1,783
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Extrusion cooking of protein-based products: potentials and challenges

, , , &

References

  • Abu-Ghoush, M., S. Alavi, K. Adhikari, M. Al-Holy, and M. Al-Dabbas. 2015. Sensory and nutritional properties of a novel cooked extruded lentils analog. Journal of Food Processing and Preservation 39 (6):1965–75. doi: 10.1111/jfpp.12436.
  • Abu-Ghoush, M., S. Alavi, and A. Al-Shathri. 2015. A novel cooked extruded lentils analog: Physical and chemical properties. Journal of Food Science and Technology 52 (7):4216–25. doi: 10.1007/s13197-014-1479-3.
  • Aguilera, J. M., F. Rossi, E. Hiche, and C. O. Chichester. 1980. Development and evaluation of an extrusion-texturized peanut protein. Journal of Food Science 45 (2):246–50. doi: 10.1111/j.1365-2621.1980.tb02587.x.
  • Ai, Y., K. A. Cichy, J. B. Harte, J. D. Kelly, and P. K. W. Ng. 2016. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders. Food Chemistry 211:538–45. doi: 10.1016/j.foodchem.2016.05.095.
  • Alam, M. S., J. Kaur, H. Khaira, and K. Gupta. 2016. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Critical Reviews in Food Science and Nutrition 56 (3):445–73. doi: 10.1080/10408398.2013.779568.
  • Alam, M. R., M. Scampicchio, S. Angeli, and G. Ferrentino. 2019. Effect of hot melt extrusion on physical and functional properties of insect based extruded products. Journal of Food Engineering 259:44–51. doi: 10.1016/j.jfoodeng.2019.04.021.
  • Gravel, A., and A. Doyen. 2020. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies 59:102272. doi: 10.1016/j.ifset.2019.102272.
  • Alig, I., B. Steinhoff, and D. Lellinger. 2010. Monitoring of polymer melt processing. Measurement Science and Technology 21 (6):062001. doi: 10.1088/0957-0233/21/6/062001.
  • Alonso, R., E. Orue, and F. Marzo. 1998. Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seeds. Food Chemistry 63 (4):505–12. doi: 10.1016/S0308-8146(98)00037-5.
  • Alonso, R., E. Orúe, M. J. Zabalza, G. Grant, and F. Marzo. 2000. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture 80 (3):397–403. doi: 10.1002/1097-0010(200002)80:3<397::AID-JSFA542>3.0.CO;2-3.
  • Amaya‐Llano, S. L., N. M. Hernández, E. C. Tostado, and F. Martínez‐Bustos. 2007. Functional characteristics of extruded blends of whey protein concentrate and corn starch. Cereal Chemistry Journal 84 (2):195–201. doi: 10.1094/CCHEM-84-2-0195.
  • Awolu, O. O., P. M. Oluwaferanmi, O. I. Fafowora, and G. F. Oseyemi. 2015. Optimization of the extrusion process for the production of ready-to-eat snack from rice, cassava and kersting’s groundnut composite flours. LWT - Food Science and Technology 64 (1):18–24. doi: 10.1016/j.lwt.2015.05.025.
  • Azzollini, D., A. Derossi, V. Fogliano, C. M. Lakemond, and C. Severini. 2018. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. Innovative Food Science & Emerging Technologies 45:344–53.
  • Banach, J. C., S. Clark, and B. P. Lamsal. 2018. Extrusion modifies some physicochemical properties of milk protein concentrate for improved performance in high‐protein nutrition bars. Journal of the Science of Food and Agriculture 98 (1):391–9. doi: 10.1002/jsfa.8632.
  • Baskaran, V., and S. Bhattacharaya. 2004. Nutritional status of the protein of corn-soy based extruded products evaluated by rat bioassay. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 59 (3):101–4. doi: 10.1007/s11130-004-4309-3.
  • Bastos, D. H., C. H. Domenech, and J. A. Arěas. 2007. Optimization of extrusion cooking of lung proteins by response surface methodology. International Journal of Food Science & Technology 26 (4):403–8. doi: 10.1111/j.1365-2621.1991.tb01983.x.
  • Beck, S. M., K. Knoerzer, and J. Arcot. 2017. Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier transform infrared spectroscopy (FTIR). Journal of Food Engineering 214:166–74. doi: 10.1016/j.jfoodeng.2017.06.037.
  • Beck, S. M., K. Knoerzer, M. Foerster, S. Mayo, C. Philipp, and J. Arcot. 2018. Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. Journal of Food Engineering 231:61–71. doi: 10.1016/j.jfoodeng.2018.03.004.
