1,550
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Amaranth, quinoa and chia bioactive peptides: a comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes

&

References

  • Abellán Ruiz, M. S., M. D. Barnuevo Espinosa, C. García Santamaría, C. J. Contreras Fernández, M. Aldeguer García, F. Soto Méndez, I. Guillén Guillén, A. J. Luque Rubia, F. J. Quinde Ràzuri, A. Martínez Garrido, et al. 2017. Effect of quinua (Chenopodium quinoa)consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutricion Hospitalaria 34 (5):1163–69. doi: 10.20960/nh.843.
  • ADA. 2020. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 43 (Supplement 1):S14. 10.2337/dc20-S002.
  • Agyei, D., T. O. Akanbi, and I. Oey. 2019. Chapter 9—enzymes for use in functional foods. In Enzymes in food biotechnology, ed. M. Kuddus, 129–47. Cambridge, MA: Academic Press. doi: 10.1016/B978-0-12-813280-7.00009-8.
  • Alonso-Miravalles, L., and J. A. O’Mahony. 2018. Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods 7 (5):73. doi: 10.3390/foods7050073.
  • Aluwi, N. A., K. M. Murphy, and G. M. Ganjyal. 2017. Physicochemical characterization of different varieties of quinoa. Cereal Chemistry 94 (5):847–56. doi: 10.1094/CCHEM-10-16-0251-R.
  • American Dietetic Association. 2020. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes. Diabetes Care 2020 (9):43–S110. doi: 10.2337/dc20-S009.
  • Ashraf, A., P. Mudgil, A. Palakkott, R. Iratni, C.-Y. Gan, S. Maqsood, and M. A. Ayoub. 2020. Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on DPP-IV and insulin receptor activity (SSRN Scholarly Paper ID 3544830). Social Science Research Network 10.2139/ssrn.3544830.
  • Bello-Chavolla, O. Y., R. Rojas-Martinez, C. A. Aguilar-Salinas, and M. Hernández-Avila. 2017. Epidemiology of diabetes mellitus in Mexico. Nutrition Reviews 75 (suppl 1):4–12. doi: 10.1093/nutrit/nuw030.
  • Benítez, R., A. Ibarz, and J. Pagán. 2008. Protein hydrolysates: Processes and applications [Hidrolizados de proteína: Procesos y aplicaciones]. Acta Bioquimica Clinica Latinoamericana 42: 227–236.
  • Bojórquez-Velázquez, E.,A. Barrera-Pacheco,E. Espitia-Rangel,A. Herrera-Estrella, andA. P. Barba De La Rosa. 2019. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC Plant Biology 19 (1):59 doi:10.1186/s12870-019-1656-7. PMC: 30727945
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients 10 (11):1738. doi: 10.3390/nu10111738.
  • Chauhan, V., and S. S. Kanwar. 2020. Chapter 4 - bioactive peptides: synthesis, functions and biotechnological applications. In Biotechnological Production of Bioactive Compounds, ed. M. L. Verma and A. K. Chandel, 107–37. New York: Elsevier. doi: 10.1016/B978-0-444-64323-0.00004-7.
  • Cicero, A. F. G., F. Fogacci, and A. Colletti. 2017. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. British Journal of Pharmacology 174 (11):1378–94. doi: 10.1111/bph.13608.
  • Daliri, E. B.-M., D. H. Oh, and B. H. Lee. 2017. Bioactive peptides. Foods 6 (5):32. doi: 10.3390/foods6050032.
  • Divya, K., H. K. Vivek, B. S. Priya, and S. Nanjunda Swamy. 2020. Rapid detection of DPP-IV activity in porcine serum: a fluorospectrometric assay. Analytical Biochemistry 592:113557. doi: 10.1016/j.ab.2019.113557.
  • Franz, M. J., J. MacLeod, A. Evert, C. Brown, E. Gradwell, D. Handu, A. Reppert, and M. Robinson. 2017. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. Journal of the Academy of Nutrition and Dietetics 117 (10):1659–79. doi: 10.1016/j.jand.2017.03.022.
  • Gargiulo, L., Å. Grimberg, R. Repo-Carrasco-Valencia, A. S. Carlsson, and G. Mele. 2019. Morpho-densitometric traits for quinoa (Chenopodium quinoa Willd.) seed phenotyping by two X-ray micro-CT scanning approaches. Journal of Cereal Science 90:102829. doi: 10.1016/j.jcs.2019.102829.
