664
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abuajah, C. I., A. C. Ogbonna, and C. M. Osuji. 2015. Functional components and medicinal properties of food: A review. Journal of Food Science and Technology 52 (5):2522–9. doi: 10.1007/s13197-014-1396-5.
  • Aluko, R. E. 2015. Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science 4:44–50. doi: 10.1016/j.cofs.2015.05.002.
  • Amin, M. S., F. C. Saputri, and A. Munim. 2019. Inhibition of dipeptidyl peptidase 4 (DPP IV) activity by some Indonesia edible plants. Pharmacognosy Journal 11 (2):231–6. doi: 10.5530/pj.2019.11.36.
  • Baynes, H. W. 2015. Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes and Metabolism 6 (5):1–9. doi: 10.4172/2155-6156.1000541.
  • Bleakley, S., M. Hayes, N. O’ Shea, E. Gallagher, and T. Lafarga. 2017. Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis. Foods 6 (12):108–14. doi: 10.3390/foods6120108.
  • Chatterjee, S., K. Khunti, and M. J. Davies. 2017. Type 2 diabetes. The Lancet 389 (10085):2239–51. doi: 10.1016/S0140-6736(17)30058-2.
  • Chen, W., T. Hira, S. Nakajima, and H. Hara. 2018. Wheat gluten hydrolysate potently stimulates peptide-YY secretion and suppresses food intake in rats. Bioscience, Biotechnology, and Biochemistry 82 (11):1992–8. doi: 10.1080/09168451.2018.1505482.
  • Cicero, A. F. G., F. Fogacci, and A. Colletti. 2017. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. British Journal of Pharmacology 174 (11):1378–94. doi: 10.1111/bph.13608.
  • De Souza Rocha, T., L. M. Real Hernandez, L. Mojica, M. H. Johnson, Y. K. Chang, and E. González de Mejía. 2015. Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Research International 76 (1):150–9. doi: 10.1016/j.foodres.2015.04.041.
  • Deacon, C. F., and H. E. Lebovitz. 2016. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes, Obesity & Metabolism 18 (4):333–47. doi: 10.1111/dom.12610.
  • Diepvens, K., D. Häberer, and M. Westerterp-Plantenga. 2008. Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. International Journal of Obesity 32 (3):510–8. doi: 10.1038/sj.ijo.0803758.
  • Dove, E. R., T. A. Mori, G. T. Chew, A. E. Barden, R. J. Woodman, I. B. Puddey, S. Sipsas, and J. M. Hodgson. 2011. Lupin and soya reduce glycaemia acutely in type 2 diabetes. British Journal of Nutrition 106 (7):1045–51. doi: 10.1017/S0007114511001334.
  • El Sohaimy, S. A. 2012. Functional foods and nutraceuticals-modern approach to food science. World Applied Sciences Journal 20 (5):691–708. doi: 10.5829/idosi.wasj.2012.20.05.66119.
  • Geraedts, M. C. P., F. J. Troost, M. A. J. G. Fischer, L. Edens, and W. H. M. Saris. 2011. Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins. Molecular Nutrition & Food Research 55 (3):476–84. doi: 10.1002/mnfr.201000142.
  • González-Montoya, M., B. Hernández-Ledesma, R. Mora-Escobedo, and C. Martínez-Villaluenga. 2018. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. International Journal of Molecular Sciences 19 (10):2883–14. doi: 10.3390/ijms19102883.
  • Gribble, F. M., C. L. Meek, and F. Reimann. 2018. Targeted intestinal delivery of incretin secretagogues-towards new diabetes and obesity therapies. Peptides 100:68–74. doi: 10.1016/j.peptides.2017.11.008.
  • Häberer, D., M. Tasker, M. Foltz, N. Geary, M. Westerterp, and W. Langhans. 2011. Intragastric infusion of pea-protein hydrolysate reduces test-meal size in rats more than pea protein. Physiology & Behavior 104 (5):1041–7. doi: 10.1016/j.physbeh.2011.07.003.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A. D. M. Sørensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Hajiaghaalipour, F., M. Khalilpourfarshbafi, and A. Arya. 2015. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. International Journal of Biological Sciences 11 (5):508–24. doi: 10.7150/ijbs.11241.
  • Hatanaka, T., M. Uraji, A. Fujita, and K. Kawakami. 2015. Anti-oxidation activities of rice-derived peptides and their inhibitory effects on dipeptidylpeptidase-IV. International Journal of Peptide Research and Therapeutics 21 (4):479–85. doi: 10.1007/s10989-015-9478-4.
