540
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Cyclic peptide production from lactic acid bacteria (LAB) and their diverse applications

&

Bibliography

  • Ahire, J. J., and L. M. Dicks. 2015. Nisin incorporated with 2,3-dihydroxybenzoic acid in nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus. Probiotics and Antimicrobial Proteins 7 (1):52–9. doi: 10.1007/s12602-014-9171-5.
  • Akerey, B., C. Le-Lay, I. Fliss, M. Subirade, and M. Rouabhia. 2009. In vitro efficacy of nisin Z against Candida albicans adhesion and transition following contact with normal human gingival cells. Journal of Applied Microbiology 107 (4):1298–307. doi: 10.1111/j.1365-2672.2009.04312.x.
  • Algöet, M., A. E. Bayley, E. G. Roberts, S. W. Feist, R. W. Wheeler, and D. W. Verner-Jeffreys. 2009. Susceptibility of selected freshwater fish species to a UK Lactococcus garvieae isolate. Journal of Fish Diseases 32 (10):825–34. doi: 10.1111/j.1365-2761.2009.01058.x.
  • Al-Nabulsi, A. A., T. M. Osaili, M. A. Al-Holy, R. R. Shaker, M. M. Ayyash, A. N. Olaimat, and R. A. Holley. 2009. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. International Journal of Food Microbiology 136 (2):221–6. doi: 10.1016/j.ijfoodmicro.2009.08.008.
  • Amna, T., M. S. Hassan, D. R. Pandeya, M. S. Khil, and I. H. Hwang. 2013. Classy non-wovens based on animate L. gasseri-inanimate poly(vinyl alcohol): Upstream application in food engineering. Applied Microbiology and Biotechnology 97 (10):4523–31. doi: 10.1007/s00253-012-4666-z.
  • Arakawa, K., Y. Kawai, H. Iioka, M. Tanioka, J. Nishimura, H. Kitazawa, K. Tsurumi, and T. Saito. 2009. Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. Journal of Dairy Science 92 (6):2365–72. doi: 10.3168/jds.2008-1240.
  • Arakawa, K., Y. Kawai, Y. Ito, K. Nakamura, T. Chujo, J. Nishimura, H. Kitazawa, and T. Saito. 2010. HPLC purification and re-evaluation of chemical identity of two circular bacteriocins, gassericin A and reutericin 6. Letters in Applied Microbiology 50 (4):406–11. doi: 10.1111/j.1472-765X.2010.02810.x.
  • Arqués, J. L., E. Rodríguez, P. Gaya, M. Medina, B. Guamis, and M. Nuñez. 2005. Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. Journal of Applied Microbiology 98 (2):254–60. doi: 10.1111/j.1365-2672.2004.02507.x.
  • Arqués, J. L., E. Rodríguez, P. Gaya, M. Medina, and M. Nuñez. 2005. Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. International Dairy Journal 15 (6–9):893–900. doi: 10.1016/j.idairyj.2004.07.020.
  • Asaduzzaman, S. M., J. I. Nagao, Y. Aso, J. Nakayama, and K. Sonomoto. 2006. Lysine-oriented charges trigger the membrane binding and activity of nukacin ISK-1. Applied and Environmental Microbiology 72 (9):6012–7. doi: 10.1128/AEM.00678-06.
  • Ávila, M., S. Garde, P. Gaya, M. Medina, and M. Nuñez. 2005. Influence of a bacteriocin-producing lactic culture on proteolysis and texture of Hispánico cheese. International Dairy Journal 15 (2):145–53. doi: 10.1016/j.idairyj.2004.06.009.
  • Ávila, M., S. Garde, M. Medina, and M. Nuñez. 2005. Effect of milk inoculation with bacteriocin-producing lactic acid bacteria on a Lactobacillus helveticus adjunct cheese culture. Journal of Food Protection 68 (5):1026–33. doi: 10.4315/0362-028x-68.5.1026.
  • Aznar, A., P. S. Fernández, P. M. Periago, and A. Palop. 2015. Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of Candida lusitaniae. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 21 (1):72–9. doi: 10.1177/1082013213514593.
  • Baltova, K., and Z. Dimitrov. 2014. Probiotic and cultural characteristic of strain Lactobacillus gasseri 4/13 of human origin. Biotechnology, Biotechnological Equipment 28 (6):1084–8. doi: 10.1080/13102818.2014.974303.
  • Bartoloni, A., A. Mantella, B. P. Goldstein, R. Dei, M. Benedetti, S. Sbaragli, and F. Paradisi. 2004. In-vitro activity of nisin against clinical isolates of Clostridium difficile. Journal of Chemotherapy (Florence, Italy) 16 (2):119–21. doi: 10.1179/joc.2004.16.2.119.
  • Bastos, M. D. C. D. F., B. G. Coutinho, and M. L. V. Coelho. 2010. Lysostaphin: A staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals (Basel, Switzerland) 3 (4):1139–61. doi: 10.3390/ph3041139.
  • Bellezza, I., M. J. Peirce, and A. Minelli. 2014. Cyclic dipeptides: From bugs to brain. Trends in Molecular Medicine 20 (10):551–8. doi: 10.1016/j.molmed.2014.08.003.
  • Berlec, A., M. Ravnikar, and B. Štrukelj. 2012. Lactic acid bacteria as oral delivery systems for biomolecules. Die Pharmazie - An International Journal of Pharmaceutical Sciences 67 (11):891–8.
  • Bhatti, M., A. Veeramachaneni, and L. A. Shelef. 2004. Factors affecting the antilisterial effects of nisin in milk. International Journal of Food Microbiology 97 (2):215–9. doi: 10.1016/j.ijfoodmicro.2004.06.010.
  • Bierbaum, G., and H. G. Sahl. 1985. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Archives of Microbiology 141 (3):249–54. doi: 10.1007/BF00408067.
  • Borrero, J., D. A. Brede, M. Skaugen, D. B. Diep, C. Herranz, I. F. Nes, L. M. Cintas, and P. E. Hernández. 2011. Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Applied and Environmental Microbiology 77 (1):369–73. doi: 10.1128/AEM.01173-10.
  • Borrero, J., E. Kelly, P. M. O'Connor, P. Kelleher, C. Scully, P. D. Cotter, J. Mahony, and D. van Sinderen. 2018. Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: Purification, characterization, and heterologous production. Applied and Environmental Microbiology 84 (1):e01801-17.
