1,770
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Stem cells-derived in vitro meat: from petri dish to dinner plate

, , , , , & show all

References

  • Agyare, C., V. E. Boamah, C. N. Zumbi, and F. B. Osei. 2018. Antibiotic use in poultry production and its effects on bacterial resistance. In Antimicrobial Resistance-A Global Threat, 1–20. London: IntechOpen. doi: 10.5772/intechopen.79371.
  • Ahmad, R. S., A. Imran, and M. B. Imran. 2018. Nutritional Composition of Meat. In Meat Science and Nutrition, 61–75. London: IntechOpen.doi: 10.5772/intechopen.77045.
  • Alternative Protein Market - Global Opportunity Analysis and Industry Forecast (2019-2025). 2019. Last modified September, Accessed July 15, 2020. https://www.meticulousresearch.com/product/alternative-protein-market-4985.
  • Arshad, M. S., M. Javed, M. Sohaib, F. Saeed, A. Imran, and Z. Amjad. 2017. Tissue engineering approaches to develop cultured meat from cells: A mini review. Cogent Food & Agriculture 3 (1):1320814. doi: 10.1080/23311932.2017.1320814.
  • Ben-Arye, T., and S. Levenberg. 2019. Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems 3 (3):46. doi: 10.3389/fsufs.2019.00046.
  • Benjaminson, M. A., J. A. Gilchriest, and M. Lorenz. 2002. In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronautica 51 (12):879–89. doi: 10.1016/S0094-5765(02)00033-4.
  • Bernier-Lachance, J., J. Arsenault, V. Usongo, É. Parent, J. Labrie, M. Jacques, F. Malouin, and M. Archambault. 2020. Prevalence and characteristics of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolated from chicken meat in the province of Quebec, Canada. Plos One 15 (1):e0227183. doi: 10.1371/journal.pone.0227183.
  • Bhat, Z. F., and H. Fayaz. 2011. Prospectus of cultured meat—advancing meat alternatives. Journal of Food Science and Technology 48 (2):125–40.. doi: 10.1007/s13197-010-0198-7.
  • Bhat, Z. F., S. Kumar, and H. Fayaz. 2015. In vitro meat production: Challenges and benefits over conventional meat production. Journal of Integrative Agriculture 14 (2):241–8.. doi: 10.1016/S2095-3119(14)60887-X.
  • Bhat, Z. F., S. Kumar, and H. F. Bhat. 2017. In vitro meat: A future animal-free harvest. Crit Rev Food Sci Nutr 57 (4):782–9. doi: 10.1080/10408398.2014.924899.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, A. E. D. A. Bekhit, and H. F. Bhat. 2019. Technological, regulatory, and ethical aspects of In Vitro meat: A future slaughter‐free harvest. Comprehensive Reviews in Food Science and Food Safety 18 (4):1192–208. doi: 10.1111/1541-4337.12473.
  • Bian, W., and N. Bursac. 2009. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 30 (7):1401–12. doi: 10.1016/j.biomaterials.2008.11.015.
  • Capper, J. L. 2011. The environmental impact of beef production in the United States: 1977 compared with 2007. Journal of Animal Science 89 (12):4249–61. doi: 10.2527/jas.2010-3784.
  • Charge, S. B., and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regeneration. Physiological Reviews 84 (1):209–38. doi: 10.1152/physrev.00019.2003.
  • Chen, H., Q. Zuo, Y. Wang, J. Song, H. Yang, Y. Zhang, and B. Li. 2017. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnology 17 (1):11. doi: 10.1186/s12896-017-0336-7.
  • Chriki, S., and J. F. Hocquette. 2020. The myth of cultured meat: A review. Frontiers in Nutrition 7:7. doi: 10.3389/fnut.2020.00007.
  • Coles, C. A., J. Wadeson, C. P. Leyton, J. P. Siddell, P. L. Greenwood, J. D. White, and M. B. McDonagh. 2015. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle. PloS One 10 (4):e0124468. doi: 10.1371/journal.pone.0124468.
  • Cui, H. X., L. P. Guo, G. P. Zhao, R. R. Liu, Q. H. Li, M. Q. Zheng, and J. Wen. 2018. Method using a co-culture system with high-purity intramuscular preadipocytes and satellite cells from chicken pectoralis major muscle. Poultry Science 97 (10):3691–7. doi: 10.3382/ps/pey023.
