1,174
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Water-soluble non-starch polysaccharides of root and tuber crops: extraction, characteristics, properties, bioactivities, and applications

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Aboubakar, N., J. Scher, and C. Mbofung. 2008. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Journal of Food Engineering 86 (2):294–305. doi: 10.1016/j.jfoodeng.2007.10.006.
  • Adisakwattana, S., P. Jiphimai, P. Prutanopajai, B. Chanathong, S. Sapwarobol, and T. Ariyapitipan. 2010. Evaluation of alpha-glucosidase, alpha-amylase and protein glycation inhibitory activities of edible plants . International Journal of Food Sciences and Nutrition 61 (3):295–305. doi: 10.3109/09637480903455963.
  • Agrawal, P. K. 1992. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31 (10):3307–30. doi: 10.1016/0031-9422(92)83678-R.
  • Ahmed, A., and F. Khan. 2013. Extraction of starch from taro (Colocasia esculenta) and evaluating it and further using taro starch as disintegrating agent in tablet formulation with over-all evaluation. Inventi Rapid: Novel Excipients 2:1–5.
  • Ahn, Y. O., S. H. Kim, C. Y. Kim, J. S. Lee, S. S. Kwak, and H. S. Lee. 2010. Exogenous sucrose utilization and starch biosynthesis among sweet potato cultivars. Carbohydrate Research 345 (1):55–60. doi: 10.1016/j.carres.2009.08.025.
  • Akwee, P., G. Netondo, and V. A. Palapala. 2015. A critical review of the role of taro (Colocasia esculenta L. Schott) to food security: A comparative analysis of Kenya and Pacific Island taro germplasm. Scientia Agriculturae 9 (2):101–8.
  • Al-Sheraji, S. H., A. Ismail, M. Y. Manap, S. Mustafa, R. M. Yusof, and F. A. Hassan. 2013. Prebiotics as functional foods: A review. Journal of Functional Foods 5 (4):1542–53. doi: 10.1016/j.jff.2013.08.009.
  • Alves, R. M., M. V. Grossmann, C. Ferrero, N. E. Zaritzky, M. N. Martino, and M. R. Sierakoski. 2002. Chemical and functional characterization of products obtained from yam tubers. Starch - Stärke 54 (10):476–81. doi: 10.1002/1521-379X(200210)54:10<476::AID-STAR476>3.0.CO;2-6.
  • Amin, E. S. 1955. The polysaccharides of Colocasia antiquorum (taro or colocass). Journal of the Chemical Society (Resumed) (5946):2441–5. doi: 10.1039/jr9550002441.
  • Andrade, L. A., C. A. Nunes, and J. Pereira. 2015. Relationship between the chemical components of taro rhizome mucilage and its emulsifying property. Food Chemistry 178:331–8. doi: 10.1016/j.foodchem.2015.01.094.
  • Aprianita, A. 2010. Assessment of underutilized starchy roots and tubers for their applications in the food industry (Master’s thesis). Victoria University, Werribee Campus, VIC, Australia. http://vuir.vu.edu.au/15496/1/Aprianita_Aprianita_MSc_Thesis.pdf.
  • Bäumler, A. J., and V. Sperandio. 2016. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535 (7610):85–93. doi: 10.1038/nature18849.
  • Begum, A. T., and S. Anbazhakan. 2013. Evaluation of antibacterial activity of the mucilage of Dioscorea esculenta (Lour.) Burkill. International Journal of Modern Biology Medicine 4:140–6.
  • Bubb, W. A. 2003. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts in Magnetic Resonance 19A (1):1–19. doi: 10.1002/cmr.a.10080.
  • Charles, A., T. Huang, and Y. Chang. 2008. Structural analysis and characterization of a mucopolysaccharide isolated from roots of cassava (Manihot esculenta Crantz L.). Food Hydrocolloids 22 (1):184–91. doi: 10.1016/j.foodhyd.2006.10.012.
  • Charles, A. L., and T. C. Huang. 2009. Sweet cassava polysaccharide extracts protects against CCl4 liver injury in Wistar rats. Food Hydrocolloids. 23 (6):1494–500. doi: 10.1016/j.foodhyd.2008.08.011.
  • Charles, A. L., T. C. Huang, P. Y. Lai, C. C. Chen, P. P. Lee, and Y. H. Chang. 2007. Study of wheat flour–cassava starch composite mix and the function of cassava mucilage in Chinese noodles. Food Hydrocolloids 21 (3):368–78. doi: 10.1016/j.foodhyd.2006.04.008.
  • Chen, Y. F., Q. Zhu, and S. Wu. 2015. Preparation of oligosaccharides from Chinese yam and their antioxidant activity. Food Chemistry 173:1107–10. doi: 10.1016/j.foodchem.2014.10.153.
  • Choi, E. M., S. J. Koo, and J. K. Hwang. 2004. Immune cell stimulating activity of mucopolysaccharide isolated from yam (Dioscorea batatas). Journal of Ethnopharmacology 91 (1):1–6. doi: 10.1016/j.jep.2003.11.006.
  • Chukwuma, C. I., M. S. Islam, and E. O. Amonsou. 2018. A comparative study on the physicochemical, anti‐oxidative, anti‐hyperglycemic and anti‐lipidemic properties of amadumbe (Colocasia esculenta) and okra (Abelmoschus esculentus) mucilage. Journal of Food Biochemistry 42 (5):e12601–12. doi: 10.1111/jfbc.12601.
  • Churms, S. C., and A. M. Stephen. 1991. Chromatographic separation and examination of carbohydrate and phenolic components of the non-tannin fraction of black wattle (Acacia mearnsii) bark extract. Journal of Chromatography A 550:519–37. doi: 10.1016/S0021-9673(01)88559-9.
