposed to pesticide residues in vegetables. Tunisian Journal of Plant Protection13 (2): 243–62.
  • Iqbal, M. F., U. Maqbool, I. Perveez, M. Farooq, and M. R. Asi. 2009. Monitoring of insecticide residues in brinjal collected from market of Noshera Virkan, Pakistan. Journal of Animal and Plant Sciences 19 (2):90–3.
  • Kamgang-Youbi, G., J. M. Herry, T. Meylheuc, J. L. Brisset, M. N. Bellon-Fontaine, A. Doubla, and M. Naïtali. 2009. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Letters in Applied Microbiology 48 (1):13–8. doi: 10.1111/j.1472-765X.2008.02476.x.
  • Karaca, H., and H. Karaca. 2019. The effects of ozone-enriched storage atmosphere on pesticide residues and physicochemical properties of table grapes. Ozone: Science & Engineering 41 (5):404–11. doi: 10.1080/01919512.2018.1555449.
  • Kariathi, V., N. Kassim, and M. Kimanya. 2016. Pesticide exposure from fresh tomatoes and its relationship with pesticide application practices in Meru district. Cogent Food & Agriculture 2 (1):1–12. doi: 10.1080/23311932.2016.1196808.
  • Kaushik, G., S. Satya, and S. N. Naik. 2009. Food processing a tool to pesticide residue dissipation–A review. Food Research International 40 (1):26–40.
  • Khan, I., A. Kaium, M. Dalower, and H. Prodhan. 2019. Determination of major orhanophosphate insecitide residue in cabbage samole from different markets of Dhaka. Asia Pacific Environmental and Occupational Health Journal. 5 (2):30–5.
  • Kumari, B. 2008. Effects of household processing on reduction of pesticide residues in vegetables. ARPN Journal of Agricultural and Biological Science 3 (4):46–51.
  • Larsson, M. O., V. S. Nielsen, N. Bjerre, F. Laporte, and N. Cedergreen. 2018. Refined assessment and perspectives on the cumulative risk resulting from the dietary exposure to pesticide residues in the Danish population. Food and Chemical Toxicology 111:207–67. doi: 10.1016/j.fct.2017.11.020.
  • Lentza-Rizos, C., E. J. Avramides, and K. Kokkinaki. 2006. Residues of azoxystrobin from grapes to raisins. Journal of Agricultural and Food Chemistry 54 (1):138–41. doi: 10.1021/jf051821w.
  • Li, J., Z. Ying, H. Rui, P. Wei, J. Binhui, S. Huiyan, and Y. Chanqi. 2011. Analysis of pesticide residues in vegetables from Shenyang, China. In 2011 Fourth International Conference on Intelligent Computation Technology and Automation, 823–826. doi: 10.1109/ICICTA.2011.489.
  • Li, Z., J. Nie, Z. Yan, Y. Cheng, F. Lan, Y. Huang, Q. Chen, X. Zhao, and A. Li. 2018. A monitoring survey and dietary risk assessment for pesticide residues on peaches in China. Regulatory Toxicology and Pharmacology: RTP 97:152–62. doi: 10.1016/j.yrtph.2018.06.007.
  • Lima, V. G., V. P. Campos, T. C. Santana, F. O. Santana, and T. A. Costa. 2017. Determination of agrochemical multi-residues in grapes. Identification and confirmation by gas chromatography-mass spectrometry. Analytical Methods 9 (40):5880–9. doi: 10.1039/C7AY01448A.
  • Liu, Y., S. Li, Z. Ni, M. Qu, D. Zhong, C. Ye, and F. Tang. 2016. Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Science of the Total Environment 542:620–8. doi: 10.1016/j.scitotenv.2015.10.148.
  • Loughlin, T. M. M., M. L. Peluso, M. A. Etchegoyen, L. Lucas, M. C. D. Castro, M. C. Percudani, and D. J. G. Marino. 2018. Pesticide residues in fruits and vegetables of the argentine domestic market: Occurrence and quality. Food Control 93:129–38. doi: 10.1016/j.foodcont.2018.05.041.
  • Lozowicka, B., E. Abzeitova, and A. Sagitov. 2015. Studies of pesticide residues in tomatoes and cucumbers from Kazakhstan and the associated health risks. doi: 10.1007/s10661-015-4818-6
  • Lozowicka, B., M. Jankowska, I. Hrynko, and P. Kaczynski. 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment 188 (1):1–19. doi: 10.1007/s10661-015-4850-6.