  • Dai, Y., Y. M. Wang, W. R. Zhang, X. F. Liu, X. Li, X. B. Ding, and H. Guo. 2016a. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cellular & Developmental Biology. Animal 52 (1):27–34. doi: 10.1007/s11626-015-9953-4.
  • Dai, Y., W. R. Zhang, Y. M. Wang, X. F. Liu, X. Li, X. B. Ding, and H. Guo. 2016b. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Molecular and Cellular Biochemistry 414 (1-2):37–46. doi: 10.1007/s11010-016-2656-7.
  • Datar, I., and M. Betti. 2010. Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies 11 (1):13–22.. doi: 10.1016/j.ifest.2009.10.007.
  • De Smet, S., and E. Vossen. 2016. Meat: The balance between nutrition and health. A review. Meat Science (120):145–56. doi: 10.1016/j.meatsci.2016.04.008.
  • Dopelt, K., P. Radon, and N. Davidovitch. 2019. Environmental effects of the livestock industry: The relationship between knowledge, attitudes, and behavior among students in Israel. International Journal of Environmental Research and Public Health 16 (8):1359. doi: 10.3390/ijerph16081359.
  • Engel, E., J. Ratel, J. Bouhlel, C. Planche, and M. Meurillon. 2015. Novel approaches to improving the chemical safety of the meat chain towards toxicants. Meat Science 109:75–85. doi: 10.1016/j.meatsci.2015.05.016.
  • Faustman, C., D. Hamernik, M. Looper, and S. A. Zinn. 2020. Cell-based meat: The need to assess holistically. Journal of Animal Science 98 (8):177. doi: 10.1093/jas/skaa177.
  • Food and Agriculture Organization of the United Nations. 2013. Sources of GHG emission by livestock. Last modified September 26, Accessed November 21, 2020. http://www.fao.org/news/story/en/item/197646/icode/.
  • Gao, X., M. Nowak-Imialek, X. Chen, D. Chen, D. Herrmann, D. Ruan, A. C. H. Chen, M. A. Eckersley-Maslin, S. Ahmad, Y. L. Lee, et al. 2019. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology 21 (6):687–99. doi: 10.1038/s41556-019-0333-2..
  • Genovese, N. J., T. L. Domeier, B. P. V. Telugu, and R. M. Roberts. 2017. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Scientific Reports 7:41833. doi: 10.1038/srep41833.
  • Gharieb, R., M. Mohamed, A. Khalil, and A. Ali. 2019. Influenza A viruses in birds and humans: Prevalence, molecular characterization, zoonotic significance and risk factors' assessment in poultry farms. Comparative Immunology, Microbiology and Infectious Diseases (63):51–7. doi: 10.1016/j.cimid.2019.01.001.
  • Han, X., J. Han, F. Ding, S. Cao, S. S. Lim, Y. Dai, R. Zhang, Y. Zhang, B. Lim, and N. Li. 2011. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research 21 (10):1509–12. doi: 10.1038/cr.2011.125.
  • Hill, A. B. T., F. F. Bressan, B. D. Murphy, and J. M. Garcia. 2019. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Research & Therapy 10 (1):44 doi: 10.1186/s13287-019-1145-9.
  • Hocquette, J. F., F. Gondret, E. Baeza, F. Medale, C. Jurie, and D. W. Pethick. 2010. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal: An International Journal of Animal Bioscience 4 (2):303–19. doi: 10.1017/S1751731109991091.
  • Hocquette, J. F. 2016. Is in vitro meat the solution for the future? Meat Science (120):167–76. doi: 10.1016/j.meatsci.2016.04.036.
  • Hopkins, P. D., and A. Dacey. 2008. Vegetarian meat: Could technology save animals and satisfy meat eaters? Journal of Agricultural and Environmental Ethics 21 (6):579–96.. doi: 10.1007/s10806-008-9110-0.
  • Horak, M., J. Novak, and J. Bienertova-Vasku. 2016. Muscle-specific microRNAs in skeletal muscle development. Developmental Biology 410 (1):1–13. doi: 10.1016/j.ydbio.2015.12.013.
  • Hu, F. B., B. O. Otis, and G. McCarthy. 2019. Can plant-based meat alternatives be part of a healthy and sustainable diet? JAMA 322 (16):1547–8. doi: 10.1001/jama.2019.13187.