  • Brachkova, M. I., P. Marques, J. Rocha, B. Sepodes, M. A. Duarte, and J. F. Pinto. 2011. Alginate films containing Lactobacillus plantarum as wound dressing for prevention of burn infection. The Journal of Hospital Infection 79 (4):375–7. doi: 10.1016/j.jhin.2011.09.003.
  • Brand, A. M., C. Smith, and L. M. T. Dicks. 2013. The effects of continuous in vivo administration of nisin on Staphylococcus aureus infection and immune response in mice. Probiotics and Antimicrobial Proteins 5 (4):279–86. doi: 10.1007/s12602-013-9141-3.
  • Breukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H. G. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science (New York, N.Y.) 286 (5448):2361–4. doi: 10.1126/science.286.5448.2361.
  • Brunt, J., A. Newaj-Fyzul, and B. Austin. 2007. The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 30 (10):573–9. doi: 10.1111/j.1365-2761.2007.00836.x.
  • Caplice, E., and G. F. Fitzgerald. 1999. Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology 50 (1–2):131–49. doi: 10.1016/S0168-1605(99)00082-3.
  • Chatterjee, C., M. Paul, L. Xie, and W. A. Van Der Donk. 2005. Biosynthesis and mode of action of lantibiotics. Chemical Reviews 105 (2):633–84. doi: 10.1021/cr030105v.
  • Chen, L., Q. Gu, P. Li, Y. Li, D. Song, and J. Yang. 2018. Purification and Characterization of Plantaricin ZJ316, a Novel Bacteriocin against Listeria monocytogenes from Lactobacillus plantarum ZJ316. Journal of Food Protection 81 (12):1929–35. doi: 10.4315/0362-028X.JFP-18-306.
  • Choi, J. S., and S. H. Joo. 2020. Recent trends in cyclic peptides as therapeutic agents and biochemical tools. Biomolecules & Therapeutics 28 (1):18–24. doi: 10.4062/biomolther.2019.082.
  • Chollet, E., I. Sebti, A. Martial-Gros, and P. Degraeve. 2008. Nisin preliminary study as a potential preservative for sliced ripened cheese: NaCl, fat and enzymes influence on nisin concentration and its antimicrobial activity. Food Control 19 (10):982–9. doi: 10.1016/j.foodcont.2007.10.005.
  • Ciabattini, A., E. Pettini, S. Arsenijevic, G. Pozzi, and D. Medaglini. 2010. Intranasal immunization with vaccine vector Streptococcus gordonii elicits primed CD4+ and CD8+ T cells in the genital and intestinal tracts. Vaccine 28 (5):1226–33. doi: 10.1016/j.vaccine.2009.11.021.
  • Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology 71 (1):1–20. doi: 10.1016/S0168-1605(01)00560-8.
  • Coffey, A., M. Ryan, R. P. Ross, C. Hill, E. Arendt, and G. Schwarz. 1998. Use of a broad-host-range bacteriocin-producing Lactococcus lactis transconjugant as an alternative starter for salami manufacture. International Journal of Food Microbiology 43 (3):231–5. doi: 10.1016/S0168-1605(98)00115-9.
  • Cotter, P. D., C. Hill, and R. P. Ross. 2005. Bacterial lantibiotics: Strategies to improve therapeutic potential. Current Protein & Peptide Science 6 (1):61–75. doi: 10.2174/1389203053027584.
  • Cotter, P. D., R. P. Ross, and C. Hill. 2013. Bacteriocins - A viable alternative to antibiotics? Nature Reviews. Microbiology 11 (2):95–105. doi: 10.1038/nrmicro2937.
  • De Kwaadsteniet, M., K. Ten Doeschate, and L. M. T. Dicks. 2008. Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Applied and Environmental Microbiology 74 (2):547–9. doi: 10.1128/AEM.01862-07.
  • de Lima Marques, J., G. D. Funck, G. da Silva Dannenberg, C. E. dos Santos Cruxen, S. L. M. El Halal, A. R. G. Dias, Â. M. Fiorentini, and W. P. da Silva. 2017. Bacteriocin-like substances of Lactobacillus curvatus P99: Characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiology 63:159–63. doi: 10.1016/j.fm.2016.11.008.
  • de Mello, M. B., P. da Silva Malheiros, A. Brandelli, N. P. da Silveira, M. M. Jantzen, and A. D. S. da Motta. 2013. Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics and Antimicrobial Proteins 5 (1):43–50. doi: 10.1007/s12602-013-9125-3.
  • de Palencia, P. F., M. de la Plaza, M. L. Mohedano, M. C. Martınez-Cuesta, T. Requena, P. López, and C. Peláez. 2004. Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. International Journal of Food Microbiology 93 (3):335–47. doi: 10.1016/j.ijfoodmicro.2003.11.018.
  • De Vos, W. M., O. P. Kuipers, J. R. Van Der Meer, and R. J. Siezen. 1995. Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Molecular Microbiology 17 (3):427–37. doi: 10.1111/j.1365-2958.1995.mmi_17030427.x.
  • De Vos, W. M., J. W. Mulders, R. J. Siezen, J. Hugenholtz, and O. P. Kuipers. 1993. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Applied and Environmental Microbiology 59 (1):213–8. doi: 10.1128/AEM.59.1.213-218.1993.
  • Delves-Broughton, J. 2005. Nisin as a food preservative. Food Australia 57 (12):525–7.
  • Demel, R. A., T. Peelen, R. J. Siezen, B. De Kruijff, and O. P. Kuipers. 1996. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. European Journal of Biochemistry 235 (1–2):267–74. doi: 10.1111/j.1432-1033.1996.00267.x.
  • Di Cagno, R., R. Coda, M. De Angelis, and M. Gobbetti. 2013. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology 33 (1):1–10. doi: 10.1016/j.fm.2012.09.003.
  • Dicks, L. M. T., T. D. J. Heunis, D. A. Van Staden, A. Brand, K. S. Noll, and M. L. Chikindas. 2011. Medical and personal care applications of bacteriocins produced by lactic acid bacteria. In Prokaryotic antimicrobial peptides, 391–421. New York, NY: Springer.
  • Dortu, C., M. Huch, W. H. Holzapfel, C. M. A. P. Franz, and P. Thonart. 2008. Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Letters in Applied Microbiology 47 (6):581–6. doi: 10.1111/j.1472-765X.2008.02468.x.
  • Dosler, S., and A. A. Gerceker. 2011. In vitro activities of nisin alone or in combination with vancomycin and ciprofloxacin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Chemotherapy 57 (6):511–6. doi: 10.1159/000335598.