  • Ma, Z., J. I. Boye, B. K. Simpson, S. O. Prasher, D. Monpetit, and L. Malcolmson. 2011. Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International 44 (8):2534–44. doi: 10.1016/j.foodres.2010.12.017.
  • Magureanu, M., C. Bradu, and V. I. Parvulescu. 2018. Plasma processes for the treatment of water contaminated with harmful organic compounds. Journal of Physics D: Applied Physics 15 (31):313002.
  • Mahendran, R., C. K. Abirami, and K. Alagusundaram. 2017. Cold plasma technology: An emerging non-thermal processing of foods—A review. In M. R. Goyal & D. K. Verma (Eds.), Engineering interventions in agricultural processing, 33–55. Waretown, NJ, USA: Academic Press.
  • Mebdoua, S., M. Lazali, S. M. Ounane, S. Tellah, F. Nabi, and G. Ounane. 2017. Evaluation of pesticide residues in fruits and vegetables from Algeria. Food Additives & Contaminants. Part B, Surveillance 10 (2):91–8. doi: 10.1080/19393210.2016.1278047.
  • Misra, N. N. 2015. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science and Technology 45 (2):229–44. doi: 10.1016/j.tifs.2015.06.005.
  • Misra, N. N., S. K. Pankaj, T. Walsh, F. O'Regan, P. Bourke, and P. J. Cullen. 2014. In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials 271:33–40. doi: 10.1016/j.jhazmat.2014.02.005.
  • Moore, N. W. 1967. Effects of pesticides on wildlife. Proceedings of the Royal Society of London. Series B. Biological Sciences 167 (1007):128–33. doi: 10.1098/rspb.1967.0017.
  • Morton, J. F. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences of the United States of America 104 (50):19680–5. doi: 10.1073/pnas.0701855104.
  • Mostafalou, S., and M. Abdollahi. 2013. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology 268 (2):157–77. doi: 10.1016/j.taap.2013.01.025.
  • Oluwaseyi, A., M. Babatunde, J. Adekunle, and O. Oyekunle. 2019. Heliyon Dietary exposure assessment of organochlorine pesticides in two commonly grown leafy vegetables in South-western Nigeria. Heliyon 5 (6):e01895. doi: 10.1016/j.heliyon.2019.e01895.
  • Ong, K. C., J. N. Cash, M. J. Zabik, M. Siddiq, and A. L. Jones. 1996. Chlorine and ozone washes for pesticide removal from apples and processed apple sauce. Food Chemistry 55 (2):153–60. doi: 10.1016/0308-8146(95)00097-6.
  • Paciulli, M., M. Rinaldi, M. Rodol, T. Ganino, M. Morbarigazzi, and E. Chiavaro. 2019. Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry 274:281–90. doi: 10.1016/j.foodchem.2018.09.021.
  • Pandiselvam, R., R. Kaavya, Y. Jayanath, K. Veenuttranon, P. Lueprasitsakul, V. Divya, A. Kothakota, and S. V. Ramesh. 2020. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–A review. Trends in Food Science & Technology 97:38–54. doi: 10.1016/j.tifs.2019.12.017.
  • Park, D. W., K. G. Kim, E. A. Choi, G. R. Kang, T. Sun, Y. S. Yang, S. J. Moon, D. R. Ha, E. S. Kim, and B. Sik. 2015. Food additives & contaminants: Part A pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea : a long-term study on safety and health risk assessment. 0049. doi: 10.1080/19440049.2015.1108524.[]
  • Phan, K. T. K., H. T. Phan, D. Boonyawan, P. Intipunya, C. S. Brennan, J. M. Regenstein, and Y. Phimolsiripol. 2018. Non-thermal plasma for elimination of pesticide residues in mango. Innovative Food Science and Emerging Technologies 48:164–71. doi: 10.1016/j.ifset.2018.06.009.
  • Phan, K. T. K., H. T. Phan, C. S. Brennan, and Y. Phimolsiripol. 2017. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. International Journal of Food Science & Technology 52 (10):2127–37.