  • Indian meat Market. Indian Council of Food and Agriculture. Accessed August 05, 2020. https://www.icfa.org.in/assets/doc/reports/Indian_Meat_Market.pdf.
  • Jung, J. W., J. S. Lee, and D. W. Cho. 2016. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Scientific Reports 6 (1):21685–9. doi: 10.1038/srep21685.
  • Kadim, I. T., O. Mahgoub, S. Baqir, B. Faye, and R. Purchas. 2015. Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture 14 (2):222–33. doi: 10.1016/j.meatsci.2012.04.008.
  • Kanatous, S. B., and P. P. A. Mammen. 2010. Regulation of myoglobin expression. The Journal of Experimental Biology 213 (Pt 16):2741–7. doi: 10.1242/jeb.041442.
  • Kochewad, S. A., Y. P. Gadekar, L. R. Meena, and S. Kumar. 2017. Meat production in India-A review. International Journal of Animal and Veterinary Science 04:24–9.
  • Koh, S., and J. A. Piedrahita. 2014. From “ES-like” cells to induced pluripotent stem cells: A historical perspective in domestic animals. Theriogenology 81 (1):103–11. doi: 10.1016/j.theriogenology.2013.09.009.
  • Kosnik, P. E., R. G. Dennis, and H. H. Vandenburgh. 2003. Tissue engineering skeletal muscle. In: Functional tissue engineering, eds. F. Guilak, D. L. Butler, S. A. Goldstein, and D. J. Mooney, 377–92. New York: Springer. doi: 10.1007/0-387-21547-6_28.
  • Kupfer, M. E., W. H. Lin, V. Ravikumar, K. Qiu, L. Wang, L. Gao, D. Bhuiyan, M. Lenz, J. Ai, R. R. Mahutga, et al. 2020. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circulation Research 127 (2):207–24. doi: 10.1161/CIRCRESAHA.119.316155.
  • Langelaan, M. L., K. J. Boonen, R. B. Polak, F. P. Baaijens, M. J. Post, and D. W. van der Schaft. 2010. Meet the new meat: Tissue engineered skeletal muscle. Trends in Food Science & Technology 21 (2):59–66. doi: 10.1016/j.tifs.2009.11.001.
  • Li, L., X. Cheng, L. Chen, J. Li, W. Luo, and C. Li. 2019. Long noncoding ribonucleic acid MSTRG.59589 promotes porcine skeletal muscle satellite cells differentiation by enhancing the function of PALLD. Frontiers in Genetics (10):1220. doi: 10.3389/fgene.2019.01220.
  • Li, M., and S. Ikehara. 2013. Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int (2013):132642 doi: 10.1155/2013/132642.
  • Li, S., D. Liu, Y. Fu, C. Zhang, H. Tong, S. Li, and Y. Yan. 2019. Podocan promotes differentiation of bovine skeletal muscle satellite cells by regulating the Wnt4-β-catenin signaling pathway. Frontiers in Physiology 10:1010. doi: 10.3389/fphys.2019.01010.
  • Ling, Y. H., M. H. Sui, Q. Zheng, K. Y. Wang, H. Wu, W. Y. Li, Y. Liu, M. X. Chu, F. G. Fang, and L. N. Xu. 2018. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Scientific Reports 8 (1):1–12. doi: 10.1038/s41598-018-22262-4.
  • Lopez-Alt, J. K. 2020. How to cook with Plant-Based meats. Accessed August 03, 2020. https://www.nytimes.com/2020/03/03/dining/impossible-beyond-meat.html.
  • McLeod, A. 2011. World livestock 2011-livestock in food security. Rome: Food and Agriculture Organization of the United Nations (FAO).
  • Mann, A., R. P. Yadav, J. Singh, D. Kumar, B. Singh, and P. S. Yadav. 2013. Culture, characterization and differentiation of cells from buffalo (Bubalus bubalis) amnion. Cytotechnology 65 (1):23–30. doi: 10.1007/s10616-012-9464-z.
  • Manikkam, M., R. Tracey, C. Guerrero-Bosagna, and M. K. Skinner. 2013. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PloS One 8 (1):e55387. doi: 10.1371/journal.pone.0055387.
  • Marshall, B. M., and S. B. Levy. 2011. Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews 24 (4):718–33. doi: 10.1128/CMR.00002-11..