  • Clarke, A., R. Anderson, and B. Stone. 1979. Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18 (4):521–40. doi: 10.1016/S0031-9422(00)84255-7.
  • Corke, H., L. Ramsden, and J. Gaosong. 2000. Multipurpose uses of taro (Colocasia esculenta). In International Symposium on Cassava, Starch and Starch Derivatives, Guangxi, China, 262–3.
  • Cui, S. W. 2005. Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton, Florida, USA: CRC Press, Taylor and Francis.
  • Cui, S. W., G. O. Phillips, B. Blackwell, and J. Nikiforuk. 2007. Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUM™): Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUM™ arabic. Food Hydrocolloids 21 (3):347–52. doi: 10.1016/j.foodhyd.2006.05.009.
  • Darkwa, S., and A. Darkwa. 2013. Taro (Colocasia esculenta): It’s utilization in food products in Ghana. Journal of Food Processing and Technology 4 (5):1–7.
  • Dey, P., and T. K. Chaudhuri. 2014. In vitro modulation of TH1 and TH2 cytokine expression by edible tuber of Dioscorea alata and study of correlation patterns of the cytokine expression. Food Science and Human Wellness 3 (1):1–8. doi: 10.1016/j.fshw.2014.01.001.
  • Dey, P., S. Roy, and T. K. Chaudhuri. 2014. Stimulation of murine immune response by the tubers of Dioscorea alata L. of North-Eastern region of India. Proceedings of the Zoological Society 67 (2):140–8. doi: 10.1007/s12595-013-0082-3.
  • Dhingra, D., M. Michael, H. Rajput, and R. Patil. 2012. Dietary fibre in foods: A review. Journal of Food Science and Technology 49 (3):255–66. doi: 10.1007/s13197-011-0365-5.
  • Distelbarth, H., and U. Kull. 1985. Physiological investigations of leaf mucilages II. The mucilage of Taxus baccata L. and of Thuja occidentale L. Israel Journal of Plant Sciences 34 (2-4):113–28.
  • Doco, T., and P. Williams. 2013. Purification and structural characterization of a type II arabinogalactan-protein from champagne wine. American Journal of Enology and Viticulture 64 (3):364–9. doi: 10.5344/ajev.2013.13004.
  • Dumitriu, S. 2004. Polysaccharides: Structural diversity and functional versatility. Boca Raton, Florida, USA: CRC Press, Taylor and Francis.
  • Duus, J. Ø., C. H. Gotfredsen, and K. Bock. 2000. Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chemical Reviews 100 (12):4589–614. doi: 10.1021/cr990302n.
  • Ebringerová, A., Z. Hromádková, and T. Heinze. 2005. Hemicellulose. In Polysaccharides I: Structure, characterization and use, ed. T. Heinze, 1–67. New York, USA: Springer.
  • Ebringerová, A., A. Kardošová, Z. Hromádková, A. Malovı́ková, and V. Hřı́balová, 2002. Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. International Journal of Biological Macromolecules 30 (1):1–6. doi: 10.1016/S0141-8130(01)00186-6.
  • Elleuch, M., D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, and H. Attia. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124 (2):411–21. doi: 10.1016/j.foodchem.2010.06.077.
  • El-Mahdy, A. R., and L. A. El-Sebaiy. 1984. Preliminary studies on the mucilages extracted from okra fruits, taro tubers, Jew’s mellow leaves and fenugreek seeds. Food Chemistry 14 (4):237–49. doi: 10.1016/0308-8146(84)90079-7.
  • Espinal-Ruiz, M., F. Parada-Alfonso, L. P. Restrepo-Sánchez, and C. E. Narváez-Cuenca. 2014. Inhibition of digestive enzyme activities by pectic polysaccharides in model solutions. Bioactive Carbohydrates and Dietary Fibre 4 (1):27–38. doi: 10.1016/j.bcdf.2014.06.003.
  • Estiasih, T., S. W. Harijono, and A. Rahmawati. 2012. Hypoglycemic activity of water soluble polysaccharides of Yam (Dioscorea hispida Dents) prepared by aqueous, papain, and tempeh inoculum assisted extractions. World Academy of Science, Engineering and Technology 6:10–27.
  • Estiasih, T., W. Sunarharum, and M. Hartono. 2013. Hypoglycemic effect of biscuits containing water-soluble polysaccharides from wild yam (Dioscorea hispida Dennts) or lesser yam (Dioscorea esculenta) tubers and alginate. International Food Research Journal 20 (5):2279–85.
  • Fincher, G. B., B. A. Stone, and A. E. Clarke. 1983. Arabinogalactan-proteins: Structure, biosynthesis, and function. Annual Review of Plant Physiology 34 (1):47–70. doi: 10.1146/annurev.pp.34.060183.000403.
  • Fu, Y. C., S. Chen, and Y. J. Lai. 2006. Centrifugation and foam fractionation effect on mucilage recovery from Dioscorea (yam) tuber. Journal of Food Science 69 (9):E509–514. doi: 10.1111/j.1365-2621.2004.tb09937.x.
  • Fu, Y. C., L. H. A. Ferng, and P. Y. Huang. 2006. Quantitative analysis of allantoin and allantoic acid in yam tuber, mucilage, skin and bulbil of the Dioscorea species. Food Chemistry 94 (4):541–9. doi: 10.1016/j.foodchem.2004.12.006.
  • Fu, Y. C., P. Y. Huang, and C. J. Chu. 2005. Use of continuous bubble separation process for separating and recovering starch and mucilage from yam (Dioscorea pseudojaponica yamamoto). Lwt - Food Science and Technology 38 (7):735–44. doi: 10.1016/j.lwt.2004.09.008.