  • International Diabetes Federation. 2019. IDF Diabetes Atlas. 9th ed. Brussels: International Diabetes Federation.
  • Ishikawa, Y., T. Hira, D. Inoue, Y. Harada, H. Hashimoto, M. Fujii, M. Kadowaki, and H. Hara. 2015. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food & Function 6 (8):2525–34. doi: 10.1039/C4FO01054J.
  • Kato, M., T. Nakanishi, T. Tani, and T. Tsuda. 2017. Low-molecular fraction of wheat protein hydrolysate stimulates glucagon-like peptide-1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats. Nutrition Research (New York, N.Y.) 37:37–45. doi: 10.1016/j.nutres.2016.12.002.
  • Kehinde, B. A., and P. Sharma. 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition 60 (2):322–40. doi: 10.1080/10408398.2018.1528206.
  • Kim, K. S., and H. J. Jang. 2015. Medicinal plants qua glucagon-like peptide-1 secretagogue via intestinal nutrient sensors. Evidence-Based Complementary and Alternative Medicine : eCAM 2015:171742–9. doi: 10.1155/2015/171742.
  • Lafferty, R. A., P. R. Flatt, and I. Nigel. 2018. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides 100:269–74. doi: 10.1016/j.peptides.2017.11.005.
  • Lammi, C., C. Zanoni, and A. Arnoldi. 2015. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. International Journal of Molecular Sciences 16 (11):27362–70. doi: 10.3390/ijms161126029.
  • Li, N., L. J. Wang, B. Jiang, X. Q. Li, C. L. Guo, S. J. Guo, and D. Y. Shi. 2018. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. European Journal of Medicinal Chemistry 151:145–57. doi: 10.1016/j.ejmech.2018.03.041.
  • Li-Chan, E. C. Y. 2015. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science 1:28–37. doi: 10.1016/j.cofs.2014.09.005.
  • Lu, J., Y. Zeng, W. Hou, S. Zhang, L. Li, X. Luo, W. Xi, Z. Chen, and M. Xiang. 2012. The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. The Journal of Nutritional Biochemistry 23 (11):1449–57. doi: 10.1016/j.jnutbio.2011.09.007.
  • Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A. F. G. Cicero, and S. Hrelia. 2014. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. International Journal of Molecular Sciences 15 (11):21120–35. doi: 10.3390/ijms151121120.
  • Mirmiran, P., Z. Bahadoran, and F. Azizi. 2014. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World Journal of Diabetes 5 (3):267–81. doi: 10.4239/wjd.v5.i3.267.
  • Mojica, L., E. Gonzalez de Mejia, M. A. Granados-Silvestre, and M. Menjivar. 2017. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. Journal of Functional Foods 31:274–86. doi: 10.1016/j.jff.2017.02.006.
  • Mojica, L., D. A. Luna-Vital, and E. Gonzalez de Mejia. 2018. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters. Toxicology Reports 5:552–60. doi: 10.1016/j.toxrep.2018.04.007.
  • Mojica, L., D. A. Luna-Vital, and E. González de Mejía. 2017. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. Journal of the Science of Food and Agriculture 97 (8):2401–10. doi: 10.1002/jsfa.8053.
  • Montesano, D., M. Gallo, F. Blasi, and L. Cossignani. 2020. Biopeptides from vegetable proteins: New scientific evidences. Current Opinion in Food Science 31:31–7. doi: 10.1016/j.cofs.2019.10.008.
  • Nojima, H., K. Kanou, G. Terashi, M. Takeda-Shitaka, G. Inoue, K. Atsuda, C. Itoh, C. Iguchi, and H. Matsubara. 2016. Comprehensive analysis of the Co-structures of dipeptidyl peptidase IV and its inhibitor. BMC Structural Biology 16 (:11–4. doi: 10.1186/s12900-016-0062-8.
  • Nongonierma, A. B., and R. J. FitzGerald. 2015. Investigation of the potential of hemp, pea, rice and soy protein hydrolysates as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Digestion: Research and Current Opinion 6:19–29. doi: 10.1007/s13228-015-0039-2.
  • Nongonierma, A. B., M. Hennemann, S. Paolella, and R. J. FitzGerald. 2017. Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food & Function 8 (6):2249–57. doi: 10.1039/C7FO00165G.
  • Nongonierma, A. B., S. L. Maux, C. Dubrulle, C. Barre, and R. J. FitzGerald. 2015. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science 65:112–8. doi: 10.1016/j.jcs.2015.07.004.