  • Bhattacharya, S., and M. Prakash. 1994. Extrusion of blends of rice and chick pea flours: A response surface analysis. Journal of Food Engineering 21 (3):315–30. doi: 10.1016/0260-8774(94)90076-0.
  • Bhise, S., A. K. Manikantan, and B. Singh. 2013. Optimization of extrusion process for production of texturized flaxseed defatted meal by response surface methodology. International Journal of Research in Engineering and Technology 2 (10):302–10.
  • Björck, I., N.-G. Asp, and A. Dahlqvist. 1984. Protein nutritional value of extrusion-cooked wheat flours. Food Chemistry 15 (3):203–14. doi: 10.1016/0308-8146(84)90004-9.
  • Boonyasirikool, P., and C. Charunuch. 2000. Development of nutritious soy fortified snack by extrusion cooking. Kasetsart J (Natural Science) 34:355–65.
  • Brennan, M. A., E. Derbyshire, B. K. Tiwari, and C. S. Brennan. 2013. Ready-to-eat snack products: The role of extrusion technology in developing consumer acceptable and nutritious snacks. International Journal of Food Science & Technology 48 (5):893–902. doi: 10.1111/ijfs.12055.
  • Brishti, F., M. Zarei, S. Muhammad, R. S. Ismail-Fitry, and N. Saari. 2017. Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. International Food Research Journal 24:1595–605.
  • Bueno, A. S., C. M. Pereira, B. Menegassi, J. A. G. Arêas, and I. A. Castro. 2009. Effect of extrusion on the emulsifying properties of soybean proteins and pectin mixtures modelled by response surface methodology. Journal of Food Engineering 90 (4):504–10. doi: 10.1016/j.jfoodeng.2008.07.028.
  • Camacho-Hernández, I. L., J. J. Zazueta-Morales, J. A. Gallegos-Infante, E. Aguilar-Palazuelos, N. E. Rocha-Guzmán, R. O. Navarro-Cortez, N. Jacobo-Valenzuela, and C. A. Gómez-Aldapa. 2014. Effect of extrusion conditions on physicochemical characteristics and anthocyanin content of blue corn third-generation snacks. CyTA - Journal of Food 12 (4):320–30. doi: 10.1080/19476337.2013.861517.
  • Caporgno, M. P., L. Böcker, C. Müssner, E. Stirnemann, I. Haberkorn, H. Adelmann, S. Handschin, E. J. Windhab, and A. Mathys. 2020. Extruded meat analogues based on yellow, heterotrophically cultivated auxenochlorella protothecoides microalgae. Innovative Food Science & Emerging Technologies 59:102275.
  • Chakraborty, P., S. Sahoo, D. K. Bhattacharyya, and M. Ghosh. 2020. Marine lizardfish (harpadon nehereus) meal concentrate in preparation of ready-to-eat protein and calcium rich extruded snacks. Journal of Food Science and Technology 57 (1):338–49. doi: 10.1007/s13197-019-04066-0.
  • Chen, F. L., Y. M. Wei, and B. Zhang. 2011. Chemical cross-linking and molecular aggregation of soybean protein during extrusion cooking at low and high moisture content. LWT - Food Science and Technology 44 (4):957–62. doi: 10.1016/j.lwt.2010.12.008.
  • Chen, F. L., Y. M. Wei, B. Zhang, and A. O. Ojokoh. 2010. System parameters and product properties response of soybean protein extruded at wide moisture range. Journal of Food Engineering 96 (2):208–13. doi: 10.1016/j.jfoodeng.2009.07.014.
  • Chen, L., J. Chen, J. Ren, and M. Zhao. 2011. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloids 25 (5):887–97. doi: 10.1016/j.foodhyd.2010.08.013.
  • Chen, Y., Y. Liang, F. Jia, D. Chen, X. Zhang, Q. Wang, and J. Wang. 2020. Effect of extrusion temperature on the protein aggregation of wheat gluten with the addition of peanut oil during extrusion. International Journal of Biological Macromolecules. doi: 10.1016/j.ijbiomac.2020.11.017.
  • Chiang, A. 2007. Protein-protein interaction of soy protein isolate from extrusion processing. MS thesis, University of Missouri-Columbia.
  • Chiang, J. H., A. K. Hardacre, and M. E. Parker. 2020. Extruded meat alternatives made from maillard-reacted beef bone hydrolysate and plant proteins. Part II: Application in sausages. International Journal of Food Science & Technology 55 (3):1207–17. doi: 10.1111/ijfs.14362.
  • Chiang, J. H., S. M. Loveday, A. K. Hardacre, and M. E. Parker. 2019. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Structure 19:100102. doi: 10.1016/j.foostr.2018.11.002.