  • Fu, Y. C., C. H. Hung, and P. Y. Huang. 2014. Minimal processing of mucilage from the pulp of yam (Dioscorea pseudojaponica Yamamoto) using bubble separation and ultraviolet irradiation. Innovative Food Science & Emerging Technologies 26:214–9. doi: 10.1016/j.ifset.2014.05.012.
  • Gaind, K., K. Chopra, and A. Dua. 1969. Study of mucilages of corn and tuber of Colocasia esculenta Linn. II. Binding properties. Indian Journal of Pharmacy, 156–8.
  • Ganesan, K., and B. Xu. 2019. Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules 24 (14):2556. doi: 10.3390/molecules24142556.
  • Gaosong, J., L. Ramsden, and H. Corke. 1997. Effect of water‐soluble non‐starch polysaccharides from taro on pasting properties of starch. Starch - Stärke 49 (7-8):259–61. doi: 10.1002/star.19970490702.
  • Goh, K. K., R. Kumar, and S. S. Wong. 2014. Functionality of non-starch polysaccharides (NSPs). In Functional foods and dietary supplements, processing effects and health benefits, ed. A. Noomhorn, I. Ahmad, and A. K. Anal. 187–225. Hoboken, New Jersey, USA: Wiley Blackwell, John Wiley & Sons.
  • Groenewoud, W. 2001. Differential scanning calorimetry. In Characterisation of polymers by thermal analysis, ed. W. M. Groenewoud, 10–60. Amsterdam, The Netherlands: Elsevier.
  • Guarda, A., C. Rosell, C. Benedito, and M. Galotto. 2004. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids 18 (2):241–7. doi: 10.1016/S0268-005X(03)00080-8.
  • Guo, H., F. Kong, and C. Yan. 2017. Optimization of polysaccharide ultrasonic extraction conditions using purple sweet potato tubers based on free radical scavenging and glycosylation inhibitory bioactivities. Pharmacognosy Magazine 13 (51):504–11. doi: 10.4103/0973-1296.211044.
  • Han, Y. L., J. Gao, Y. Y. Yin, Z. Y. Jin, X. M. Xu, and H. Q. Chen. 2016. Extraction optimization by response surface methodology of mucilage polysaccharide from the peel of Opuntia dillenii haw fruits and their physicochemical properties. Carbohydrate Polymers 151:381–91. doi: 10.1016/j.carbpol.2016.05.085.
  • Hao, L. X., and X. H. Zhao. 2016. Immunomodulatory potentials of the water-soluble yam (Dioscorea opposita Thunb) polysaccharides for the normal and cyclophosphamide-suppressed mice. Food and Agricultural Immunology 27 (5):667–77. doi: 10.1080/09540105.2016.1148666.
  • Harris, P., L. Ferguson, A. Robertson, R. J. McKenzie, and J. White. 1992. Cell wall histochemistry and anatomy of taro (Colocasia esculenta). Australian Journal of Botany 40 (2):207–22. doi: 10.1071/BT9920207.
  • Hassan, H. M. 2009. Inhibitory activities of some mucilage’s and gums against certain intestinal disaccharidases. Australian Journal of Basic and Applied Sciences 3 (3):2741–6.
  • Hironaka, K., K. Takada, and K. Ishibashi. 1990. Chemical composition of mucilage of Chinese yam. Nippon Shokuhin Kogyo Gakkaishi 37 (1):48–51. doi: 10.3136/nskkk1962.37.48.
  • Hou, W. C., F. L. Hsu, and M. H. Lee. 2002. Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Medica 68 (12):1072–6. doi: 10.1055/s-2002-36356.
  • Hou, Y., A. Shavandi, A. Carne, A. E. D. A. Bekhit, T. B. Ng, R. C. F. Cheung, and A. E. D. Bekhit. 2016. Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Critical Reviews in Environmental Science and Technology 46 (11-12):1047–116. doi: 10.1080/10643389.2016.1202669.
  • Hu, X., and H. D. Goff. 2018. Fractionation of polysaccharides by gradient non-solvent precipitation: A review. Trends in Food Science & Technology 81:108–15. doi: 10.1016/j.tifs.2018.09.011.
  • Huang, C. C., P. Lai, I. H. Chen, Y. F. Liu, and C. C. Wang. 2010. Effects of mucilage on the thermal and pasting properties of yam, taro, and sweet potato starches. LWT - Food Science and Technology 43 (6):849–55. doi: 10.1016/j.lwt.2009.11.009.
  • Huang, D. J., H. J. Chen, W. C. Hou, C. D. Lin, and Y. H. Lin. 2006. Sweet potato (Ipomoea batatas [L.] Lam ‘Tainong 57’) storage root mucilage with antioxidant activities in vitro. Food Chemistry 98 (4):774–81. doi: 10.1016/j.foodchem.2005.07.018.
  • Huang, D. J., W. C. Hou, H. J. Chen, and Y. H. Lin. 2006. Sweet potato (Ipomoea batatas (L.) Lam. ‘Tainong 57’) storage root mucilage exhibited angiotensin converting enzyme inhibitory activity in vitro. Botanical Studies 45:397–402.
  • Huang, R., J. Xie, Y. Yu, and M. Shen. 2020. Recent progress in the research of yam mucilage polysaccharides: Isolation, structure and bioactivities. International Journal of Biological Macromolecules 155:1262–9. doi: 10.1016/j.ijbiomac.2019.11.095.