  • Draper, L. A., P. M. O'Connor, A. Coffey, and J. O'Mahony. 2010. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria.
  • Dufour, A., T. Hindré, D. Haras, and J. P. Le Pennec. 2007. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiology Reviews 31 (2):134–67. doi: 10.1111/j.1574-6976.2006.00045.x.
  • Edman, P. E. H. R. 1959. Chemistry of amino acids and peptides. Annual Review of Biochemistry 28 (1):69–96. doi: 10.1146/annurev.bi.28.070159.000441.
  • Eguchi, C., and A. Kakuta. 1974. Studies on cyclic dipeptides. I. Thermodynamics of the cis-trans isomerization of the side chains in cyclic dipeptides. Journal of the American Chemical Society 96 (12):3985–9. doi: 10.1021/ja00819a042.
  • Emiroğlu, Z. K., G. P. Yemiş, B. K. Coşkun, and K. Candoğan. 2010. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science 86 (2):283–8. doi: 10.1016/j.meatsci.2010.04.016.
  • Fallico, V., O. McAuliffe, G. F. Fitzgerald, C. Hill, and R. P. Ross. 2009. The presence of pMRC01 promotes greater cell permeability and autolysis in lactococcal starter cultures. International Journal of Food Microbiology 133 (3):217–24. doi: 10.1016/j.ijfoodmicro.2009.04.029.
  • Feng, K., M. Y. Zhai, Y. Zhang, R. J. Linhardt, M. H. Zong, L. Li, and H. Wu. 2018. Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber mat. Journal of Agricultural and Food Chemistry 66 (41):10890–7. doi: 10.1021/acs.jafc.8b02644.
  • Field, D., M. Begley, P. M. O'Connor, K. M. Daly, F. Hugenholtz, P. D. Cotter, C. Hill, and R. P. Ross. 2012. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One 7 (10):e46884. doi: 10.1371/journal.pone.0046884.
  • Field, D., P. D. Cotter, R. P. Ross, and C. Hill. 2015. Bioengineering of the model lantibiotic nisin. Bioengineered 6 (4):187–92. doi: 10.1080/21655979.2015.1049781.
  • Foo, H. L., T. C. Loh, P. W. Lai, Y. Z. Lim, C. N. Kufli, and G. Rusul. 2003. Effects of adding Lactobacillus plantarum I-UL4 metabolites in drinking water of rats. Pakistan Journal of Nutrition 2 (5):283–8. doi: 10.3923/pjn.2003.283.288.
  • Foo, H. L., T. C. Loh, F. L. Law, Y. S. Lim, C. N. Kuflin, and G. Rusul. 2003. Effect of feeding L. plantarum I-UL4 isolated from Malaysian Tempeh on growth performance, fecla flora and lactic acid bacteria and plasma cholesterol concentrations in post weaning rats. Journal of Food Science and Biotechnology 12:403–8.
  • Fortina, M. G., G. Ricci, R. Foschino, C. Picozzi, P. Dolci, G. Zeppa, L. Cocolin, and P. L. Manachini. 2007. Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. Journal of Applied Microbiology 103 (2):445–53. doi: 10.1111/j.1365-2672.2006.03265.x.
  • Gabrielsen, C., D. A. Brede, I. F. Nes, and D. B. Diep. 2014. Circular bacteriocins: Biosynthesis and mode of action. Applied and Environmental Microbiology 80 (22):6854–62. doi: 10.1128/AEM.02284-14.
  • Gabrielsen, C., D. A. Brede, Z. Salehian, I. F. Nes, and D. B. Diep. 2014. Functional genetic analysis of the GarML gene cluster in Lactococcus garvieae DCC43 gives new insights into circular bacteriocin biosynthesis. Journal of Bacteriology 196 (5):911–9. doi: 10.1128/JB.01115-13.
  • Gálvez, A., M. Maqueda, M. Martínez-Bueno, and E. Valdivia. 1991. Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers by peptide antibiotic AS-48. Journal of Bacteriology 173 (2):886–92. doi: 10.1128/jb.173.2.886-892.1991.
  • Gálvez, A., M. Maqueda, E. Valdivia, A. Quesada, and E. Montoya. 1986. Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Canadian Journal of Microbiology 32 (10):765–71. doi: 10.1139/m86-141.
  • Gálvez, A., E. Valdivia, M. Martínez-Bueno, and M. Maqueda. 1990. Induction of autolysis in Enterococcus faecalis S-47 by peptide AS-48. The Journal of Applied Bacteriology 69 (3):406–13. doi: 10.1111/j.1365-2672.1990.tb01531.x.
  • Gänzle, M. G., A. Höltzel, J. Walter, G. Jung, and W. P. Hammes. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Applied and Environmental Microbiology 66 (10):4325–33. doi: 10.1128/aem.66.10.4325-4333.2000.
  • Garde, S., M. Ávila, M. Medina, and M. Nuñez. 2004. Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. International Journal of Food Microbiology 96 (2):165–72. doi: 10.1016/j.ijfoodmicro.2004.03.023.
  • Garde, S., M. Carbonell, E. Fernández-García, M. Medina, and M. Nuñez. 2002. Volatile compounds in Hispánico cheese manufactured using a mesophilic starter, a thermophilic starter, and bacteriocin-producing Lactococcus lactis subsp. lactis INIA 415. Journal of Agricultural and Food Chemistry 50 (23):6752–7. doi: 10.1021/jf020577v.
  • Garde, S., J. Tomillo, P. Gaya, M. Medina, and M. Nuñez. 2002. Proteolysis in Hispánico cheese manufactured using a mesophilic starter, a thermophilic starter, and bacteriocin-producing Lactococcus lactis subsp. lactis INIA 415 adjunct culture. Journal of Agricultural and Food Chemistry 50 (12):3479–85. doi: 10.1021/jf011291d.
  • Gasteiger, E., C. Hoogland, A. Gattiker, M. R. Wilkins, R. D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook, 571–607. Totowa, NJ: Humana Press.
  • Gatesoupe, F. J. 2008. Updating the importance of lactic acid bacteria in fish farming: Natural occurrence and probiotic treatments. Journal of Molecular Microbiology and Biotechnology 14 (1–3):107–14. doi: 10.1159/000106089.
  • Giessen, T. W., and M. A. Marahiel. 2014. The tRNA-dependent biosynthesis of modified cyclic dipeptides. International Journal of Molecular Sciences 15 (8):14610–31. doi: 10.3390/ijms150814610.