  • Pickett, J. A., L. J. Wadhams, and C. M. Woodcock. 1997. Developing sustainable pest control from chemical ecology. Agriculture, Ecosystems and Environment 64 (2):149–56. doi: 10.1016/S0167-8809. (97)00033-9
  • Ramirez, R., J. Saraiva, C. P. Lamela, and J. A. Torres. 2009. Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Engineering Reviews 1 (1):16–30. doi: 10.1007/s12393-009-9002-8.
  • Ranjitha Gracy, T. K., V. Gupta, and R. Mahendran. 2019a. Effect of plasma activated water (PAW) on chlorpyrifos reduction in tomatoes. International Journal of Chemical Studies 7 (3):5000–6.
  • Ranjitha Gracy, T. K., V. Gupta, and R. Mahendran. 2019b. Influence of low-pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes. Journal of Food Process Engineering 42 (6):1–16. doi: 10.1111/jfpe.13242.
  • Ratish Ramanan, K., R. Sarumathi, and R. Mahendran. 2018. Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour. Journal of Stored Products Research 77:126–34. doi: 10.1016/j.jspr.2018.04.006.
  • Rengel, Z., and P. M. Damon. 2008. Crops and genotypes differ in efficiency of potassium uptake and use. Physiologia Plantarum 133 (4):624–36. doi: 10.1111/j.1399-3054.2008.01079.x.
  • Ricci, A., G. P. Parpinello, and A. Versari. 2018. Recent advances and applications of pulsed electric fields (PEF) to improve polyphenol extraction and color release during red winemaking. Beverages 4 (1):18. doi: 10.3390/beverages4010018.
  • Rodrigues, A. A. Z., M. E. L. R. d. Queiroz, A. A. Neves, A. F. d. Oliveira, L. H. F. Prates, J. F. d. Freitas, F. F. Heleno, and L. R. D. A. Faroni. 2019. Use of ozone and detergent for removal of pesticides and improving storage quality of tomato. Food Research International (Ottawa, Ont.) 125:108626. doi: 10.1016/j.foodres.2019.108626.
  • Sadło, S., E. Szpyrka, B. Piechowicz, P. Antos, R. Józefczyk, and M. Balawejder. 2017. Reduction of captan, boscalid and pyraclostrobin residues on apples using water only, gaseous ozone, and ozone aqueous solution. Ozone: Science and Engineering 39 (2):97–103. doi: 10.1080/01919512.2016.1257931.
  • Santarelli, G. A., G. Migliorati, F. Pomilio, C. Marfoglia, P. Centorame, A. D'Agostino, R. D'Aurelio, R. Scarpone, N. Battistelli, F. Di Simone, et al. 2018. Assessment of pesticide residues and microbial contamination in raw leafy green vegetables marketed in Italy. Food Control. 85:350–8. doi: 10.1016/j.foodcont.2017.09.035.
  • Sapbamrer, R., and S. Hongsibsong. 2014. Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of Northern Thailand, 60–67. doi: 10.1007/s00244-014-0014-x
  • Sarangapani, C., G. O'Toole, P. J. Cullen, and P. Bourke. 2017. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies 44:235–41. doi: 10.1016/j.ifset.2017.02.012.
  • Sawangrat, C., K. Leksakul, D. Bonyawan, T. Anantana, and S. Jomjunyong. 2019. Decontamination of pesticide residues on tangerine fruit using non-thermal plasma technology. IOP Conference Series: Earth and Environmental Science, 347:012048. doi: 10.1088/1755-1315/347/1/012048/meta
  • Solar, J. M., J. A. Liuzzo, and A. F. Novak. 1971. Removal of aldrin, heptachlor epoxide, and endrin from potatoes during processing. Journal of Agricultural and Food Chemistry 19 (5):1008–10. doi: 10.1021/jf60177a029.
  • Souza, L. P. d., L. R. D. A. Faroni, F. F. Heleno, F. G. Pinto, M. E. L. R. d.Queiroz, and L. H. F. Prates. 2018. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology. Food Chemistry 243:435–41. doi: 10.1016/j.foodchem.2017.09.134.
  • Tabakoglu, N., and H. Karaca. 2018. Effects of ozone-enriched storage atmosphere on postharvest quality of black mulberry fruits (Morus nigra L.). LWT - Food Science and Technology 92:276–81. doi: 10.1016/j.lwt.2018.02.044.