  • Jeddou, K. B., F. Chaari, S. Maktouf, O. Nouri-Ellouz, C. B. Helbert, and R. E. Ghorbel. 2016. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chemistry 205:97–105. doi: 10.1016/j.foodchem.2016.02.108.
  • Jian, H. L., X. J. Lin, W. A. Zhang, W. M. Zhang, D. F. Sun, and J. X. Jiang. 2014. Characterization of fractional precipitation behavior of galactomannan gums with ethanol and isopropanol. Food Hydrocolloids 40:115–21. doi: 10.1016/j.foodhyd.2014.02.012.
  • Jiang, G., and L. Ramsden. 1999. Characterisation and yield of the arabinogalactan–protein mucilage of taro corms. Journal of the Science of Food and Agriculture 79 (5) :671–4. doi: 10.1002/(SICI)1097-0010(199904)79:5<671::AID-JSFA233>3.0.CO;2-H.
  • Johnson, K. L., B. J. Jones, C. J. Schultz, and A. Bacic. 2003. Non-enzymic cell wall (glyco) proteins. The Plant Cell Wall 8:111–54.
  • Ju, Y., Y. Xue, J. Huang, Q. Zhai, and X. H. Wang. 2014. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells. International Journal of Biological Macromolecules 66:81–5. doi: 10.1016/j.ijbiomac.2014.01.070.
  • Kacurakova, M., P. Capek, V. Sasinkova, N. Wellner, and A. Ebringerova. 2000. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 43 (2):195–203.
  • Kaushal, P., V. Kumar, and H. Sharma. 2015. Utilization of taro (Colocasia esculenta): A review. Journal of Food Science and Technology 52 (1):27–40. doi: 10.1007/s13197-013-0933-y.
  • Ketha, K., and M. Gudipati. 2018. Immunomodulatory activity of non starch polysaccharides isolated from green gram (Vigna radiata). Food Research International 113:269–76. doi: 10.1016/j.foodres.2018.07.010.
  • Khangwal, I., and P. Shukla. 2019. Potential prebiotics and their transmission mechanisms: Recent approaches. Journal of Food and Drug Analysis 27 (3):649–56. doi: 10.1016/j.jfda.2019.02.003.
  • Kho, H. S., M. S. Park, J. Y. Chang, and Y. Y. Kim. 2014. Yam tuber mucilage as a candidate substance for saliva substitute: In vitro study of its viscosity and influences on lysozyme and peroxidase activities. Gerodontology 31 (1):34–41. doi: 10.1111/ger.12000.
  • Kim, H. J., and P. J. White. 2009. In vitro fermentation of oat flours from typical and high β-glucan oat lines. Journal of Agricultural and Food Chemistry 57 (16):7529–36. doi: 10.1021/jf900788c.
  • Kohajdová, Z., and J. Karovičová. 2009. Application of hydrocolloids as baking improvers. Chemical Papers 63 (1):26–38. doi: 10.2478/s11696-008-0085-0.
  • Kreike, C., H. Van Eck, and V. Lebot. 2004. Genetic diversity of taro (Colocasia esculenta L. Schott) in Southeast Asia and the Pacific. Theoretical and Applied Genetics 109 (4):761–8. doi: 10.1007/s00122-004-1691-z.]
  • Kumoro, A. C., R. D. A. Putri, C. S. Budiyati, and D. S. Retnowati. 2014. Kinetics of calcium oxalate reduction in taro (Colocasia esculenta) corm chips during treatments using baking soda solution. Procedia Chemistry 9:102–12. doi: 10.1016/j.proche.2014.05.013.
  • Kusano, S., and H. Abe. 2000. Antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.) in obese Zucker fatty rats. Biological & Pharmaceutical Bulletin 23 (1):23–6. doi: 10.1248/bpb.23.23.
  • Kusano, S., H. Abe, and A. Okada. 1998. Study of antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.): Comparison of normal and streptozotocin induced diabetic rats and hereditary diabetic mice. Journal of the Agricultural Chemical Society of Japan 72 (9):1045–52. doi: 10.1271/nogeikagaku1924.72.1045.
  • Kusano, S., H. Abe, and H. Tamura. 2001. Isolation of anti-diabetic components from white-skinned sweet potato (Ipomoea batatas L.). Bioscience, Biotechnology, and Biochemistry 65 (1):109–14. doi: 10.1271/bbb.65.109.
  • Kwon, E. K., E. M. Choi, and S. J. Koo. 2001. Effects of mucilage from Yam (Dioscorea batatas Decene) on blood glucose and lipid composition in alloxan-induced diabetic mice. Korean Journal of Food Science and Technology 33 (6):795–801.
  • Lebot, V., M. S. Prana, N. Kreike, H. van Heck, J. Pardales, T. Okpul, T. Gendua, M. Thongjiem, H. Hue, N. Viet, et al. 2004. Characterisation of taro (Colocasia esculenta L. Schott) genetic resources in Southeast Asia and Oceania. Genetic Resources and Crop Evolution 51 (4):381–92. doi: 10.1023/B:GRES.0000023453.30948.4d.
  • Lee, B. Y., D. J. Park, K. H. Ku, H. K. Kim, and C. K. Mok. 1994. Mucilage separation of Korean yam using microparticulation/air classification process. Korean Journal of Food Science and Technology 26 (5):596–602.
  • Lee, M. H., Y. S. Lin, Y. H. Lin, F. L. Hsu, and W. C. Hou. 2003. The mucilage of yam (Dioscorea batatas Decne) tuber exhibited angiotensin converting enzyme inhibitory activities. Botanical Bulletin of Academia Sinica 44:267–73.
  • Lefebvre, J., and J. L. Doublier. 2005. Rheological behavior of polysaccharides aqueous systems. In Polysaccharides: Structural diversity and functional versatility, 357–94. New York: Marcel Dekker.