  • Ciudad-Mulero, M., L. Barros, Â. Fernandes, J. D. J. Berrios, M. Cámara, P. Morales, V. Fernández-Ruiz, and I. C. F. R. Ferreira. 2018. Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food & Function 9 (2):819–29. doi: 10.1039/C7FO01730H.
  • Ciudad-Mulero, M., V. Fernández-Ruiz, C. Cuadrado, C. Arribas, M. M. Pedrosa, J. D. J. Berrios, J. Pan, and P. Morales. 2020. Novel gluten-free formulations from lentil flours and nutritional yeast: Evaluation of extrusion effect on phytochemicals and non-nutritional factors. Food Chemistry 315:126175. doi: 10.1016/j.foodchem.2020.126175.
  • Day, L., and B. G. Swanson. 2013. Functionality of protein‐fortified extrudates. Comprehensive Reviews in Food Science and Food Safety 12 (5):546–64. doi: 10.1111/1541-4337.12023.
  • Emin, M. A. 2015. Modeling extrusion processes. In Modeling food processing operations, eds. S. Bakalis, P. J. Fryer, and K. Knoerzer, 235–53. Sawston, UK: Woodhead Publishing.
  • Emin, M. A., and H. P. Schuchmann. 2017. A mechanistic approach to analyze extrusion processing of biopolymers by numerical, rheological, and optical methods. Trends in Food Science & Technology 60:88–95. doi: 10.1016/j.tifs.2016.10.003.
  • Emin, M. A., M. Quevedo, M. Wilhelm, and H. P. Karbstein. 2017. Analysis of the reaction behavior of highly concentrated plant proteins in extrusion-like conditions. Innovative Food Science & Emerging Technologies 44:15–20. doi: 10.1016/j.ifset.2017.09.013.
  • Fang, Y., B. Zhang, and Y. Wei. 2014. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. Journal of Food Engineering 121:32–8. doi: 10.1016/j.jfoodeng.2013.08.002.
  • Fang, Y., B. Zhang, Y. Wei, and S. Li. 2013. Effects of specific mechanical energy on soy protein aggregation during extrusion process studied by size exclusion chromatography coupled with multi-angle laser light scattering. Journal of Food Engineering 115 (2):220–5. doi: 10.1016/j.jfoodeng.2012.10.017.
  • Farid, M. M. 2010. Mathematical modeling of food processing. Boca Raton, FL: CRC Press.
  • Filli, K. B., I. Nkama, and V. A. Jideani. 2013. The effect of extrusion conditions on the physical and functional properties of millet‐bambara groundnut based fura. American Journal of Food Science and Technology 1 (4):87–101.
  • García-Segovia, P., M. Igual, A. T. Noguerol, and J. Martinez-Monzo. 2020. Use of insects and pea powder as alternative protein and mineral sources in extruded snacks. European Food Research and Technology 246 (4):703–10. doi: 10.1007/s00217-020-03441-y.
  • Ghumman, A., A. Kaur, N. Singh, and B. Singh. 2016. Effect of feed moisture and extrusion temperature on protein digestibility and extrusion behaviour of lentil and horsegram. LWT - Food Science and Technology 70:349–57. doi: 10.1016/j.lwt.2016.02.032.
  • Goes, E. S. d R., M. L. R. de Souza, D. A. V. Campelo, G. M. Yoshida, T. O. Xavier, L. B. de Moura, and A. R. G. Monteiro. 2015. Extruded snacks with the addition of different fish meals. Food Science and Technology 35 (4):683–9. doi: 10.1590/1678-457X.6818.
  • Grahl, S., M. Palanisamy, M. Strack, L. Meier-Dinkel, S. Toepfl, and D. Mörlein. 2018. Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. Journal of Cleaner Production 198:962–71. doi: 10.1016/j.jclepro.2018.07.041.
  • Guldiken, B., A. Yovchev, M. G. Nosworthy, A. K. Stone, J. D. House, S. Hood-Niefer, and M. T. Nickerson. 2020. Effect of extrusion conditions on the physical properties of desi chickpea-barley extrudates and quality attributes of their resulting flours. Journal of Texture Studies 51 (2):300–7. doi: 10.1111/jtxs.12470.
  • Guzmán-Ortiz, F. A., H. Hernández-Sánchez, H. Yee-Madeira, E. San Martín-Martínez, M. D. C. Robles-Ramírez, M. Rojas-López, J. D. J. Berríos, and R. Mora-Escobedo. 2015. Physico-chemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate. Journal of Food Science and Technology 52 (7):4066–77. doi: 10.1007/s13197-014-1485-5.