  • Oliva, M. E., A. Chicco, and Y. B. Lombardo. 2015. Mechanisms underlying the beneficial effect of soy protein in improving the metabolic abnormalities in the liver and skeletal muscle of dyslipemic insulin resistant rats. European Journal of Nutrition 54 (3):407–19. doi: 10.1007/s00394-014-0721-0.
  • Oseguera Toledo, M. E., E. Gonzalez de Mejia, M. Sivaguru, and S. L. Amaya-Llano. 2016. Common bean (Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. Journal of Functional Foods 27:160–77. doi: 10.1016/j.jff.2016.09.001.
  • Prasad-Reddy, L., and D. A. Isaacs. 2015. Clinical review of GLP-1 receptor agonists: Efficacy and safety in diabetes and beyond. Drugs in Context 4:212283–19. doi: 10.7573/dic.212283.
  • Quintal-Bojórquez, N., and M. R. Segura-Campos. 2020. Bioactive peptides as therapeutic adjuvants for cancer. Nutrition and Cancer :1–13. doi: 10.1080/01635581.2020.1813316.
  • Rieg, T., and V. Vallon. 2018. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61 (10):2079–86. doi: 10.1007/s00125-018-4654-7.
  • Salas, C. E., J. A. Badillo-Corona, G. Ramírez-Sotelo, and C. Oliver-Salvador. 2015. Biologically active and antimicrobial peptides from plants. BioMed Research International 2015:102129–11. doi: 10.1155/2015/102129.
  • Sánchez, A., and A. Vázquez. 2017. Bioactive peptides: A review. Food Quality and Safety 1 (1):29–46. doi: 10.1093/fqsafe/fyx006.
  • Sayem, A. S. M., A. Arya, H. Karimian, N. Krishnasamy, A. A. Hasamnis, and C. F. Hossain. 2018. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules 23 (2)1–15.258. doi: 10.3390/molecules23020:.
  • Segura Campos, M. R., F. Peralta González, L. Chel Guerrero, and D. Betancur Ancona. 2013. Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. International Journal of Food Science 2013:1–8. doi: 10.1155/2013/158482.
  • Sikand, G., P. Kris-Etherton, and N. M. Boulos. 2015. Impact of functional foods on prevention of cardiovascular disease and diabetes. Current Cardiology Reports 17 (6):39–16. doi: 10.1007/s11886-015-0593-9.
  • Soriano-Santos, J., R. Reyes-Bautista, I. Guerrero-Legarreta, E. Ponce-Alquicira, H. B. Escalona-Buendía, J. C. Almanza-Pérez, G. Díaz-Godínez, and R. Román-Ramos. 2015. Dipeptidyl peptidase IV inhibitory activity of protein hydrolyzates from Amaranthus hypochondriacus L. grain and their influence on postprandial glycemia in Streptozotocin-induced diabetic mice. African Journal of Traditional, Complementary and Alternative Medicines 12 (1):90–8. doi: 10.4314/ajtcam.v12i1.13.
  • Tahrani, A. A., A. H. Barnett, and C. J. Bailey. 2013. SGLT inhibitors in management of diabetes. The Lancet. Diabetes & Endocrinology 1 (2):140–51. doi: 10.1016/S2213-8587(13)70050-0.
  • Ullah, A., A. Khan, and I. Khan. 2016. Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal 24 (5):547–53. doi: 10.1016/j.jsps.2015.03.013.
  • Velarde-Salcedo, A. J., A. Barrera-Pacheco, S. Lara-González, G. M. Montero-Morán, A. Díaz-Gois, E. González de Mejia, and A. P. Barba de la Rosa. 2013. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry 136 (2):758–64. doi: 10.1016/j.foodchem.2012.08.032.
  • Vilcacundo, R., C. Martínez-Villaluenga, and B. Hernández-Ledesma. 2017. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 35:531–9. doi: 10.1016/j.jff.2017.06.024.
  • Wang, F., G. Yu, Y. Zhang, B. Zhang, and J. Fan. 2015. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum vulgare trifurcatum (L.) Trofim) proteins. Journal of Agricultural and Food Chemistry 63 (43):9543–9. doi: 10.1021/acs.jafc.5b04016.
  • Yu, J. H., and M. S. Kim. 2012. Molecular mechanisms of appetite regulation. Diabetes & Metabolism Journal 36 (6):391–8. doi: 10.4093/dmj.2012.36.6.391.
  • Zheng, Y., S. H. Ley, and F. B. Hu. 2018. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews. Endocrinology 14 (2):88–98. doi: 10.1038/nrendo.2017.151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.