  • Grancieri, M., H. Martino, and E. Mejia. 2019. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Comprehensive Reviews in Food Science and Food Safety18(2):480–499. 10.1111/1541-4337.12423.
  • Guo, H., A. Richel, Y. Hao, X. Fan, N. Everaert, X. Yang, and G. Ren. 2020. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Science & Nutrition 8 (3):1415–22. doi: 10.1002/fsn3.1423.
  • Harnedy, P. A., M. B. O'Keeffe, and R. J. FitzGerald. 2015. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chemistry 172:400–6. doi: 10.1016/j.foodchem.2014.09.083.
  • Harnedy-Rothwell, P. A., C. M. McLaughlin, M. B. O'Keeffe, A. V. Le Gouic, P. J. Allsopp, E. M. McSorley, S. Sharkey, J. Whooley, B. McGovern, F. P. M. O'Harte, et al. 2020. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Research International 131:108989. doi: 10.1016/j.foodres.2020.108989.
  • Hasler, C. M., and A. C. Brown, & American Dietetic Association. 2009. Position of the American Dietetic Association: functional foods. Journal of the American Dietetic Association 109 (4):735–46. doi: 10.1016/j.jada.2009.02.023.
  • Henry, R. R., J. P. Frias, B. Walsh, S. Skare, J. Hemming, C. Burns, T. A. Bicsak, A. Baron, and M. Fineman. 2018. Improved glycemic control with minimal systemic metformin exposure: effects of Metformin Delayed-Release (Metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes. Plos ONE 13 (9):e0203946. doi: 10.1371/journal.pone.0203946.
  • Hricová, A., J. Fejér, G. Libiaková, M. Szabová, J. Gažo, and A. Gajdošová. 2016. Characterization of phenotypic and nutritional properties of valuable Amaranthus Cruentus L. mutants. Turkish Journal of Agriculture and Forestry 40:761–71. doi: 10.3906/tar-1511-31.
  • Janssen, F., A. Pauly, I. Rombouts, K. J. A. Jansens, L. J. Deleu, and J. A. Delcour. 2017. Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): a food science and technology perspective. Comprehensive Reviews in Food Science and Food Safety 16 (1):39–58. doi: 10.1111/1541-4337.12240.
  • Ji, W., C. Zhang, and H. Ji. 2017. Purification, identification and molecular mechanism of two dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Antarctic krill (Euphausia superba) protein hydrolysate. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1064:56–61. doi: 10.1016/j.jchromb.2017.09.001.
  • Jin, R., X. Teng, J. Shang, D. Wang, and N. Liu. 2020. Identification of novel DPP–IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Research International 133:109161. doi: 10.1016/j.foodres.2020.109161.
  • Kanikowska, D., A. Kanikowska, R. Rutkowski, M. Włochal, Z. Orzechowska, A. Juchacz, A. Zawada, M. Grzymisławski, M. Roszak, M. Sato, et al. 2019. Amaranth (Amaranthus cruentus L.) and canola (Brassica napus L.) oil impact on the oxidative metabolism of neutrophils in the obese patients. Pharmaceutical Biology 57 (1):140–4. doi: 10.1080/13880209.2019.1569696.
  • Karimian, J., S. Abedi, M. Shirinbakhshmasoleh, F. Moodi, V. Moodi, and A. Ghavami. 2020. The effects of quinoa seed supplementation on cardiovascular risk factors: a systematic review and meta-analysis of controlled clinical trials. Phytotherapy Research: PTR 1-9. doi: 10.1002/ptr.6901.
  • Kehinde, B. A., and P. Sharma. 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition 60 (2):322–40. doi: 10.1080/10408398.2018.1528206.
  • Kęska, P., and J. Stadnik. 2020. Structure-activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling. Chemical Biology & Drug Design 95 (2):291–301. doi: 10.1111/cbdd.13643.
  • Koufakis, T., N. Katsiki, P. Zebekakis, G. Dimitriadis, and K. Kotsa. 2020. Therapeutic approaches for latent autoimmune diabetes in adults: One size does not fit all. Journal of Diabetes 12 (2):110–8. doi: 10.1111/1753-0407.12982.
  • Kristensen, S. L., R. Rørth, P. S. Jhund, K. F. Docherty, N. Sattar, D. Preiss, L. Køber, M. C. Petrie, and J. J. V. McMurray. 2019. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. The Lancet Diabetes & Endocrinology 7 (10):776–85. . (19)30249-9 doi: 10.1016/S2213-8587(19)30249-9.