  • Gwiazda, S., A. Noguchi, and K. Saio. 1987. Microstructural studies of texturized vegetable protein products: Effects of oil addition and transformation of raw materials in various sections of a twin screw extruder. Food Structure 6 (1):8.
  • Hagenimana, A., X. Ding, and T. Fang. 2006. Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science 43 (1):38–46. doi: 10.1016/j.jcs.2005.09.003.
  • Hager, D. F. 1984. Effects of extrusion upon soy concentrate solubility. Journal of Agricultural and Food Chemistry 32 (2):293–6. doi: 10.1021/jf00122a029.
  • Harper, J. M. 1981. Extrusion of foods, 3–6. Boca Raton, FL: CRC Press.
  • Harper, J. M. 1989. Food extruders and their applications. In Extrusion cooking. Boca Raton, FL: CRC Press.
  • Hood-Niefer, S. D., and R. T. Tyler. 2010. Effect of protein, moisture content and barrel temperature on the physicochemical characteristics of pea flour extrudates. Food Research International 43 (2):659–63. doi: 10.1016/j.foodres.2009.09.033.
  • Igual, M., P. García-Segovia, and J. Martínez-Monzó. 2020. Effect of acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. Journal of Food Engineering 282:110032. doi: 10.1016/j.jfoodeng.2020.110032.
  • Isobe, S., and A. Noguchi. 1987. High moisture extrusion with twin screw extruder. Nippon Shokuhin Kogyo Gakkaishi 34 (7):456–61. doi: 10.3136/nskkk1962.34.7_456.
  • Isobe, S., and A. Noguchi. 1989. Fate of soy protein during the repetition of extrusion cooking. Proceedings: Trends in Food Processing. I: Membrane Filtration Technology and Thermal Processing and Quality of Foods. Singapore Institute of Food Science and Technology.
  • Jaya Shankar, T., and S. Bandyopadhyay. 2005. Process variables during single‐screw extrusion of fish and rice‐flour blends. Journal of Food Processing and Preservation 29 (2):151–64. doi: 10.1111/j.1745-4549.2005.00020.x.
  • Jeunink, J., and J. C. Cheftel. 1979. Chemical and physicochemical changes in field bean and soybean proteins texturized by extrusion. Journal of Food Science 44 (5):1322–5. doi: 10.1111/j.1365-2621.1979.tb06430.x.
  • Jeyakumari, A., M. S. Rahul Das, J. Bindu, C. G. Joshy, and A. A. Zynudheen. 2016. Optimisation and comparative study on the addition of shrimp protein hydrolysate and shrimp powder on physicochemical properties of extruded snack. International Journal of Food Science & Technology 51 (7):1578–85. doi: 10.1111/ijfs.13127.
  • Jiang, J., Y. L. Xiong, and J. Chen. 2010. Ph shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different ph, salt concentration, and temperature conditions. Journal of Agricultural and Food Chemistry 58 (13):8035–42. doi: 10.1021/jf101045b.
  • Justen, A. P., M. L. R. d Souza, A. R. G. Monteiro, J. M. G. Mikcha, E. Gasparino, Á. B. Delbem, M. R. B. d Carvalho, and A. P. D. Vesco. 2017. Preparation of extruded snacks with flavored flour obtained from the carcasses of nile tilapia: Physicochemical, sensory, and microbiological analysis. Journal of Aquatic Food Product Technology 26 (3):258–66. doi: 10.1080/10498850.2015.1136718.
  • Koch, L., M. A. Emin, and H. P. Schuchmann. 2017. Influence of processing conditions on the formation of whey protein-citrus pectin conjugates in extrusion. Journal of Food Engineering 193:1–9. doi: 10.1016/j.jfoodeng.2016.08.012.
  • Kumar, A., D. V. Samuel, S. K. Jha, and J. P. Sinha. 2015. Twin screw extrusion of sorghum and soya blends: A response surface analysis. Journal of Agricultural Science and Technology 17 (3):649–62.
  • La Rosa-Millán, J. d., E. Heredia-Olea, E. Perez-Carrillo, D. Guajardo-Flores, and S. R. O. Serna-Saldívar. 2019. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (phaseolus vulgaris l.). LWT - Food Science and Technology 102:330–7. doi: 10.1016/j.lwt.2018.12.039.
  • Leonard, W., P. Zhang, D. Ying, and Z. Fang. 2020. Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety 19 (1):218–46. doi: 10.1111/1541-4337.12514.
  • Li, M., and T.-C. Lee. 1996. Effect of extrusion temperature on solubility and molecular weight distribution of wheat flour proteins. Journal of Agricultural and Food Chemistry 44 (3):763–8. doi: 10.1021/jf950582h.