  • Gillon, A. D., I. Saska, C. V. Jennings, R. F. Guarino, D. J. Craik, and M. A. Anderson. 2008. Biosynthesis of circular proteins in plants. The Plant Journal 53 (3):505–15. doi: 10.1111/j.1365-313X.2007.03357.x.
  • Gillor, O., A. Etzion, and M. A. Riley. 2008. The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology 81 (4):591–606. doi: 10.1007/s00253-008-1726-5.
  • Golneshin, A., M. C. Gor, B. Vezina, N. Williamson, T. T. H. Van, B. K. May, and A. T. Smith. 2020. Discovery and characterisation of novel circular bacteriocin plantacyclin B21AG from Lactobacillus plantarum B21. bioRxiv.
  • Gong, X., L. A. Martin-Visscher, D. Nahirney, J. C. Vederas, and M. Duszyk. 2009. The circular bacteriocin, carnocyclin A, forms anion-selective channels in lipid bilayers. Biochimica et Biophysica Acta 1788 (9):1797–803. doi: 10.1016/j.bbamem.2009.05.008.
  • Gonzalez, B., P. Arca, B. Mayo, and J. E. Suárez. 1994. Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Applied and Environmental Microbiology 60 (6):2158–63. doi: 10.1128/AEM.60.6.2158-2163.1994.
  • Gonzalez, B., E. Glaasker, E. Kunji, A. Driessen, J. E. Suárez, and W. N. Konings. 1996. Bactericidal mode of action of plantaricin C. Applied and Environmental Microbiology 62 (8):2701–9. doi: 10.1128/AEM.62.8.2701-2709.1996.
  • Gonzalez, C. F., and B. S. Kunka. 1987. Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Applied and Environmental Microbiology 53 (10):2534–8. doi: 10.1128/AEM.53.10.2534-2538.1987.
  • Gross, E., and J. L. Morell. 1971. The structure of nisin. Journal of the American Chemical Society 93 (18):4634–5. doi: 10.1021/ja00747a073.
  • Guerra, N. P., C. L. Macias, A. T. Agrasar, and L. P. Castro. 2005. Development of a bioactive packaging cellophane using Nisaplin as biopreservative agent. Letters in Applied Microbiology 40 (2):106–10. doi: 10.1111/j.1472-765X.2004.01649.x.
  • Guo, M., T. Z. Jin, L. Wang, O. J. Scullen, and C. H. Sommers. 2014. Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control 40:64–70. doi: 10.1016/j.foodcont.2013.11.018.
  • Harris, L. J., H. P. Fleming, and T. R. Klaenhammer. 1992. Developments in nisin research. Food Research International. 25 (1):57–66. doi: 10.1016/0963-9969(92)90026-2.
  • Hasper, H. E., N. E. Kramer, J. L. Smith, J. D. Hillman, C. Zachariah, O. P. Kuipers, B. De Kruijff, and E. Breukink. 2006. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313 (5793):1636–7. doi: 10.1126/science.1129818.
  • Henkel, M., and R. Hausmann. 2019. Diversity and classification of microbial surfactants. In Biobased surfactants, 41–63. Urbana, IL: AOCS Press.
  • Heunis, T. D., C. Smith, and L. M. Dicks. 2013. Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrobial Agents and Chemotherapy 57 (8):3928–35. doi: 10.1128/AAC.00622-13.
  • Holo, H., Z. Jeknic, M. Daeschel, S. Stevanovic, and I. F. Nes. 2001. Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology (Reading, England) 147 (Pt 3):643–51. doi: 10.1099/00221287-147-3-643.
  • Holtsmark, I., D. Mantzilas, V. G. H. Eijsink, and M. B. Brurberg. 2006. Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. michiganensis. Applied and Environmental Microbiology 72 (9):5814–21. doi: 10.1128/AEM.00639-06.
  • Horton, D. A., G. T. Bourne, and M. L. Smythe. 2002. Exploring privileged structures: The combinatorial synthesis of cyclic peptides. Journal of Computer-Aided Molecular Design 16 (5–6):415–31. doi: 10.1023/a:1020863921840.
  • Hur, G. H., C. R. Vickery, and M. D. Burkart. 2012. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural Product Reports 29 (10):1074–98. doi: 10.1039/c2np20025b.
  • Jagtap, P. K. A., D. Garg, T. G. Kapp, C. L. Will, O. Demmer, R. Lührmann, H. Kessler, and M. Sattler. 2016. Rational design of cyclic peptide inhibitors of U2AF Homology Motif (UHM) domains to modulate Pre-mRNA splicing. Journal of Medicinal Chemistry 59 (22):10190–7. doi: 10.1021/acs.jmedchem.6b01118.
  • Joo, N. E., K. Ritchie, P. Kamarajan, D. Miao, and Y. L. Kapila. 2012. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Medicine 1 (3):295–305. doi: 10.1002/cam4.35.
  • Joo, S. H. 2012. Cyclic peptides as therapeutic agents and biochemical tools. Biomolecules & Therapeutics 20 (1):19–26. doi: 10.4062/biomolther.2012.20.1.019.
  • Kabuki, T., T. Saito, Y. Kawai, J. Uemura, and T. Itoh. 1997. Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. International Journal of Food Microbiology 34 (2):145–56. doi: 10.1016/S0168-1605(96)01180-4.
  • Karamese, M., H. Aydin, E. Sengul, V. Gelen, C. Sevim, D. Ustek, and E. Karakus. 2016. The immunostimulatory effect of lactic acid bacteria in a rat model. Iranian Journal of Immunology 13 (3):220–8.
  • Kawai, Y., Y. Ishii, K. Arakawa, K. Uemura, B. Saitoh, J. Nishimura, H. Kitazawa, Y. Yamazaki, Y. Tateno, T. Itoh, et al. 2004. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Applied and Environmental Microbiology 70 (5):2906–11. doi: 10.1128/aem.70.5.2906-2911.2004.
  • Kawai, Y., Y. Ishii, K. Uemura, H. Kitazawa, T. Saito, and T. Itoh. 2001. Lactobacillus reuteri LA6 and Lactobacillus gasseri LA39 isolated from faeces of the same human infant produce identical cyclic bacteriocin. Food Microbiology. 18 (4):407–15. doi: 10.1006/fmic.2001.0412.
  • Kawai, Y., R. Kemperman, J. Kok, and T. Saito. 2004. The circular bacteriocins gassericin A and circularin A. Current Protein & Peptide Science 5 (5):393–8. doi: 10.2174/1389203043379549.