  • Li, G. L. J. J. C., and S. Jing. 2007. Viscosity character in processing of yam. Journal of the Chinese Cereals and Oils Association 3:1–5.
  • Li, H., Z. Dong, X. Liu, H. Chen, F. Lai, and M. Zhang. 2018. Structure characterization of two novel polysaccharides from Colocasia esculenta (taro) and a comparative study of their immunomodulatory activities. Journal of Functional Foods 42:47–57. doi: 10.1016/j.jff.2017.12.067.
  • Li, H., Z. Wu, W. Liu, Z. Li, N. Hu, and D. Huang. 2016. Recovery of yam mucilage from the yam starch processing wastewater by using a novel foam fractionation column. Separation and Purification Technology 171:26–33. doi: 10.1016/j.seppur.2016.07.005.
  • Li, H., M. Yin, and Y. Zhang. 2019. Advances in research on immunoregulation of macrophages by plant polysaccharides. Frontiers in Immunology 10:145. doi: 10.3389/fimmu.2019.00145.
  • Lin, S. Y., H. Y. Liu, Y. L. Lu, and W. C. Hou.  (2005). Antioxidant activities of mucilages from different Taiwanese yam cultivars. Botanical Bulletin of Academia Sinica 46(3): 183–188.
  • Lin, H., and A. S. Huang. 1993. Chemical composition and some physical properties of a water-soluble gum in taro (Colocasia esculenta). Food Chemistry 48 (4):403–9. doi: 10.1016/0308-8146(93)90325-A.
  • Liu, J., X. Y. Wen, X. Q. Zhang, H. M. Pu, J. Kan, and C. H. Jin. 2015. Extraction, characterization and in vitro antioxidant activity of polysaccharides from black soybean. International Journal of Biological Macromolecules 72:1182–90. doi: 10.1016/j.ijbiomac.2014.08.058.
  • Liu, J., S. Willför, and C. Xu. 2015. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre 5 (1):31–61. doi: 10.1016/j.bcdf.2014.12.001.
  • Lunagariya, N. A., N. K. Patel, S. C. Jagtap, and K. K. Bhutani. 2014. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. Experimental and Clinical Journal 13:897.
  • Ma, F., D. Wang, Y. Zhang, M. Li, W. Qing, C. Tikkanen-Kaukanen, X. Liu, and A. E. Bell. 2018. Characterisation of the mucilage polysaccharides from Dioscorea opposita Thunb. with enzymatic hydrolysis. Food Chemistry 245:13–21. doi: 10.1016/j.foodchem.2017.10.080.
  • Ma, F., Y. Zhang, Y. Yao, Y. Wen, W. Hu, J. Zhang, X. Liu, A. E. Bell, and C. Tikkanen-Kaukanen. 2017. Chemical components and emulsification properties of mucilage from Dioscorea opposita Thunb. Food Chemistry 228:315–22. doi: 10.1016/j.foodchem.2017.01.151.
  • Mahmood, K., H. Kamilah, P. L. Shang, S. Sulaiman, F. Ariffin, and A. K. Alias. 2017. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Bioscience 19:110–20. doi: 10.1016/j.fbio.2017.05.006.
  • Manhivi, V. E., S. Venter, E. O. Amonsou, and T. Kudanga. 2018. Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia esculenta) and cactus (Opuntia spp.). Carbohydrate Polymers 195:163–9. doi: 10.1016/j.carbpol.2018.04.062.
  • Manrique, G. D., and F. M. Lajolo. 2002. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology 25 (1):99–107. doi: 10.1016/S0925-5214(01)00160-0.
  • Mawoyo, B. 2017. Influence of growth locations on physicochemical properties of starch and flour from amadumbe (Colocasia esculenta) genotypes (Master’s thesis). Durban University, KwaZulu Natal, South Africa. http://hdl.handle.net/10321/2668.
  • McDougall, G. J., and D. Stewart. 2005. The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 23 (4):189–95. doi: 10.1002/biof.5520230403.
  • Mijinyawa, A. H., G. Durga, and A. Mishra. 2018. Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. International Journal of Biological Macromolecules 119:1090–7. doi: 10.1016/j.ijbiomac.2018.08.045.
  • Misaki, A., T. Ito, and T. Harada. 1972. Constitutional studies on the mucilage of “yamanoimo,” Dioscorea batatas Decne, forma Tsukune: Isolation and structure of a mannan. Agricultural and Biological Chemistry 36 (5):761–71. doi: 10.1271/bbb1961.36.761.
  • Myoda, T., Y. Matsuda, T. Suzuki, T. Nakagawa, T. Nagai, and T. Nagashima. 2006. Identification of soluble proteins and interaction with mannan in mucilage of Dioscorea opposita Thunb. (Chinese yam tuber). Food Science and Technology Research 12 (4):299–302. doi: 10.3136/fstr.12.299.
  • Nagata, C. L. P., L. A. Andrade, and J. Pereira. 2015. Optimization of taro mucilage and fat levels in sliced breads. Journal of Food Science and Technology 52 (9):5890–7. doi: 10.1007/s13197-014-1655-5.
  • Nguimbou, R. M., T. Boudjeko, N. Y. Njintang, M. Himeda, J. Scher, and C. M. Mbofung. 2014. Mucilage chemical profile and antioxidant properties of giant swamp taro tubers. Journal of Food Science and Technology 51 (12):3559–67. doi: 10.1007/s13197-012-0906-6.