  • Li, W., Y. Wang, H. Zhao, Z. He, M. Zeng, F. Qin, and J. Chen. 2016. Improvement of emulsifying properties of soy protein through selective hydrolysis: Interfacial shear rheology of adsorption layer. Food Hydrocolloids 60:453–60. doi: 10.1016/j.foodhyd.2016.04.019.
  • Lin, S., H. E. Huff, and F. Hsieh. 2000. Texture and chemical characteristics of soy protein meat analog extruded at high moisture. Journal of Food Science 65 (2):264–9. doi: 10.1111/j.1365-2621.2000.tb15991.x.
  • Lin, S., H. E. Huff, and F. Hsieh. 2002. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science 67 (3):1066–72. doi: 10.1111/j.1365-2621.2002.tb09454.x.
  • Liu, K. S., and F.-H. Hsieh. 2007. Protein‐protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels. Journal of the American Oil Chemists' Society 84 (8):741–8. doi: 10.1007/s11746-007-1095-8.
  • Liu, K. S., and F.-H. Hsieh. 2008. Protein-protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems . Journal of Agricultural and Food Chemistry 56 (8):2681–7. doi: 10.1021/jf073343q.
  • MacDonald, R. S., J. Pryzbyszewski, and F.-H. Hsieh. 2009. Soy protein isolate extruded with high moisture retains high nutritional quality. Journal of Agricultural and Food Chemistry 57 (9):3550–5. doi: 10.1021/jf803435x.
  • Marsman, G. J., H. Gruppen, A. J. Mul, and A. G. Voragen. 1997. In vitro accessibility of untreated, toasted, and extruded soybean meals for proteases and carbohydrases. Journal of Agricultural and Food Chemistry 45 (10):4088–95. doi: 10.1021/jf960882e.
  • Martínez-Villaluenga, C., P. Gulewicz, J. Frias, K. Gulewicz, and C. Vidal-Valverde. 2008. Assessment of protein fractions of three cultivars of pisum sativum l. Effect of germination. European Food Research and Technology 226 (6):1465–78. doi: 10.1007/s00217-007-0678-9.
  • Marzec, A., and P. P. Lewicki. 2006. Antiplasticization of cereal-based products by water. Part I. Extruded flat bread. Journal of Food Engineering 73 (1):1–8. doi: 10.1016/j.jfoodeng.2004.12.002.
  • Maung, T. T., B. Y. Gu, M. H. Kim, and G. H. Ryu. 2020. Fermentation of texturized vegetable proteins extruded at different moisture contents: Effect on physicochemical, structural, and microbial properties. Food Science and Biotechnology 29 (7):897–907. doi: 10.1007/s10068-020-00737-3.
  • Méx, B. S. Q. 2008. Emulsifying properties of proteins. Boletín de la Sociedad 2 (2):80.
  • Mezreb, K., A. Goullieux, R. Ralainirina, and M. Queneudec. 2003. Application of image analysis to measure screw speed influence on physical properties of corn and wheat extrudates. Journal of Food Engineering 57 (2):145–52. doi: 10.1016/S0260-8774(02)00292-3.
  • Mitrus, M.,. A. Wójtowicz, S. Kocira, A. Kasprzycka, A. Szparaga, T. Oniszczuk, M. Combrzyński, K. Kupryaniuk, and A. Matwijczuk. 2020. Effect of extrusion-cooking conditions on the pasting properties of extruded white and red bean seeds. International Agrophysics 1 (34):25–32. doi: 10.31545/intagr/116388.
  • Morales, P., J. D. J. Berrios, A. Varela, C. Burbano, C. Cuadrado, M. Muzquiz, and M. M. Pedrosa. 2015. Novel fiber-rich lentil flours as snack-type functional foods: An extrusion cooking effect on bioactive compounds. Food & Function 6 (9):3135–43. doi: 10.1039/C5FO00729A.
  • Morales, P., L. Cebadera-Miranda, R. M. Cámara, F. S. Reis, L. Barros, J. D. J. Berrios, I. C. Ferreira, and M. Cámara. 2015. Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. Journal of Functional Foods 19:537–44. doi: 10.1016/j.jff.2015.09.044.
  • Moro, A., G. D. Báez, G. A. Ballerini, P. A. Busti, and N. J. Delorenzi. 2013. Emulsifying and foaming properties of β-lactoglobulin modified by heat treatment. Food Research International 51 (1):1–7. doi: 10.1016/j.foodres.2012.11.011.