  • Kawai, Y., J. Kusnadi, R. Kemperman, J. Kok, Y. Ito, M. Endo, K. Arakawa, H. Uchida, J. Nishimura, H. Kitazawa, et al. 2009. DNA sequencing and homologous expression of a small peptide conferring immunity to gassericin A, a circular bacteriocin produced by Lactobacillus gasseri LA39. Applied and Environmental Microbiology 75 (5):1324–30. doi: 10.1128/AEM.02485-08.
  • Kawai, Y., T. Saito, H. Kitazawa, and T. Itoh. 1998. Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Bioscience, Biotechnology, and Biochemistry 62 (12):2438–40. doi: 10.1271/bbb.62.2438.
  • Kellner, R., G. Jung, T. Hörner, H. Zähner, N. Schnell, K. D. Entian, and F. Götz. 1988. Gallidermin: A new lanthionine-containing polypeptide antibiotic. European Journal of Biochemistry 177 (1):53–9. doi: 10.1111/j.1432-1033.1988.tb14344.x.
  • Khalid, K. 2011. An overview of lactic acid bacteria. International Journal of Biosciences 1 (3):1–13.
  • Kindrachuk, J., H. Jenssen, M. Elliott, A. Nijnik, L. Magrangeas-Janot, M. Pasupuleti, L. Thorson, S. Ma, D. M. Easton, M. Bains, et al. 2013. Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory. Innate Immunity 19 (3):315–27. doi: 10.1177/1753425912461456.
  • Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70 (3):337–49. doi: 10.1016/0300-9084(88)90206-4.
  • Klostermann, K., F. Crispie, J. Flynn, W. Meaney, R. P. Ross, and C. Hill. 2010. Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. The Journal of Dairy Research 77 (2):231–8. doi: 10.1017/S0022029909990239.]
  • Kluskens, L. D., A. Kuipers, R. Rink, E. de Boef, S. Fekken, A. J. Driessen, O. P. Kuipers, and G. N. Moll. 2005. Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. Biochemistry 44 (38):12827–34. doi: 10.1021/bi050805p.
  • Kramer, N. E., H. E. Hasper, P. T. van den Bogaard, S. Morath, B. de Kruijff, T. Hartung, E. J. Smid, E. Breukink, J. Kok, and O. P. Kuipers. 2008. Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis. Microbiology (Reading, England) 154 (Pt 6):1755–62. doi: 10.1099/mic.0.2007/015412-0.
  • Kwak, M. K., R. Liu, M. K. Kim, D. Moon, A. H. Kim, S. H. Song, and S. O. Kang. 2014. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. Journal of Microbiology (Seoul, Korea) 52 (1):64–70. doi: 10.1007/s12275-014-3520-7.
  • Kwak, M. K., R. Liu, J. O. Kwon, M. K. Kim, A. H. Kim, and S. O. Kang. 2013. Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza A virus. Journal of Microbiology (Seoul, Korea) 51 (6):836–43. doi: 10.1007/s12275-013-3521-y.
  • Kuorwel, K. K., M. J. Cran, K. Sonneveld, J. Miltz, and S. W. Bigger. 2011. Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. Journal of Food Science 76 (9):R164–R177. doi: 10.1111/j.1750-3841.2011.02384.x.
  • Kykkidou, S., N. Pournis, O. K. Kostoula, and I. N. Savvaidis. 2007. Effects of treatment with nisin on the microbial flora and sensory properties of a Greek soft acid-curd cheese stored aerobically at 4 C. International Dairy Journal 17 (10):1254–8. doi: 10.1016/j.idairyj.2007.02.006.
  • La Storia, A., G. Mauriello, F. Villani, and D. Ercolini. 2013. Coating-activation and antimicrobial efficacy of different polyethylene films with a nisin-based solution. Food and Bioprocess Technology 6 (10):2770–9. doi: 10.1007/s11947-012-0902-x.
  • Lalonde, M. S., M. A. Lobritz, A. Ratcliff, M. Chamanian, Z. Athanassiou, M. Tyagi, J. Wong, J. A. Robinson, J. Karn, G. Varani, et al. 2011. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathogens 7 (5):e1002038., doi: 10.1371/journal.ppat.1002038.
  • Lee, D. W., and B. S. Kim. 2015. Antimicrobial cyclic peptides for plant disease control. The Plant Pathology Journal 31 (1):1–11. doi: 10.5423/PPJ.RW.08.2014.0074.
  • Leer, R. J., J. M. van der Vossen, M. van Giezen, M. van Noort Johannes, and P. H. Pouwels. 1995. Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141 (7):1629–35. doi: 10.1099/13500872-141-7-1629.
  • Li, H., L. Liu, S. Zhang, W. Cui, and J. Lv. 2012. Identification of antifungal compounds produced by Lactobacillus casei AST18. Current Microbiology 65 (2):156–61. doi: 10.1007/s00284-012-0135-2.
  • Li, J., W. Wang, S. X. Xu, N. A. Magarvey, and J. K. McCormick. 2011. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proceedings of the National Academy of Sciences of the United States of America 108 (8):3360–5. doi: 10.1073/pnas.1017431108.
  • Li, P., X. Li, Q. Gu, X. Y. Lou, X. M. Zhang, D. F. Song, and C. Zhang. 2016. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles. Journal of Zhejiang University. Science. B 17 (8):569–79. doi: 10.1631/jzus.B1600176.
  • Lian, W., B. Jiang, Z. Qian, and D. Pei. 2014. Cell-permeable bicyclic peptide inhibitors against intracellular proteins. Journal of the American Chemical Society 136 (28):9830–3. doi: 10.1021/ja503710n.
  • Liu, J. Y., A. H. Li, C. Ji, and W. M. Yang. 2009. First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Veterinary Microbiology 136 (3–4):314–20. doi: 10.1016/j.vetmic.2008.11.027.
  • Liu, R. 2017. Cyclic dipeptides and cyclic dipeptide synthetase of Lactobacillus plantarum LBP-K10. Doctoral dissertation, 서울대학교대학원.
  • Luan, Q., W. Zhou, H. Zhang, Y. Bao, M. Zheng, J. Shi, H. Tang, and F. Huang. 2018. Cellulose-based composite macrogels from cellulose fiber and cellulose nanofiber as intestine delivery vehicles for probiotics. Journal of Agricultural and Food Chemistry 66 (1):339–45. doi: 10.1021/acs.jafc.7b04754.