  • Njintang, N. Y., T. Boudjeko, L. N. Tatsadjieu, E. Nguema-Ona, J. Scher, and C. M. Mbofung. 2014. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms. Journal of Food Science and Technology 51 (5):900–7. doi: 10.1007/s13197-011-0580-0.
  • Ochiai, T., V. X. Nguyen, M. Tahara, and H. Yoshino. 2001. Geographical differentiation of Asian taro (Colacasia esculenta L. Schott) detected by RAPD and isozyme analyses. Euphytica 122 (2):219–34. doi: 10.1023/A:1012967922502.
  • Ohtani, K., and K. Murakami. 1991. Structure of mannan fractionated from water-soluble mucilage of Nagaimo (Dioscorea batatas Dence). Agricultural and Biological Chemistry 55 (9):2413–4. doi: 10.1271/bbb1961.55.2413.
  • Okoro, O. V., Z. Sun, and J. Birch. 2017. Meat processing waste as a potential feedstock for biochemicals and biofuels: A review of possible conversion technologies. Journal of Cleaner Production 142:1583–608. doi: 10.1016/j.jclepro.2016.11.141.
  • Okoro, O. V., Z. Sun, and J. Birch. 2019. Techno-economic assessment of a scaled-up meat waste biorefinery system: A simulation study. Materials 12 (7):1030–27. doi: 10.3390/ma12071030.
  • Onwueme, I. C., and W. B. Charles. 1994. Tropical root and tuber crops: Production, perspectives and future prospects. Food and Agriculture Plant Production and Protection Paper 126:1–228.
  • Ozaki, S., N. Oki, S. Suzuki, and S. Kitamura. 2010. Structural characterization and hypoglycemic effects of arabinogalactan-protein from the tuberous cortex of the white-skinned sweet potato (Ipomoea batatas L.). Journal of Agricultural and Food Chemistry 58 (22):11593–9. doi: 10.1021/jf101283f.
  • Park, H. R., H. S. Lee, S. Y. Cho, Y. S. Kim, and K. S. Shin. 2013. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through ted through immunostimulation. International Journal of Molecular Medicine 31 (2):361–8. doi: 10.3892/ijmm.2012.1224.
  • Paulsen, B. 2001. Plant polysaccharides with immunostimulatory activities. Current Organic Chemistry 5 (9):939–50. doi: 10.2174/1385272013374987.
  • Phillips, G. O., and P. A. Williams. 2000. Handbook of hydrocolloids. Boca Raton, FL: CRC Press.
  • Pohl, N. L. 2018. Introduction: Carbohydrate chemistry. Washington, D.C., USA: ACS Publications.
  • Postler, T. S., and S. Ghosh. 2017. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism 26 (1):110–30. doi: 10.1016/j.cmet.2017.05.008.
  • Quero-Garcia, J., A. Ivancic, and V. Lebot. 2010. Taro and cocoyam. In Root and tuber crops, ed. J. E. Bradshaw, 149–72. New York, USA: Springer.
  • Rougier, M., and A. Chaboud. 1985. Mucilages secreted by roots and their biological function. Israel Journal of Plant Sciences 34 (2-4):129–46.
  • Santana-Méridas, O., A. González-Coloma, and R. Sánchez-Vioque. 2012. Agricultural residues as a source of bioactive natural products. Phytochemistry Reviews 11 (4):447–66. doi: 10.1007/s11101-012-9266-0.
  • Santhiya, D., S. Subramanian, and K. Natarajan. 2002. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. Journal of Colloid and Interface Science 256 (2):237–48. doi: 10.1006/jcis.2002.8681.
  • Santisopasri, V., K. Kurotjanawong, S. Chotineeranat, K. Piyachomkwan, K. Sriroth, and C. G. Oates. 2001. Impact of water stress on yield and quality of cassava starch. Industrial Crops and Products 13 (2):115–29. doi: 10.1016/S0926-6690(00)00058-3.
  • Sarkar, G., N. R. Saha, I. Roy, A. Bhattacharyya, M. Bose, R. Mishra, D. Rana, D. Bhattacharjee, and D. Chattopadhyay. 2014. Taro corms mucilage/HPMC based transdermal patch: An efficient device for delivery of diltiazem hydrochloride. International Journal of Biological Macromolecules 66:158–65. doi: 10.1016/j.ijbiomac.2014.02.024.
  • Shang, H. F., H. C. Cheng, H. J. Liang, H. Y. Liu, S. Y. Liu, and W. C. Hou. 2007. Immunostimulatory activities of yam tuber mucilages. Botanical Studies 48 (1):63–70.
  • Shao, P., X. Chen, and P. Sun. 2014. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri . Carbohydrate Polymers 105:260–9. doi: 10.1016/j.carbpol.2014.01.073.
  • Sharma, K., A. K. Mishra, and R. S. Misra. 2008. The genetic structure of taro: A comparison of RAPD and isozyme markers. Plant Biotechnology Reports 2 (3):191–8. doi: 10.1007/s11816-008-0061-8.
  • Shavandi, A., Y. Hou, A. Carne, M. McConnell, and A. E. D. A. Bekhit. 2019. Marine waste utilization as a source of functional and health compounds. Advances in Food and Nutrition Research 87:153–87.
  • Shekhar, S., D. Mishra, A. K. Buragohain, S. Chakraborty, and N. Chakraborty. 2015. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.). Food Chemistry 173:957–65. doi: 10.1016/j.foodchem.2014.09.172.
  • Sheng, X., J. Yan, Y. Meng, Y. Kang, Z. Han, G. Tai, Y. Zhou, and H. Cheng. 2017. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology. Food & Function 8 (3):1020–7. doi: 10.1039/c7fo00071e.