  • Lacroix, I. M. E., and E. C. Y. Li-Chan. 2016. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – Current knowledge and future research considerations. Trends in Food Science & Technology 54:1–16. doi: 10.1016/j.tifs.2016.05.008.
  • Lammi, C., G. Aiello, G. Boschin, and A. Arnoldi. 2019. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods 55:135–45. doi: 10.1016/j.jff.2019.02.016.
  • Lammi, C., C. Zanoni, A. Arnoldi, and G. Vistoli. 2016. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: In vitro biochemical screening and in silico molecular modeling study. Journal of Agricultural and Food Chemistry 64 (51):9601–6. doi: 10.1021/acs.jafc.6b04041.
  • Lean, M. E., W. S. Leslie, A. C. Barnes, N. Brosnahan, G. Thom, L. McCombie, C. Peters, S. Zhyzhneuskaya, A. Al-Mrabeh, K. G. Hollingsworth, et al. 2018. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. The Lancet 391 (10120):541–51. . (17)33102-1 doi: 10.1016/S0140-6736(17)33102-1.
  • Li, L., G. Lietz, W. Bal, A. Watson, B. Morfey, and C. Seal. 2018. Effects of quinoa (Chenopodium quinoa Willd.) consumption on markers of CVD risk. Nutrients 10 (6):777. doi: 10.3390/nu10060777.
  • Lin, D. P. L., and C. R. Dass. 2018. Weak bones in diabetes mellitus - an update on pharmaceutical treatment options. The Journal of Pharmacy and Pharmacology 70 (1):1–17. doi: 10.1111/jphp.12808.
  • Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A. Cicero, and S. Hrelia. 2014. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. International Journal of Molecular Sciences 15 (11):21120–35. doi: 10.3390/ijms151121120.
  • Matteucci, E., and O. Giampietro. 2009. Dipeptidyl peptidase-4 (CD26): Knowing the function before inhibiting the enzyme. Current Medicinal Chemistry 16 (23):2943–51. doi: 10.2174/092986709788803114.
  • Matthews, D. R., P. M. Paldánius, P. Proot, Y. Chiang, M. Stumvoll, and S. D. Prato. 2019. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. The Lancet 394 (10208):1519–29. . (19)32131-2 doi: 10.1016/S0140-6736(19)32131-2.
  • Meng, H., A. Zhang, Y. Liang, J. Hao, X. Zhang, and J. Lu. 2018. Effect of metformin on glycaemic control in patients with type 1 diabetes: A meta-analysis of randomized controlled trials. Diabetes/Metabolism Research and Reviews 34 (4):e2983. doi: 10.1002/dmrr.2983.
  • Monjiote, D. P., E. E. M. Leo, and M. R. Segura-Campos. 2017. Functional and biological potential of bioactive compounds in foods for the dietary treatment of type 2 diabetes mellitus. Functional Food - Improve Health through Adequate Food doi: 10.5772/intechopen.68788.
  • Montoya‐Rodríguez, A., Gómez, ‐Favela, M. A. Reyes‐Moreno, C. Milán, ‐Carrillo, J. Mejía. and E. G. d 2015. Identification of bioactive peptide sequences from Amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Comprehensive Reviews in Food Science and Food Safety 14 (2):139–58. doi: 10.1111/1541-4337.12125.
  • Montvida, O., J. B. Green, J. Atherton, and S. K. Paul. 2019. Treatment with incretins does not increase the risk of pancreatic diseases compared to older anti-hyperglycaemic drugs, when added to metformin: Real world evidence in people with Type 2 diabetes. Diabetic Medicine 36 (4):491–8. doi: 10.1111/dme.13835.
  • Nongonierma, A. B., S. Le Maux, C. Dubrulle, C. Barre, and R. J. FitzGerald. 2015. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science 65:112–8. doi: 10.1016/j.jcs.2015.07.004.
  • Nowak, V., J. Du, and U. R. Charrondière. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry 193:47–54. doi: 10.1016/j.foodchem.2015.02.111.
  • Orona-Tamayo, D., and O. Paredes-Lopez. 2016. Amaranth—sustainable crop for the 21st century: Food properties, and nutraceuticals for improving human health. In Sustainable Protein Sources 239–56. doi: 10.1016/B978-0-12-802778-3.00015-9.