  • Manna, A. K., A. Kumar, U. Ray, S. Das, G. Basu, and S. Roy. 2013. A cyclic peptide mimic of an RNA recognition motif of human La protein is a potent inhibitor of hepatitis C virus. Antiviral Research 97 (3):223–6. doi: 10.1016/j.antiviral.2012.12.026.
  • Maqueda, M., M. Sánchez-Hidalgo, M. Fernández, M. Montalbán-López, E. Valdivia, and M. Martínez-Bueno. 2008. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiology Reviews 32 (1):2–22. doi: 10.1111/j.1574-6976.2007.00087.x.
  • Marcos, B., T. Aymerich, J. M. Monfort, and M. Garriga. 2007. Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. International Journal of Food Microbiology 120 (1–2):152–8. doi: 10.1016/j.ijfoodmicro.2007.06.003.
  • Marelli, B., A. R. Perez, C. Banchio, D. de Mendoza, and C. Magni. 2011. Oral immunization with live Lactococcus lactis expressing rotavirus VP8 subunit induces specific immune response in mice. Journal of Virological Methods 175 (1):28–37. doi: 10.1016/j.jviromet.2011.04.011.
  • Marshall, V. M. 1987. Lactic acid bacteria: Starters for flavour. FEMS Microbiology Letters 46 (3):327–36. doi: 10.1111/j.1574-6968.1987.tb02469.x.
  • Martin, N. I., T. Sprules, M. R. Carpenter, P. D. Cotter, C. Hill, R. P. Ross, and J. C. Vederas. 2004. Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43 (11):3049–56. doi: 10.1021/bi0362065.
  • Martínez-Bueno, M., E. Valdivia, A. Gálvez, J. Coyette, and M. Maqueda. 1998. Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Molecular Microbiology 27 (2):347–58. doi: 10.1046/j.1365-2958.1998.00682.x.
  • Martínez-Cuesta, C., T. Requena, and C. Peláez. 2002. Effect of bacteriocin-induced cell damage on the branched-chain amino acid transamination by Lactococcus lactis. FEMS Microbiology Letters 217 (1):109–13. doi: 10.1016/S0378-1097(02)01047-9.
  • Martínez-Cuesta, M. C., T. Requena, and C. Peláez. 2006. Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730. International Journal of Food Microbiology 109 (3):198–204. doi: 10.1016/j.ijfoodmicro.2006.01.028.
  • Martin-Visscher, L. A., X. Gong, M. Duszyk, and J. C. Vederas. 2009. The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. The Journal of Biological Chemistry 284 (42):28674–81. doi: 10.1074/jbc.M109.036459.
  • Martin-Visscher, L. A., M. J. van Belkum, S. Garneau-Tsodikova, R. M. Whittal, J. Zheng, L. M. McMullen, and J. C. Vederas. 2008. Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Applied and Environmental Microbiology 74 (15):4756–63. doi: 10.1128/AEM.00817-08.
  • Masuda, Y., H. Ono, H. Kitagawa, H. Ito, F. Mu, N. Sawa, T. Zendo, and K. Sonomoto. 2011. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Applied and Environmental Microbiology 77 (22):8164–70. doi: 10.1128/AEM.06348-11.
  • McAuliffe, O., C. Hill, and R. P. Ross. 1999. Inhibition of Listeria monocytogenes in cottage cheese manufactured with a lacticin 3147-producing starter culture. Journal of Applied Microbiology 86 (2):251–6. doi: 10.1046/j.1365-2672.1999.00663.x.
  • McAuliffe, O., M. P. Ryan, R. P. Ross, C. Hill, P. Breeuwer, and T. Abee. 1998. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Applied and Environmental Microbiology 64 (2):439–45. doi: 10.1128/AEM.64.2.439-445.1998.
  • Meijerink, M., S. Van Hemert, N. Taverne, M. Wels, P. De Vos, P. A. Bron, H. F. Savelkoul, J. van Bilsen, M. Kleerebezem, and J. M. Wells. 2010. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 5 (5):e10632. doi: 10.1371/journal.pone.0010632.
  • Mercenier, A., H. Muller-Alouf, and C. Grangette. 2000. Lactic acid bacteria as live vaccines. Current Issues in Molecular Biology 2 (1):17–26.
  • Michaela, S., W. Reinhard, K. Gerhard, and M.-E. Christine. 2009. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraftassociated clean rooms. Applied and Environmental Microbiology 75 (11):3484–91.
  • Mills, S., A. Coffey, L. O'Sullivan, D. Stokes, C. Hill, G. F. Fitzgerald, and R. P. Ross. 2002. Use of lacticin 481 to facilitate delivery of the bacteriophage resistance plasmid, pCBG104 to cheese starters. Journal of Applied Microbiology 92 (2):238–46. doi: 10.1046/j.1365-2672.2002.01527.x.
  • Ming, X., G. H. Weber, J. W. Ayres, and W. E. Sandine. 1997. Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. Journal of Food Science 62 (2):413–5. doi: 10.1111/j.1365-2621.1997.tb04015.x.
  • Mishra, A. K., J. Choi, S. J. Choi, and K. H. Baek. 2017. Cyclodipeptides: An overview of their biosynthesis and biological activity. Molecules 22 (10):1796. doi: 10.3390/molecules22101796.
  • Mohamadzadeh, M., E. Durmaz, M. Zadeh, K. C. Pakanati, M. Gramarossa, V. Cohran, and T. R. Klaenhammer. 2010. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiology 5 (8):1289–96. doi: 10.2217/fmb.10.78.
  • Moll, G. N., W. N. Konings, and A. J. Driessen. 1999. Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76 (1–4):185–98. doi: 10.1023/A:1002002718501.
  • Morgan, S. M., M. Galvin, R. P. Ross, and C. Hill. 2001. Evaluation of a spray-dried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Letters in Applied Microbiology 33 (5):387–91. doi: 10.1046/j.1472-765x.2001.01016.x.
  • Morgan, S. M., R. P. Ross, T. Beresford, and C. Hill. 2000. Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. Journal of Applied Microbiology 88 (3):414–414420. doi: 10.1046/j.1365-2672.2000.00975.x.
  • Mørtvedt, C. I., J. Nissen-Meyer, K. Sletten, and I. F. Nes. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Applied and Environmental Microbiology 57 (6):1829–34. doi: 10.1128/AEM.57.6.1829-1834.1991.
  • Mu, Q., V. J. Tavella, and X. M. Luo. 2018. Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology 9:757. doi: 10.3389/fmicb.2018.00757.