  • Mauro, A. 1961. Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology 9 (2):493–5. doi: 10.1083/jcb.9.2.493.
  • Mengistie, D. 2020. Lab-growing meat production from stem cell. Journal of Nutrition & Food Sciences 3 (1):100015.
  • Mehta, F., R. Theunissen, and M. J. Post. 2019. Adipogenesis from Bovine precursors. In Myogenesis, ed. S. Ronning, 111–25. New York: Huaman Press. doi: 10.1007/978-1-4939-8897-6_8.
  • Meurillon, M., J. Ratel, and E. Engel. 2018. How to secure the meat chain against toxicants. Innovative Food Science & Emerging Technologies 46:74–82. doi: 10.1016/j.ifset.2017.10.004.
  • Mizuno, Y., H. Chang, K. Umeda, A. Niwa, T. Iwasa, T. Awaya, S. I. Fukada, H. Yamamoto, S. Yamanaka, T. Nakahata, et al. 2010. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 24 (7):2245–53. doi: 10.1096/fj.09-137174.
  • Neo, P. 2019. Affordable lab-grown meat: India looks to become global cell-based meat hub. Accessed May 09, 2020. https://www.foodnavigator-asia.com/Article/2019/05/10/Affordable-lab-grown-meat-India-looks-to-become-global-cell-based-meat-hub/.
  • Ogorevc, J., S. Orehek, and P. Dovc. 2016. Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species. Journal of Animal Science and Biotechnology 7 (1):10 doi: 10.1186/s40104-016-0070-3.
  • Okamura, L. H., P. Cordero, J. Palomino, V. H. Parraguez, C. G. Torres, and O. A. Peralta. 2018. Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Animal Biotechnology 29 (1):1–11. doi doi: 10.1080/10495398.2016.1276926..
  • Onodera, Y., T. Teramura, T. Takehara, M. Itokazu, T. Mori, and K. Fukuda. 2018. Inflammation-associated miR-155 activates differentiation of muscular satellite cells. PloS One (13) (10):e0204860. 1371/journal.pone.0204860. doi: 10.1371/journal.pone.0204860.
  • Ostrovidov, S., S. Ahadian, J. Ramon-Azcon, V. Hosseini, T. Fujie, S. P. Parthiban, H. Shiku, T. Matsue, H. Kaji, M. Ramalingam, et al. 2017. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function . Journal of Tissue Engineering and Regenerative Medicine 11 (2):582–95. doi: 10.1002/term.1956.
  • Ostrovidov, S., V. Hosseini, S. Ahadian, T. Fujie, S. P. Parthiban, M. Ramalingam, H. Bae, H. Kaji, and A. Khademhosseini. 2014. Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications. Tissue Engineering. Part B, Reviews 20 (5):403–36. doi: 10.1089/ten.TEB.2013.0534.
  • Pandurangan, M., and D. H. Kim. 2015. A novel approach for in vitro meat production. Applied Microbiology and Biotechnology 99 (13):5391–5. doi: 10.1007/s00253-015-6671-5.
  • Papanikolaou, G., and K. Pantopoulos. 2005. Iron metabolism and toxicity. Toxicology and Applied Pharmacology 202 (2):199–211. doi: 10.1016/j.taap.2004.06.021.
  • Park, S. E. 2020. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) ). Clinical and Experimental Pediatrics 63 (4):119–24. doi: 10.3345/cep.2020.00493.
  • Petersen, S. O. 2018. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation. Journal of Dairy Science 101 (7):6642–54. doi: 10.3168/jds.2017-13301.
  • Picouet, P. A., A. Fernandez, C. E. Realini, and E. Lloret. 2014. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage in modified atmospheres. Meat Science 96 (1):574–80. doi: 10.1016/j.meatsci.2013.07.020.
  • Post, M. J. 2012. Cultured meat from stem cells: Challenges and prospects. Meat Science 92 (3):297–301. doi: 10.1016/j.meatsci.2012.04.008.
  • Post, M. J., and J. F. Hocquette. 2017. New sources of animal proteins: Cultured meat. In New aspects of meat quality, ed. P. P. Purslow, 425–41. Woodhead: Cambridge. doi: 10.1016/B978-0-08-100593-4.00017-5.
  • Qin, H., A. Zhao, and X. Fu. 2017. Small molecules for reprogramming and transdifferentiation. Cellular and Molecular Life Sciences: CMLS 74 (19):3553–75. doi: 10.1007/s00018-017-2586-x.