  • Orsango, A. Z., E. Loha, B. Lindtjørn, and I. M. S. Engebretsen. 2020. Efficacy of processed amaranth-containing bread compared to maize bread on hemoglobin, anemia and iron deficiency anemia prevalence among two-to-five year-old anemic children in Southern Ethiopia: A cluster randomized controlled trial. PloS One 15 (9):e0239192. doi: 10.1371/journal.pone.0239192.
  • Palmer, S. C., D. Mavridis, A. Nicolucci, D. W. Johnson, M. Tonelli, J. C. Craig, J. Maggo, V. Gray, G. De Berardis, M. Ruospo, et al. 2016. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: A meta-analysis. JAMA 316 (3):313–24. doi: 10.1001/jama.2016.9400.
  • Pereira, E., Encina-Zelada, C. Barros, L. Gonzales-Barron, U. Cadavez, V. Ferreira. C. F. R., and I. 2019. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry 280:110–4. doi: 10.1016/j.foodchem.2018.12.068.
  • Perreault, L., H. Rodbard, V. Valentine, and E. Johnson. 2019. Optimizing fixed-ratio combination therapy in type 2 diabetes. Advances in Therapy 36 (2):265–77. doi: 10.1007/s12325-018-0868-9.
  • Petrov, M. S. 2019. Metabolic trifecta after pancreatitis: exocrine pancreatic dysfunction, altered gut microbiota, and new-onset diabetes. Clinical and Translational Gastroenterology 10 (10):e00086. doi: 10.14309/ctg.0000000000000086.
  • Phung, O. J., D. M. Sobieraj, S. S. Engel, and S. N. Rajpathak. 2014. Early combination therapy for the treatment of type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes, Obesity and Metabolism 16 (5):410–7. doi: 10.1111/dom.12233.
  • Rapti, E., S. Karras, M. Grammatiki, A. Mousiolis, X. Tsekmekidou, E. Potolidis, P. Zebekakis, M. Daniilidis, and K. Kotsa. 2016. Combined treatment with sitagliptin and vitamin D in a patient with latent autoimmune diabetes in adults. Endocrinology, Diabetes & Metabolism Case Reports2016:150136. doi: 10.1530/EDM-15-0136.
  • Ren, Y., K. Liang, Y. Jin, M. Zhang, Y. Chen, H. Wu, and F. Lai. 2016. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein. Journal of Functional Foods 26:439–50. doi: 10.1016/j.jff.2016.07.024.
  • Rizzello, C. G., D. Tagliazucchi, E. Babini, G. Sefora Rutella, D. L. Taneyo Saa, and A. Gianotti. 2016. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods 27:549–69. doi: 10.1016/j.jff.2016.09.023.
  • Sabatino, A., G. Regolisti, C. Cosola, L. Gesualdo, and E. Fiaccadori. 2017. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Current Diabetes Reports 17 (3):16. doi: 10.1007/s11892-017-0841-z.
  • Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, IDF Diabetes Atlas Committee, et al. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 157:107843. doi: 10.1016/j.diabres.2019.107843.
  • Salgaço, M. K., L. G. S. Oliveira, G. N. Costa, F. Bianchi, and K. Sivieri. 2019. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Applied Microbiology and Biotechnology 103 (23–24):9229–38. doi: 10.1007/s00253-019-10156-y.
  • Sapio, O., M. Bueno, H. Busilacchi, M. Quiroga, and C. Severin. 2012. Morphoanatomical characterization of Salvia hispanica L. (LAMIACEAE) leaf, stem, fruit and seed. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas 11:249–68.
  • Scanlin, L., and K. A. Lewis. 2017. Chapter 14 - quinoa as a sustainable protein source: Production, nutrition, and processing. In Sustainable protein sources, ed. S. R. Nadathur, J. P. D. Wanasundara, & L. Scanlin, 223–38. Cambridge, MA: Academic Press. doi: 10.1016/B978-0-12-802778-3.00014-7.
  • Segura-Campos, M., N. Ciau-Solís, G. Rosado-Rubio, L. Chel-Guerrero, and D. Betancur. 2014. Physicochemical characterization of chia (Salvia hispanica) seed oil from Yucatán. Agricultural Sciences 05 (03):220–6. doi: 10.4236/as.2014.53025.
  • Siow, H.-L., T. S. Lim, and C.-Y. Gan. 2017. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study - Cumin seed. Food Chemistry 214:67–76. doi: 10.1016/j.foodchem.2016.07.069.