  • Muriel-Galet, V., G. López-Carballo, R. Gavara, and P. Hernández-Muñoz. 2012. Antimicrobial food packaging film based on the release of LAE from EVOH. International Journal of Food Microbiology 157 (2):239–44. doi: 10.1016/j.ijfoodmicro.2012.05.009.
  • Ndoti-Nembe, A., K. D. Vu, N. Doucet, and M. Lacroix. 2013. Effect of combination of essential oils and bacteriocins on the efficacy of gamma radiation against Salmonella typhimurium and Listeria monocytogenes. International Journal of Radiation Biology 89 (10):794–800. doi: 10.3109/09553002.2013.797621.
  • Nakamura, K., K. Arakawa, Y. Kawai, N. Yasuta, T. Chujo, M. Watanabe, H. Iioka, M. Tanioka, J. Nishimura, H. Kitazawa, et al. 2013. Food preservative potential of gassericin A-containing concentrate prepared from a cheese whey culture supernatant from Lactobacillus gasseri LA39. Animal Science Journal = Nihon Chikusan Gakkaiho 84 (2):144–9. doi: 10.1111/j.1740-0929.2012.01048.x.
  • Nelson, D. L., and M. M. Cox. 2004. Lehninger principles of biochemistry lecture notebook. New York, NY: Macmillan.
  • Nes, I. F., C. I. Mørtvedt, J. Nissen-Meyer, and M. Skaugen. 1994. Lactocin S, a lanthionine-containing bacteriocin isolated from Lactobacillus sake L45. In Bacteriocins of lactic acid bacteria, 435–49. Boston, MA: Springer.
  • Niku-Paavola, M. L., A. Laitila, T. Mattila-Sandholm, and A. Haikara. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. Journal of Applied Microbiology 86 (1):29–35. doi: 10.1046/j.1365-2672.1999.00632.x.
  • O'Connor, E. B., B. O'Riordan, S. M. Morgan, H. Whelton, D. M. O'Mullane, R. P. Ross, and C. Hill. 2006. A lacticin 3147 enriched food ingredient reduces Streptococcus mutans isolated from the human oral cavity in saliva. Journal of Applied Microbiology 100 (6):1251–60. doi: 10.1111/j.1365-2672.2006.02856.x.
  • O'Connor, P. M., E. F. O'Shea, C. M. Guinane, O. O'Sullivan, P. D. Cotter, R. P. Ross, and C. Hill. 2015. Nisin H is a new nisin variant produced by the gut-derived strain Streptococcus hyointestinalis DPC6484. Applied and Environmental Microbiology 81 (12):3953–60. doi: 10.1128/AEM.00212-15.
  • Ogier, J. C., E. Casalta, C. Farrokh, and A. Saïhi. 2008. Safety assessment of dairy microorganisms: The Leuconostoc genus. International Journal of Food Microbiology 126 (3):286–90. doi: 10.1016/j.ijfoodmicro.2007.08.012.
  • Okuda, K. I., T. Zendo, S. Sugimoto, T. Iwase, A. Tajima, S. Yamada, K. Sonomoto, and Y. Mizunoe. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy 57 (11):5572–9. doi: 10.1128/AAC.00888-13.
  • O'Sullivan, L., E. B. O'connor, R. P. Ross, and C. Hill. 2006. Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. Journal of Applied Microbiology 100 (1):135–43. doi: 10.1111/j.1365-2672.2005.02747.x.
  • O'Sullivan, L., R. P. Ross, and C. Hill. 2003. A lacticin 481-producing adjunct culture increases starter lysis while inhibiting nonstarter lactic acid bacteria proliferation during Cheddar cheese ripening. Journal of Applied Microbiology 95 (6):1235–41. doi: 10.1046/j.1365-2672.2003.02086.x.
  • O'Sullivan, L., M. P. Ryan, R. P. Ross, and C. Hill. 2003. Generation of food-grade lactococcal starters which produce the lantibiotics lacticin 3147 and lacticin 481. Applied and Environmental Microbiology 69 (6):3681–5. doi: 10.1128/aem.69.6.3681-3685.2003.
  • Oumer, A., S. Garde, P. Gaya, M. Medina, and M. Nunez. 2001. The effects of cultivating lactic starter cultures with bacteriocin-producing lactic acid bacteria. Journal of Food Protection 64 (1):81–6. doi: 10.4315/0362-028x-64.1.81.
  • Paik, H. D., H. J. Kim, K. J. Nam, C. J. Kim, S. E. Lee, and D. S. Lee. 2006. Effect of nisin on the storage of sous vide processed Korean seasoned beef. Food Control 17 (12):994–1000. doi: 10.1016/j.foodcont.2005.07.005.
  • Pandey, N., R. K. Malik, J. K. Kaushik, and G. Singroha. 2013. Gassericin A: A circular bacteriocin produced by lactic acid bacteria Lactobacillus gasseri. World Journal of Microbiology & Biotechnology 29 (11):1977–87. doi: 10.1007/s11274-013-1368-3.
  • Perez, R. H., T. Zendo, and K. Sonomoto. 2014. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories 13 (Suppl 1):S3. doi: 10.1186/1475-2859-13-S1-S3.
  • Perez, R. H., T. Zendo, and K. Sonomoto. 2018. Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Frontiers in Microbiology 9:2085. doi: 10.3389/fmicb.2018.02085.
  • Piard, J. C., O. P. Kuipers, H. S. Rollema, M. J. Desmazeaud, and W. M. de Vos. 1993. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. Journal of Biological Chemistry 268 (22):16361–8.
  • Pinto, M. S., A. F. de Carvalho, A. C. dos Santos Pires, A. A. C. Souza, P. H. F. da Silva, D. Sobral, J. C. J. de Paula, and A. de Lima Santos. 2011. The effects of nisin on Staphylococcus aureus count and the physicochemical properties of Traditional Minas Serro cheese. International Dairy Journal 21 (2):90–6. doi: 10.1016/j.idairyj.2010.08.001.
  • Piper, C., L. A. Draper, P. D. Cotter, R. P. Ross, and C. Hill. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. The Journal of Antimicrobial Chemotherapy 64 (3):546–51. doi: 10.1093/jac/dkp221.
  • Prasad, C. 1995. Bioactive cyclic dipeptides. Peptides 16 (1):151–64. doi: 10.1016/0196-9781(94)00017-Z.