  • Ramachandraiah, K., S. G. Han, and K. B. Chin. 2015. Nanotechnology in meat processing and packaging: Potential applications - a review. Asian-Australasian Journal of Animal Sciences 28 (2):290–302. doi: 10.5713/ajas.14.0607.
  • Roberts, R. M., Y. Yuan, N. Genovese, and T. Ezashi. 2015. Livestock models for exploiting the promise of pluripotent stem cells. ILAR Journal 56 (1):74–82. doi: 10.1093/ilar/ilv005.
  • Ronning, S. B., M. E. Pedersen, P. V. Andersen, and K. Hollung. 2013. The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells. Differentiation; Research in Biological Diversity 86 (1-2):13–22. doi: 10.1016/j.diff.2013.06.006.
  • Sakomura, N. K., R. D. Ekmay, S. J. Mei, and C. N. Coon. 2015. Lysine, methionine, phenylalanine, arginine, valine, isoleucine, leucine, and threonine maintenance requirements of broiler breeders. Poultry Science 94 (11):2715–21. doi: 10.3382/ps/pev287.
  • Sandmaier, S. E., A. Nandal, A. Powell, W. Garrett, L. Blomberg, D. M. Donovan, N. Talbot, and B. P. Telugu. 2015. Generation of induced pluripotent stem cells from domestic goats. Molecular Reproduction and Development 82 (9):709–21. doi: 10.1002/mrd.22512.
  • Schiermeier, Q. Forthcoming. Global methane levels soar to record high. Nature, in Press doi: 10.1038/d41586-020-02116-8.
  • Schneider, Z. 2013. In vitro meat: Space travel, cannibalism, and federal regulation. Houston Law Review 5 (3):991.
  • Sejian, V., R. Bhatta, P. K. Malik, B. Madiajagan, Y. A. S. Al-Hosni, M. Sullivan, and J. B. Gaughan. 2016. Livestock as sources of greenhouse gases and its significance to climate change. In Greenhouse gases, eds. B. L. Moya and J. Pous, 243–59. Intech: London. doi: 10.5772/6135.
  • Siegrist, M., B. Sütterlin, and C. Hartmann. 2018. Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Science 139:213–9. doi: 10.1016/j.meatsci.2018.02.007.
  • Siegner, C. 2018. Could India become the next cell-cultured meat hub? Accessed May 01, 2020. https://www.fooddive.com/news/could-india-become-the-next-cell-cultured-meat-hub/554578/.
  • Singh, A., C. B. Yadav, N. Tabassum, A. K. Bajpeyee, and V. Verma. 2019. Stem cell niche: Dynamic neighbor of stem cells. European Journal of Cell Biology 98 (2-4):65–73. doi: 10.1016/j.ejcb.2018.12.001.
  • Singh, B., G. Mal, S. K. Gautam, and M. Mukesh. 2019a. Non-meat alternatives. In Advances in animal biotechnology, eds. B. Singh, G. Mal, S. K. Gautam, and M. Mukesh, 515–20. Cham: Springer. doi: 10.1007/978-3-030-21309-1_47.
  • Singh, B., G. Mal, S. K. Gautam, and M. Mukesh. 2019b. Stem Cells and Cellular Reprogramming to Advance Livestock Industry. In Advances in animal biotechnology, eds. B. Singh, G. Mal, S. K. Gautam, and M. Mukesh, 215–26. Cham: Springer,. doi: 10.1007/978-3-030-21309-1_19.
  • Singh, M. K., K. P. Singh, D. Kumar, R. A. Shah, T. Anand, M. S. Chauhan, R. S. Manik, S. K. Singla, and P. Palta. 2013. Buffalo (Bubalus bubalis) ES cell-like cells are capable of in vitro skeletal myogenic differentiation. Reproduction in Domestic Animals = Zuchthygiene 48 (2):284–91. doi: 10.1111/j.1439-0531.2012.02146.x.
  • Smith, B. A., S. Meadows, R. Meyers, E. J. Parmley, and A. Fazil. 2019. Seasonality and zoonotic foodborne pathogens in Canada: Relationships between climate and Campylobacter, E. coli and Salmonella in meat products. Epidemiology and Infection 147:e190. doi: 10.1017/S0950268819000797.