  • Mozafarpour, R., A. Koocheki, E. Milani, and M. Varidi. 2019. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids 93:361–73. doi: 10.1016/j.foodhyd.2019.02.036.
  • Mustakas, G. C., E. L. Griffin, L. Allen, and O. B. Smith. 1964. Production and nutritional evaluation of extrusion‐cooked full‐fat soybean flour. Journal of the American Oil Chemists' Society 41 (9):607–14. doi: 10.1007/BF02664977.
  • Natabirwa, H., J. H. Muyonga, D. Nakimbugwe, and M. Lungaho. 2018. Physico-chemical properties and extrusion behaviour of selected common bean varieties. Journal of the Science of Food and Agriculture 98 (4):1492–501. doi: 10.1002/jsfa.8618.
  • Niranjan, K. 1993. Food extrusion science and technology, eds. Jozef L. Kokini, Chi-Tang Ho and Mukund V. Karwe, Marcel Dekker, 1992. $175.00 (xiv+ 740 pages). ISBN: 0 8247 8542 8. Elsevier.
  • Niu, F., M. Li, J. Fan, M. Kou, B. Han, and W. Pan. 2020. Structural characteristics and digestibility of bovine skin protein and corn starch extruded blend complexes. Journal of Food Science and Technology 57 (3):1041–8. doi: 10.1007/s13197-019-04137-2.
  • Nosworthy, M. G., G. Medina, A. J. Franczyk, J. Neufeld, P. Appah, A. Utioh, P. Frohlich, and J. D. House. 2018. Effect of processing on the in vitro and in vivo protein quality of red and green lentils (lens culinaris). Food Chemistry 240:588–93. doi: 10.1016/j.foodchem.2017.07.129.
  • Nura, M., M. Kharidah, B. Jamilah, and K. Roselina. 2011. Textural properties of laksa noodle as affected by rice flour particle size. International Food Research Journal 18 (4):1309.
  • Nyombaire, G., M. Siddiq, and K. D. Dolan. 2011. Physico-chemical and sensory quality of extruded light red kidney bean (Phaseolus vulgaris L.) porridge. LWT - Food Science and Technology 44 (7):1597–602. doi: 10.1016/j.lwt.2011.02.016.
  • Offiah, V., V. Kontogiorgos, and K. O. Falade. 2019. Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition 59 (18):2979–98. doi: 10.1080/10408398.2018.1480007.
  • Oikonomou, N. A., and M. K. Krokida. 2012. Water absorption index and water solubility index prediction for extruded food products. International Journal of Food Properties 15 (1):157–68. doi: 10.1080/10942911003754718.
  • Onwulata, C. I., R. P. Konstance, P. H. Cooke, and H. M. Farrell. Jr. 2003. Functionality of extrusion—texturized whey proteins. Journal of Dairy Science 86 (11):3775–82. doi: 10.3168/jds.S0022-0302(03)73984-8.
  • Osen, R., S. Toelstede, P. Eisner, and U. Schweiggert-Weisz. 2015. Effect of high moisture extrusion cooking on protein‐protein interactions of pea (Pisum sativum L.) protein isolates. International Journal of Food Science & Technology 50 (6):1390–6. doi: 10.1111/ijfs.12783.
  • Osen, R., S. Toelstede, F. Wild, P. Eisner, and U. Schweiggert-Weisz. 2014. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering 127:67–74. doi: 10.1016/j.jfoodeng.2013.11.023.
  • Palanisamy, M., K. Franke, R. G. Berger, V. Heinz, and S. Töpfl. 2019. High moisture extrusion of lupin protein: Influence of extrusion parameters on extruder responses and product properties. Journal of the Science of Food and Agriculture 99 (5):2175–85. doi: 10.1002/jsfa.9410.
  • Patil, S. S., and C. Kaur. 2018. Current trends in extrusion: Development of functional foods and novel ingredients. Food Science and Technology Research 24 (1):23–34. doi: 10.3136/fstr.24.23.
  • Pelembe, L. A., C. Erasmus, and J. R. Taylor. 2002. Development of a protein-rich composite sorghum–cowpea instant porridge by extrusion cooking process. LWT - Food Science and Technology 35 (2):120–7. doi: 10.1006/fstl.2001.0812.
  • Peng, W., X. Kong, Y. Chen, C. Zhang, Y. Yang, and Y. Hua. 2016. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids 52:301–10. doi: 10.1016/j.foodhyd.2015.06.025.
  • Petruccelli, S., and M. C. Añón. 1996. Ph-induced modifications in the thermal stability of soybean protein isolates. Journal of Agricultural and Food Chemistry 44 (10):3005–9. doi: 10.1021/jf9600061.