  • Tahir, S., T. Anwar, I. Ahmad, S. Aziz, A. Mohammad, and K. Ahad. 2001. Determination of pesticide residues in fruits and vegetables in Islamabad market. Journal of Environmental Biology 22 (1):71–4.
  • Terefe, N. S., A. L. Sikes, and P. Juliano. 2016. Ultrasound for structural modification of food products. In Innovative food processing technologies, by K. Knoerzer, P. Juliano, & G. Smithers, 209–30. Amsterdam, Netherlands: Woodhead Publishing Limited. doi: 10.1016/B978-0-08-100294-0.00008-0.
  • Wang, J., H.-W. Xiao, J.-H. Ye, J. Wang, and V. Raghavan. 2019. Ultrasound pretreatment to enhance drying kinetics of kiwifruit (Actinidia deliciosa) slices: Pros and Cons. Food and Bioprocess Technology 12 (5):865–76. doi: 10.1007/s11947-019-02256-4.
  • Wang, S., J. Wang, T. Wang, C. Li, and Z. Wu. 2019. Effects of ozone treatment on pesticide residues in food: A review. International Journal of Food Science & Technology 54 (2):301–12. doi: 10.1111/ijfs.13938.
  • Witczak, A., A. Pohoryło, H. Abdel-Gawad, and J. Cybulski. 2018. Residues of some organophosphorus pesticides on and in fruits and vegetables available in Poland, an assessment based on the European Union regulations and health assessment for human populations. Phosphorus, Sulfur and Silicon and the Related Elements 193 (11):711–20. doi: 10.1080/10426507.2018.1492921.
  • Wu, J., T. Luan, C. Lan, T. W. Hung Lo, and G. Y. S. Chan. 2007. Removal of residual pesticides on vegetable using ozonated water. Food Control. 18 (5):466–72. doi: 10.1016/j.foodcont.2005.12.011.
  • Yu, R., Q. Liu, J. Liu, Q. Wang, and Y. Wang. 2016. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control. 60:353–60. doi: 10.1016/j.foodcont.2015.08.013.
  • Yue, T., Z. Zhou, Y. Yuan, Z. Gao, and X. Zhang. 2009. Optimization of conditions for organochlorine pesticide residues removal in apples using ultrasonic. Transactions of the Chinese Society of Agricultural Engineering 25 (12):324–30.
  • Zabik, M. J., M. F. A. El-Hadidi, J. N. Cash, M. E. Zabik, and A. L. Jones. 2000. Reduction of Azinphos-methyl, Chlorpyriphos, Esfenvalerate and Methomyl residues in processed apples. Journal of Agricultural and Food Chemistry 48 (9):4199–203. doi: 10.1021/jf9913559.
  • Zhang, Y., Y. Hou, Y. Zhang, J. Chen, F. Chen, X. Liao, and X. Hu. 2012a. Reduction of diazinon and dimethoate in apple juice by pulsed electric field treatment. Journal of the Science of Food and Agriculture 92 (4):743–50. doi: 10.1002/jsfa.4636.
  • Zhang, Y., Z. Zhang, F. Chen, H. Zhang, and X. Hu. 2012b. Ultrasonics sonochemistry effect of sonication on eliminating of phorate in apple juice. Ultrasonics - Sonochemistry 19 (1):43–8. doi: 10.1016/j.ultsonch.2011.05.014.
  • Zheng, Y., S. Wu, J. Dang, S. Wang, Z. Liu, J. Fang, P. Han, and J. Zhang. 2019. Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. Journal of Hazardous Materials 377:98–105. doi: 10.1016/j.jhazmat.2019.05.058.
  • Zhou, Q., Y. Bian, Q. Peng, F. Liu, W. Wang, and F. Chen. 2019. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chemistry 298 (2):125007. doi: 10.1016/j.foodchem.2019.125007.
  • Zhou, R., R. Zhou, F. Yu, D. Xi, P. Wang, J. Li, X. Wang, X. Zhang, K. Bazaka, and K. (K. ). Ostrikov. 2018. Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal 342:401–9. doi: 10.1016/j.cej.2018.02.107.
  • Zhu, Y., T. Zhang, D. Xu, S. Wang, Y. Yuan, S. He, and Y. Cao. 2019. The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment. Food Control. 95:176–80. doi: 10.1016/j.foodcont.2018.07.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.