  • Stanton, M. M., E. Tzatzalos, M. Donne, N. Kolundzic, I. Helgason, and D. Ilic. 2019. Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection. Stem Cells Transl Med 8 (1):7–13. doi: 10.1002/sctm.18-0047.
  • Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. deHaan. 2006. Livestock’s long shadow-environmental issues and options. Rome: Food and Agriculture Organization of the United Nations (FAO).
  • Stephens, N., L. D. Silvio, I. Dunsford, M. Ellis, A. Glencross, and A. Sexton. 2018. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology (78):155–66. doi: 10.1016/j.tifs.2018.04.010.
  • Sutton, T. C. 2018. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 10 (9):461. doi: 10.3390/v10090461.
  • Tabassum, N., V. Verma, M. Kumar, A. Kumar, and B. Singh. 2018. Nanomedicine in cancer stem cell therapy: From fringe to forefront. Cell and Tissue Research 374 (3):427–38. doi: 10.1007/s00441-018-2928-5.
  • Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4):663–76. doi: 10.1016/j.cell.2006.07.024.
  • Telugu, B. P., K. E. Park, and C. H. Park. 2017. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mammalian Genome: Official Journal of the International Mammalian Genome Society 28 (7-8):338–47. doi: 10.1007/s00335-017-9709-4.
  • Thorrez, L., and H. Vandenburgh. 2019. Challenges in the quest for 'clean meat'. Nature Biotechnology 37 (3):215–6. doi: 10.1038/s41587-019-0043-0.
  • Tuomisto, H. L., and M. J. Teixeira de Mattos. 2011. Environmental impacts of cultured meat production. Environmental Science & Technology 45 (14):6117–23. doi: 10.1021/es200130u.
  • Tytgat, L., M. R. Kollert, L. Van Damme, H. Thienpont, H. Ottevaere, G. N. Duda, S. Geissler, P. Dubruel, S. Van Vlierberghe, and T. H. Qazi. 2020. Evaluation of 3D printed gelatin-based scaffolds with varying pore size for MSC-based adipose tissue engineering. Macromolecular Bioscience 20 (4):e1900364 doi: 10.1002/mabi.201900364.
  • Van der Weele, C., and J. Tramper. 2014. Cultured meat: Every village its own factory? Trends in Biotechnology 32 (6):294–6. doi: 10.1016/j.tibtech.2014.04.009.
  • VanderWaal, K., and J. Deen. 2018. Global trends in infectious diseases of swine. Proceedings of the National Academy of Sciences of the United States of America 115 (45):11495–500. doi: 10.1073/pnas.1806068115.
  • Vein, J. 2004. Method for producing tissue engineered meat for consumption. United States Patent and Trademark Office; US6835390B1.
  • Verma, A. K., V. P. Singh, and P. Vikas. 2012. Application of nanotechnology as a tool in animal products processing and marketing: An overview. American Journal of Food Technology 7 (8):445–51. doi: 10.3923/ajft.2012.445.451.
  • Verma, V., S. K. Gautam, B. Singh, R. S. Manik, P. Palta, S. K. Singla, S. L. Goswami, and M. S. Chauhan. 2007. Isolation and characterization of embryonic stem cell‐like cells from in vitro‐produced buffalo (Bubalus bubalis) embryos. Molecular Reproduction and Development 74 (4):520–9. doi: 10.1002/mrd.20645.
  • Verma, V., B. Huang, P. K. Kallingappa, and B. Oback. 2013. Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines. Stem Cells Dev 22 (11):1728–42. doi: 10.1089/scd.2012.0481.
  • Wade, A., T. Taïga, M. A. Fouda, A. MaiMoussa, F. K. Jean Marc, R. Njouom, M.-A. Vernet, G. Djonwe, E. Mballa, J. P. Kazi, et al. 2018. Highly pathogenic avian influenza A/H5N1 Clade 2.3.2.1c virus in poultry in Cameroon, 2016-2017. Avian Pathology: Journal of the W.V.P.A 47 (6):559–75. doi: 10.1080/03079457.2018.1492087.
  • Watson, E. 2017. Future meat technologies: The future of clean meat production is local. Accessed August 12, 2020. https://www.foodnavigator-usa.com/Article/2017/10/04/Future-Meat-Technologies-The-future-of-clean-meat-production-is-local/.
  • Weinrich, R., M. Strack, and F. Neugebauer. 2020. Consumer acceptance of cultured meat in Germany. Meat Science 162:107924. doi: 10.1016/j.meatsci.2019.107924.