  • Philipp, C., R. Buckow, P. Silcock, and I. Oey. 2017. Instrumental and sensory properties of pea protein-fortified extruded rice snacks. Food Research International (Ottawa, Ont.) 102:658–65. doi: 10.1016/j.foodres.2017.09.048.
  • Philipp, C., M. A. Emin, R. Buckow, P. Silcock, and I. Oey. 2018. Pea protein-fortified extruded snacks: Linking melt viscosity and glass transition temperature with expansion behaviour. Journal of Food Engineering 217:93–100. doi: 10.1016/j.jfoodeng.2017.08.022.
  • Philipp, C., I. Oey, P. Silcock, S. M. Beck, and R. Buckow. 2017. Impact of protein content on physical and microstructural properties of extruded rice starch-pea protein snacks. Journal of Food Engineering 212:165–73. doi: 10.1016/j.jfoodeng.2017.05.024.
  • Pietsch, V. L., M. A. Emin, and H. P. Schuchmann. 2017. Process conditions influencing wheat gluten polymerization during high moisture extrusion of meat analog products. Journal of Food Engineering 198:28–35. doi: 10.1016/j.jfoodeng.2016.10.027.
  • Prudêncio-Ferreira, S. H., and J. G. Arêas. 1993. Protein‐protein interactions in the extrusion of soya at various temperatures and moisture contents. Journal of Food Science 58 (2):378–81. doi: 10.1111/j.1365-2621.1993.tb04279.x.
  • Rathod, R. P., and U. S. Annapure. 2016. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT - Food Science and Technology 66:114–23. doi: 10.1016/j.lwt.2015.10.028.
  • Rehrah, D., M. Ahmedna, I. Goktepe, and J. Yu. 2009. Extrusion parameters and consumer acceptability of a peanut-based meat analogue. International Journal of Food Science & Technology 44 (10):2075–84. doi: 10.1111/j.1365-2621.2009.02035.x.
  • Samard, S., B.-Y. Gu, and G.-H. Ryu. 2019. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. Journal of the Science of Food and Agriculture 99 (11):4922–31. doi: 10.1002/jsfa.9722.
  • Samard, S., and G.-H. Ryu. 2019. A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats. Journal of the Science of Food and Agriculture 99 (6):2708–15. doi: 10.1002/jsfa.9438.
  • Schösler, H., J. de Boer, and J. J. Boersema. 2012. Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution. Appetite 58 (1):39–47. doi: 10.1016/j.appet.2011.09.009.
  • Shah, A. A. 2003. The effect of extrusion conditions on aggregation of peanut proteins. University of Georgia.
  • Shukla, T. P. 1996. Cereal grains and legume processing by extrusion. Cereal Foods World 41 (1):35–6.
  • Siddiq, M., S. Kelkar, J. B. Harte, K. D. Dolan, and G. Nyombaire. 2013. Functional properties of flour from low-temperature extruded navy and pinto beans (Phaseolus vulgaris L.). LWT - Food Science and Technology 50 (1):215–9. doi: 10.1016/j.lwt.2012.05.024.
  • Smetana, S., N. A. Larki, C. Pernutz, K. Franke, U. Bindrich, S. Toepfl, and V. Heinz. 2018. Structure design of insect-based meat analogs with high-moisture extrusion. Journal of Food Engineering 229:83–5. doi: 10.1016/j.jfoodeng.2017.06.035.
  • Ṡmietana, Z., L. Fornal, and J. Szpendowski. 1986. The effect of extrusion on the physico‐chemical properties of cereal proteins and their mixture with milk proteins. Food / Nahrung 30 (3–4):444. doi: 10.1002/food.19860300377.
  • Sreerama, Y. N., V. B. Sasikala, and V. M. Pratape. 2008. Nutritional implications and flour functionality of popped/expanded horse gram. Food Chemistry 108 (3):891–99. doi: 10.1016/j.foodchem.2007.11.055.
  • Surówka, K., D. Żmudziński, M. Fik, R. Macura, and W. Łasocha. 2004. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates. Innovative Food Science & Emerging Technologies 5 (2):225–34. doi: 10.1016/j.ifset.2004.01.005.
  • Thiébaud, M., E. Dumay, and J. C. Cheftel. 1996. Influence of process variables on the characteristics of a high moisture fish soy protein mix texturized by extrusion cooking. LWT - Food Science and Technology 29 (5-6):526–35. doi: 10.1006/fstl.1996.0080.
  • Tilman, D., and M. Clark. 2014. Global diets link environmental sustainability and human health. Nature 515 (7528):518–22. doi: 10.1038/nature13959.