  • Shobana, S., Y. Sreerama, and N. Malleshi. 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry 115 (4):1268–73. doi: 10.1016/j.foodchem.2009.01.042.
  • Simmler, C., J. G. Napolitano, J. B. McAlpine, S.-N. Chen, and G. F. Pauli. 2014. Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology 25:51–9. doi: 10.1016/j.copbio.2013.08.004.
  • Soumya, M., Y. Chowdary, V. N. Swapna, N. Prathyusha, R. Geethika, B. Jyostna, and K. S. K. Mohan. 2014. Preparation and optimization of sustained release matrix tablets of metoprolol succinate and taro gum using response surface methodology. Asian Journal of Pharmaceutics 8 (1):51–7. doi: 10.4103/0973-8398.134100.
  • Stephen, A. M., and G. O. Phillips. 2006. Food polysaccharides and their applications. Boca Raton, Florida, USA: CRC Press.
  • Sun, J., B. Zhou, C. Tang, Y. Gou, H. Chen, Y. Wang, C. Jin, J. Liu, F. Niu, J. Kan, et al. 2018. Characterization, antioxidant activity and hepatoprotective effect of purple sweetpotato polysaccharides. International Journal of Biological Macromolecules 115:69–76. doi: 10.1016/j.ijbiomac.2018.04.033.
  • Sun, Y., H. Wang, G. Guo, Y. Pu, and B. Yan. 2014. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydrate Polymers 113:22–31. doi: 10.1016/j.carbpol.2014.06.058.
  • Suzuki, T., J. O. Narciso, W. Zeng, A. van de Meene, M. Yasutomi, S. Takemura, E. R. Lampugnani, M. S. Doblin, A. Bacic, and S. Ishiguro. 2017. KNS4/UPEX1: A type II arabinogalactan β-(1, 3)-galactosyltransferase required for pollen exine development. Plant Physiology 173 (1):183–205. doi: 10.1104/pp.16.01385.
  • Taki, M., T. Yamada, and K. Nakaya. 1972. Studies on the mucilage of tubers of Colocasia antiquorum Schott. var. esculenta Engl.(Part 1). Bulletin of the Faculty of Agriculture, Meiji University 43:105–13.
  • Tang, C., J. Sun, J. Liu, C. Jin, X. Wu, X. Zhang, H. Chen, Y. Gou, J. Kan, C. Qian, et al. 2019. Immune-enhancing effects of polysaccharides from purple sweet potato. International Journal of Biological Macromolecules 123:923–30. doi: 10.1016/j.ijbiomac.2018.11.187.
  • Tang, C., J. Sun, B. Zhou, C. Jin, J. Liu, Y. Gou, H. Chen, J. Kan, C. Qian, and N. Zhang. 2018. Immunomodulatory effects of polysaccharides from purple sweet potato on lipopolysaccharide treated RAW 264.7 macrophages. Journal of Food Biochemistry 42 (3):e12535. doi: 10.1111/jfbc.12535.
  • Tavares, S. A., J. Pereira, M. C. Guerreiro, C. J. Pimenta, L. Pereira, and S. V. Missagia. 2011. Physical and chemical characteristics of the mucilage of lyophilized yam. Ciência e Agrotecnologia 35 (5):973–9. doi: 10.1590/S1413-70542011000500015.
  • Temesgen, M., N. Retta, and E. Tesfaye. 2016. Effect of pre-curding on nutritional and anti-nutritional composition of taro (Colocasia esculenta L.) leaf. International Journal of Food Science and Nutrition 1 (1):5–11.
  • Tsukui, M., T. Nagashima, H. Sato, and T. T. Kozima. 1999. Electrophoretic analysis of glycoprotein from yam (Dioscorea oppsita Thunb.) mucilage. Food Preservation Science 25 (6):283–6. doi: 10.5891/jafps.25.283.
  • Uno, Y., S. Hashidume, O. Kurita, T. Fujiwara, and K. Nomura. 2010. Dioscorea opposita Thunb. α-mannosidase belongs to the glycosyl hydrolase family 38. Acta Physiologiae Plantarum 32 (4):713–8. doi: 10.1007/s11738-009-0452-7.
  • Wadhwa, J., A. Nair, and R. Kumria. 2013. Potential of plant mucilages in pharmaceuticals and therapy. Current Drug Delivery 10 (2):198–207. doi: 10.2174/1567201811310020006.
  • Wang, J. K., and S. Higa. 1983. Taro: A review of Colocasia esculenta and its potentials. Honolulu, HI: University of Hawaii Press.
  • Wang, L., C. Li, Q. Huang, X. Fu, and R. H. Liu. 2019. In vitro digestibility and prebiotic potential of a novel polysaccharide from Rosa roxburghii Tratt fruit. Journal of Functional Foods 52:408–17. doi: 10.1016/j.jff.2018.11.021.
  • Wang, T. S., C. K. Lii, Y. C. Huang, J. Y. Chang, and F. Y. Yang. 2011. Anti-clastogenic effect of aqueous extract from water yam (Dioscorea alata L.). Journal of Medicinal Plants Research 5 (26):6192–202.
  • Wiercigroch, E., E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek. 2017. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 185:317–35. doi: 10.1016/j.saa.2017.05.045.
  • Wu, F., C. Zhou, D. Zhou, S. Ou, and H. Huang. 2017. Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. Journal of Functional Foods 37:574–85. doi: 10.1016/j.jff.2017.08.030.
  • Wu, J., S. Shi, H. Wang, and S. Wang. 2016. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydrate Polymers 144:474–94. doi: 10.1016/j.carbpol.2016.02.040.