  • Wilks, M., and C. J. Phillips. 2017. Attitudes to in vitro meat: A survey of potential consumers in the United States. PloS One 12 (2):e0171904. doi: 10.1371/journal.pone.0171904.
  • Wilks, M., C. J. Phillips, K. Fielding, and M. J. Hornsey. 2019. Testing potential psychological predictors of attitudes towards cultured meat. Appetite (136):137–45. doi: 10.1016/j.appet.2019.01.027.
  • Will, K., L. Schering, E. Albrecht, C. Kalbe, and S. Maak. 2015. Differentiation of bovine satellite cell-derived myoblasts under different culture conditions. In Vitro Cell Dev Biol Anim 51 (9):885–9. doi: 10.1007/s11626-015-9916-9..
  • Wilschut, K. J., S. Jaksani, J. Van Den Dolder, H. P. Haagsman, and B. A. Roelen. 2008. Isolation and characterization of porcine adult muscle-derived progenitor cells . Journal of Cellular Biochemistry 105 (5):1228–39. doi: 10.1002/jcb.21921.
  • Wilschut, K. J., H. T. van Tol, G. J. Arkesteijn, H. P. Haagsman, and B. A. Roelen. 2011. Alpha 6 integrin is important for myogenic stem cell differentiation. Stem Cell Research 7 (2):112–23. doi: 10.1016/j.scr.2011.05.001.
  • World Health Organization (WHO), Coronavirus Disease 2019 (COVID-19) Situation Report-205. Last modified August 12, 2020. Accessed August 13, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200812-covid-19-sitrep-205.pdf?sfvrsn=627c9aa8_2.
  • Wu, Z., J. Chen, J. Ren, L. Bao, J. Liao, C. Cui, L. Rao, H. Li, Y. Gu, H. Dai, et al. 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology 1 (1):46–54. doi: 10.1093/jmcb/mjp003.
  • Yadav, P. S., R. K. Singh, and B. Singh. 2012. Fetal stem cells in farm animals: Applications in health and production. Agricultural Research 1 (1):67–77. doi: 10.1007/s40003-011-0001-7.
  • Yamanouchi, K., T. Hosoyama, Y. Murakami, and M. Nishihara. 2006. Myogenic and adipogenic properties of goat skeletal muscle stem cells. The Journal of Reproduction and Development 53 (1):51–8. doi: 10.1262/jrd.18094.
  • Yamanouchi, K., T. Hosoyama, Y. Murakami, S. I. Nakano, and M. Nishihara. 2009. Satellite cell differentiation in goat skeletal muscle single fiber culture. The Journal of Reproduction and Development 55 (3):252–5. doi: 10.1262/jrd.20175.
  • Yang, J., D. J. Ryan, W. Wang, J. C.-H. Tsang, G. Lan, H. Masaki, X. Gao, L. Antunes, Y. Yu, Z. Zhu, et al. 2017. Establishment of mouse expanded potential stem cells. Nature 550 (7676):393–7. doi: 10.1038/nature24052.
  • Yang, Y., W. Sun, R. Wang, C. Lei, R. Zhou, Z. Tang, and K. Li. 2015. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Molecular Biology 16 (1):4. doi: 10.1186/s12867-015-0035-7.
  • Young, J. F., M. Therkildsen, B. Ekstrand, B. N. Che, M. K. Larsen, N. Oksbjerg, and J. Stagsted. 2013. Novel aspects of health promoting compounds in meat. Meat Science 95 (4):904–11. doi: 10.1016/j.meatsci.2013.04.036.
  • Zammit, P. S., and J. R. Beauchamp. 2001. The skeletal muscle satellite cell: Stem cell or son of stem cell? Differentiation; Research in Biological Diversity 68 (4-5):193–204. doi: 10.1046/j.1432-0436.2001.680407.x.
  • Zandonella, C. 2003. Tissue engineering: The beat goes on. Nature 421 (6926):884–6. doi: 10.1038/421884a.
  • Zhong, V. W., L. Van Horn, P. Greenland, M. R. Carnethon, H. Ning, J. T. Wilkins, D. M. Lloyd-Jones, and N. B. Allen. 2020. Forthcoming. Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Internal Medicine 180 (4):503. doi: 10.1001/jamainternmed.2019.6969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.