  • Soares, R. A. M., S. Mendonça, L. Í. A. De Castro, A. C. C. C. C. Menezes, and J. A. G. Arêas. 2015. Major peptides from Amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International Journal of Molecular Sciences 16 (2):4150–60. doi: 10.3390/ijms16024150.
  • Soriano, J., R.-B. Raúl, G.-L. Isabel, P.-A. Edith, E.-B. H. Bernardo, A.-P. J. César, D.-G. Gerardo, and R.-R. Rubén. 2015. Dipeptidyl peptidase IV inhibitory activity of protein hydrolyzates from Amaranthus hypochondriacus L. grain and their influence on postprandial glycemia in streptozotocin-induced diabetic mice. African Journal of Traditional, Complementary and Alternative Medicines 12 (1):90–8. doi: 10.4314/ajtcam.v12i1.13.
  • Subramanian, D., and S. Gupta. 2016. Pharmacokinetic study of amaranth extract in healthy humans: A randomized trial. Nutrition 32 (7–8):748–53. doi: 10.1016/j.nut.2015.12.041.
  • Teoh, S. L., N. M. Lai, P. Vanichkulpitak, V. Vuksan, H. Ho, and N. Chaiyakunapruk. 2018. Clinical evidence on dietary supplementation with chia seed (Salvia hispanica L.): A systematic review and meta-analysis. Nutrition Reviews 76 (4):219–42. doi: 10.1093/nutrit/nux071.
  • Tovar-Pérez, E. G., A. Lugo-Radillo, and S. Aguilera-Aguirre. 2019. Amaranth grain as a potential source of biologically active peptides: A review of their identification, production, bioactivity, and characterization. Food Reviews International 35 (3):221–45. doi: 10.1080/87559129.2018.1514625.
  • Tulipano, G., V. Sibilia, A. M. Caroli, and D. Cocchi. 2011. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32 (4):835–8. doi: 10.1016/j.peptides.2011.01.002.
  • Urbizo-Reyes, U., M. F. San Martin-González, J. Garcia-Bravo, A. López Malo Vigil, and A. M. Liceaga. 2019. Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocolloids 97:105187. doi: 10.1016/j.foodhyd.2019.105187.
  • Velarde-Salcedo, A. J., A. Barrera-Pacheco, S. Lara-González, G. M. Montero-Morán, A. Díaz-Gois, E. González de Mejia, and A. P. Barba de la Rosa. 2013. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry 136 (2):758–64. doi: 10.1016/j.foodchem.2012.08.032.
  • Venskutonis, P. R., and P. Kraujalis. 2013. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety 12 (4):381–412. doi: 10.1111/1541-4337.12021.
  • Vilcacundo, R., C. Martínez-Villaluenga, and B. Hernández-Ledesma. 2017. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 35:531–9. doi: 10.1016/j.jff.2017.06.024.
  • Vilcacundo, R., C. Martinez-Villaluenga, B. Miralles, and B. Hernandez-Ledesma. 2019. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. Journal of the Science of Food and Agriculture 99 (3):1225–32. doi: 10.1002/jsfa.9294.
  • Vilcacundo, R., B. Miralles, W. Carrillo, and B. Hernández-Ledesma. 2018. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International 105:403–11. doi: 10.1016/j.foodres.2017.11.036.
  • Vuksan, V., A. L. Jenkins, C. Brissette, L. Choleva, E. Jovanovski, A. L. Gibbs, R. P. Bazinet, F. Au-Yeung, A. Zurbau, H. V. T. Ho, et al. 2017. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 27 (2):138–46. doi: 10.1016/j.numecd.2016.11.124.
  • Xingú López, A., A. González Huerta, E. De La Cruz Torres, D. M. Sangerman Jarquín, G. Orozco de Rosas, and M. Rubí Arriaga. 2017. Chía (Salvia hispanica L.), situación actual y tendencias futuras. Revista Mexicana de Ciencias Agrícolas 8 (7):1619. doi: 10.29312/remexca.v8i7.516.
  • Zambrowicz, A., E. Eckert, M. Pokora, Ł. Bobak, A. Dąbrowska, M. Szołtysik, T. Trziszka, and J. Chrzanowska. 2015. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia). RSC Advances 5 (14):10460–7. doi: 10.1039/C4RA12943A.
  • Zhang, Y., N. Wang, W. Wang, J. Wang, Z. Zhu, and X. Li. 2016. Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase. Peptides 76:45–50. doi: 10.1016/j.peptides.2015.12.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.