  • Wu, M., D. Li, L. J. Wang, Y. G. Zhou, and Z. H. Mao. 2010. Rheological property of extruded and enzyme treated flaxseed mucilage. Carbohydrate Polymers 80 (2):460–6. doi: 10.1016/j.carbpol.2009.12.003.
  • Wu, Q., H. Qu, J. Jia, C. Kuang, Y. Wen, H. Yan, and Z. Gui. 2015. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato. Carbohydrate Polymers 132:31–40. doi: 10.1016/j.carbpol.2015.06.045.
  • Xiao, Z., C. A. Trincado, and M. P. Murtaugh. 2004. β-Glucan enhancement of T cell IFNγ response in swine. Veterinary Immunology and Immunopathology 102 (3):315–20. doi: 10.1016/j.vetimm.2004.09.013.
  • Xie, G., I. A. Schepetkin, and M. T. Quinn. 2007. Immunomodulatory activity of acidic polysaccharides isolated from Tanacetum vulgare L. International Immunopharmacology 7 (13):1639–50. doi: 10.1016/j.intimp.2007.08.013.
  • Xie, J.-H., M.-L. Jin, G. A. Morris, X.-Q. Zha, H.-Q. Chen, Y. Yi, J.-E. Li, Z.-J. Wang, J. Gao, S.-P. Nie, et al. 2016. Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition 56 (sup1):S60–S84. doi: 10.1080/10408398.2015.1069255.
  • Xiong, Q., X. Li, R. Zhou, H. Hao, S. Li, Y. Jing, C. Zhu, Q. Zhang, and Y. Shi. 2014. Extraction, characterization and antioxidant activities of polysaccharides from E. corneum gigeriae galli. Carbohydrate Polymers 108:247–56. doi: 10.1016/j.carbpol.2014.02.068.
  • Xu, D., H. Wang, W. Zheng, Y. Gao, M. Wang, Y. Zhang, and Q. Gao. 2016. Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii. International Journal of Biological Macromolecules 92:30–6. doi: 10.1016/j.ijbiomac.2016.07.016.
  • Yang, L., and L. M. Zhang. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers 76 (3):349–61. doi: 10.1016/j.carbpol.2008.12.015.
  • Yariv, J., M. Rapport, and L. Graf. 1962. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. The Biochemical Journal 85 (2):383–8. doi: 10.1042/bj0850383.
  • Yoshimoto, M., O. Yamakawa, and H. Tanoue. 2005. Potential chemopreventive properties and varietal difference of dietary fiber from sweetpotato (Ipomoea batatas L.) root. Japan Agricultural Research Quarterly 39 (1):37–43. doi: 10.6090/jarq.39.37.
  • Yu, X., C. Zhou, H. Yang, X. Huang, H. Ma, X. Qin, and J. Hu. 2015. Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis. Carbohydrate Polymers 117:650–6. doi: 10.1016/j.carbpol.2014.09.086.
  • Yu, Y., M. Shen, Q. Song, and J. Xie. 2018. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers 183:91–101. doi: 10.1016/j.carbpol.2017.12.009.
  • Yuan, B., X.-Q. Yang, M. Kou, C.-Y. Lu, Y.-Y. Wang, J. Peng, P. Chen, and J.-H. Jiang. 2017. Selenylation of polysaccharide from the sweet potato and evaluation of antioxidant, anti-tumor, and anti-diabetic activities. Journal of Agricultural and Food Chemistry 65 (3):605–17. doi: 10.1021/acs.jafc.6b04788.
  • Zeng, W. W., and L. S. Lai. 2016. Characterization of the mucilage extracted from the edible fronds of bird’s nest fern (Asplenium australasicum) with enzymatic modifications. Food Hydrocolloids 53:84–92. doi: 10.1016/j.foodhyd.2015.03.026.
  • Zha, S., Q. Zhao, J. Chen, L. Wang, G. Zhang, H. Zhang, and B. Zhao. 2014. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii). Carbohydrate Polymers 111:584–7. doi: 10.1016/j.carbpol.2014.05.017.
  • Zhang, W. J. 1994. Biochemical technology of carbohydrate complexes, 193–200. Hangzhou: Zhejiang University Press.
  • Zhang, Z., X. Wang, C. Liu, and J. Li. 2016. The degradation, anti-oxidant and anti-mutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydrate Polymers 150:227–31. doi: 10.1016/j.carbpol.2016.05.034.
  • Zhao, G., J. Kan, Z. Li, and Z. Chen. 2005a. Characterization and immunostimulatory activity of an (1→6)-α-D-glucan from the root of Ipomoea batatas. International Immunopharmacology 5 (9):1436–45. doi: 10.1016/j.intimp.2005.03.012.
  • Zhao, G., J. Kan, Z. Li, and Z. Chen. 2005b. Structural features and immunological activity of a polysaccharide from Dioscorea opposita Thunb roots. Carbohydrate Polymers 61 (2):125–31. doi: 10.1016/j.carbpol.2005.04.020.
  • Zhao, H., Q. Wang, Y. Sun, B. Yang, Z. Wang, G. Chai, Y. Guan, W. Zhu, Z. Shu, X. Lei, et al. 2014. Purification, characterization and immunomodulatory effects of Plantago depressa polysaccharides. Carbohydrate Polymers 112:63–72. doi: 10.1016/j.carbpol.2014.05.069.
  • Zhu, F. 2016. Structure, properties, and applications of aroid starch. Food Hydrocolloids 52:378–92. doi: 10.1016/j.foodhyd.2015.06.023.
  • Zong, A., H. Cao, and F. Wang. 2012. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydrate Polymers 90 (4):1395–410. doi: 10.1016/j.carbpol.2012.07.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.