  • Tiwari, B. K., and N. Singh. 2012. Pulse chemistry and technology. London, UK: Royal Society of Chemistry.
  • Tolstoguzov, V. B. 1993. Thermoplastic extrusion—The mechanism of the formation of extrudate structure and properties. Journal of the American Oil Chemists' Society 70 (4):417–24. doi: 10.1007/BF02552717.
  • Valim, M. F., and J. P. Batistuti. 2000. Effect of thermoplastic extrusion on lysine availability of chickpea (Cicer arietinum L.) flour. Archivos Latinoamericanos de Nutricion 50 (3):270–73.
  • Vaz, L., and J. A. G. Arêas. 2010. Recovery and upgrading bovine rumen protein by extrusion: Effect of lipid content on protein disulphide cross-linking, solubility and molecular weight. Meat Science 84 (1):39–45. doi: 10.1016/j.meatsci.2009.08.010.
  • Verbeek, C. J., and L. E. van den Berg. 2010. Extrusion processing and properties of protein‐based thermoplastics. Macromolecular Materials and Engineering 295 (1):10–21. doi: 10.1002/mame.200900167.
  • Wagner, J. R., and M. C. Añon. 1990. Influence of denaturation, hydrophobicity and sulfhydryl content on solubility and water absorbing capacity of soy protein isolates. Journal of Food Science 55 (3):765–70. doi: 10.1111/j.1365-2621.1990.tb05225.x.
  • Wang, N., P. R. Bhirud, and R. T. Tyler. 1999. Extrusion texturization of air-classified pea protein. Journal of Food Science 64 (3):509–13. doi: 10.1111/j.1365-2621.1999.tb15073.x.
  • Wang, X.-S., C.-H. Tang, B.-S. Li, X.-Q. Yang, L. Li, and C.-Y. Ma. 2008. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloids 22 (4):560–67. doi: 10.1016/j.foodhyd.2007.01.027.
  • Wild, F., M. Czerny, A. M. Janssen, A. P. W. Kole, M. Zunabovic, and K. J. Domig. 2014. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives. Agro Food Industry Hi-Tech 25 (1):45–49.
  • Wu, M., Y. Sun, C. Bi, F. Ji, B. Li, and J. Xing. 2018. Effects of extrusion conditions on the physicochemical properties of soy protein/gluten composite. International Journal of Agricultural and Biological Engineering 11 (4):205–37. doi: 10.25165/j.ijabe.20181104.4162.
  • Yu, L., H. S. Ramaswamy, and J. Boye. 2013. Protein rich extruded products prepared from soy protein isolate-corn flour blends. LWT - Food Science and Technology 50 (1):279–89. doi: 10.1016/j.lwt.2012.05.012.
  • Zahari, I., F. Ferawati, A. Helstad, C. Ahlström, K. Östbring, M. Rayner, and J. K. Purhagen. 2020. Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods 9 (6):772. doi: 10.3390/foods9060772.
  • Zhang, J., L. Liu, Y. Jiang, S. Faisal, and Q. Wang. 2020. A new insight into the high-moisture extrusion process of peanut protein: From the aspect of the orders and amount of energy input. Journal of Food Engineering 264:109668. doi: 10.1016/j.jfoodeng.2019.07.015.
  • Zhang, J., L. Liu, Y. Jiang, F. Shah, Y. Xu, and Q. Wang. 2020. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids 99:105311. doi: 10.1016/j.foodhyd.2019.105311.
  • Zhang, J., L. Liu, H. Liu, A. Shi, H. Hu, and Q. Wang. 2017. Research advances on food extrusion equipment, technology and its mechanism. Transactions of the Chinese Society of Agricultural Engineering 33 (14):275–83.
  • Zhang, J., L. Liu, H. Liu, A. Yoon, S. S. H. Rizvi, and Q. Wang. 2019. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Critical Reviews in Food Science and Nutrition 59 (20):3267–80. doi: 10.1080/10408398.2018.1487383.
  • Zhang, J., L. Liu, S. Zhu, and Q. Wang. 2018. Texturisation behaviour of peanut‐soy bean/wheat protein mixtures during high moisture extrusion cooking. International Journal of Food Science & Technology 53 (11):2535–41. doi: 10.1111/ijfs.13847.
  • Zheng, H., G. S. Yan, Y. Lee, C. Alcaraz, S. Marquez, and d. M. (Elvira Gonzalez). 2020. Effect of the extrusion process on allergen reduction and the texture change of soybean protein isolate-corn and soybean flour-corn mixtures. Innovative Food Science & Emerging Technologies 64:102421. doi: 10.1016/j.ifset.2020.102421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.