  • Preet, S., S. Bharati, A. Panjeta, R. Tewari, and P. Rishi. 2015. Effect of nisin and doxorubicin on DMBA-induced skin carcinogenesis—A possible adjunct therapy. Tumour Biology 36 (11):8301–8. doi: 10.1007/s13277-015-3571-3.
  • Prince, A., P. Sandhu, P. Ror, E. Dash, S. Sharma, M. Arakha, S. Jha, Y. Akhter, and M. Saleem. 2016. Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Scientific Reports 6 (1):37908–15. doi: 10.1038/srep37908.
  • Punyauppa-Path, S., P. Phumkhachorn, and P. Rattanachaikunsopon. 2015. Nisin: Production and mechanism of antimicrobial action. International Journal of Current Research and Review 7 (2):47.
  • Rawlinson, E. L. A., I. F. Nes, and M. Skaugen. 2002. LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor. Biochimie 84 (5–6):559–67. doi: 10.1016/S0300-9084(02)01420-7.
  • Rea, M. C., E. Clayton, P. M. O'Connor, F. Shanahan, B. Kiely, R. P. Ross, and C. Hill. 2007. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. Journal of Medical Microbiology 56 (Pt 7):940–6. doi: 10.1099/jmm.0.47085-0.
  • Reunanen, J. 2007. Lantibiotic nisin and its detection methods.
  • Rezaeianpour, S., A. H. Bozorgi, A. Moghimi, A. Almasi, S. Balalaie, S. Ramezanpour, S. Nasoohi, S. M. Mazidi, P. Geramifar, A. Bitarafan-Rajabi, et al. 2017. Synthesis and biological evaluation of cyclic [99mTc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with [99mTc]-HYNIC-GPRPP. Molecular Imaging and Biology 19 (2):256–64. doi: 10.1007/s11307-016-1004-3.
  • Rodriguez, E., J. L. Arques, M. Nunez, P. Gaya, and M. Medina. 2005. Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Applied and Environmental Microbiology 71 (7):3399–404. doi: 10.1128/AEM.71.7.3399-3404.2005.
  • Rossi, L. M., P. Rangasamy, J. Zhang, X. Q. Qiu, and G. Y. Wu. 2008. Research advances in the development of peptide antibiotics. Journal of Pharmaceutical Sciences 97 (3):1060–70. doi: 10.1002/jps.21053.
  • Ryan, M. P., R. W. Jack, M. Josten, H.-G. Sahl, G. Jung, R. P. Ross, and C. Hill. 1999. Extensive-translational modi¢cation, including a serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. Journal of Biological Chemistry 274 (53):37544–50. ^doi: 10.1074/jbc.274.53.37544.
  • Ryan, M. P., W. J. Meaney, R. P. Ross, and C. Hill. 1998. Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Applied and Environmental Microbiology 64 (6):2287–90. doi: 10.1128/AEM.64.6.2287-2290.1998.
  • Ryan, M. P., M. C. Rea, C. Hill, and R. P. Ross. 1996. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Applied and Environmental Microbiology 62 (2):612–9. doi: 10.1128/AEM.62.2.612-619.1996.
  • Sahl, H. G., and G. Bierbaum. 1998. Lantibiotics: Biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annual Review of Microbiology 52 (1):41–79. doi: 10.1146/annurev.micro.52.1.41.
  • Sahl, H. G., R. W. Jack, and G. Bierbaum. 1995. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. European Journal of Biochemistry 230 (3):827–53. doi: 10.1111/j.1432-1033.1995.tb20627.x.
  • Santiago-Silva, P., N. F. Soares, J. E. Nóbrega, M. A. Júnior, K. B. Barbosa, A. C. P. Volp, E. R. Zerdas, and N. J. Würlitzer. 2009. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 20 (1):85–9. doi: 10.1016/j.foodcont.2008.02.006.
  • Salmaso, S., N. Elvassore, A. Bertucco, A. Lante, and P. Caliceti. 2004. Nisin-loaded poly-L-lactide nano-particles produced by CO2 anti-solvent precipitation for sustained antimicrobial activity. International Journal of Pharmaceutics 287 (1–2):163–73. doi: 10.1016/j.ijpharm.2004.09.003.
  • Sawa, N., T. Zendo, J. Kiyofuji, K. Fujita, K. Himeno, J. Nakayama, and K. Sonomoto. 2009. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Applied and Environmental Microbiology 75 (6):1552–8. doi: 10.1128/AEM.02299-08.
  • Scannell, A. G., R. P. Ross, C. Hill, and E. K. Arendt. 2000. An effective lacticin biopreservative in fresh pork sausage. Journal of Food Protection 63 (3):370–5. doi: 10.4315/0362-028X-63.3.370.
  • Scannell, A. G., G. Schwarz, C. Hill, R. P. Ross, and E. K. Arendt. 2001. Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. International Journal of Food Microbiology 64 (1–2):151–9. doi: 10.1016/S0168-1605(00)00455-4.
  • Scherer, K. M., J. H. Spille, H. G. Sahl, F. Grein, and U. Kubitscheck. 2015. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophysical Journal 108 (5):1114–24. doi: 10.1016/j.bpj.2015.01.020.
  • Schlafmann, K., A. P. Meusburger, W. P. Hammes, C. Braun, A. Fischer, and C. Hertel. 2002. Starter cultures to improve the quality of raw ham. Fleischwirtschaft 82 (11):108–14.
  • Shan, L. 2012. Fluorescein-conjugated cyclic decapeptides, CGLIIQKNEC (CLT1) and CNAGESSKNC (CLT2). In Molecular imaging and contrast agent database (MICAD) [Internet]. Bethesda, MD: National Center for Biotechnology Information (US).
  • Shin, J. M., I. Ateia, J. R. Paulus, H. Liu, J. C. Fenno, A. H. Rickard, and Y. L. Kapila. 2015. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Frontiers in Microbiology 6:617. doi: 10.3389/fmicb.2015.00617.
  • Shin, J. M., J. W. Gwak, P. Kamarajan, J. C. Fenno, A. H. Rickard, and Y. L. Kapila. 2016. Biomedical applications of nisin. Journal of Applied Microbiology 120 (6):1449–65. doi: 10.1111/jam.13033.
  • Silkin, L., S. Hamza, S. Kaufman, S. L. Cobb, and J. C. Vederas. 2008. Spermicidal bacteriocins: Lacticin 3147 and subtilosin A. Bioorganic & Medicinal Chemistry Letters 18 (10):3103–6. doi: 10.1016/j.bmcl.2007.11.024.
  • Singh, A. P., V. Prabha, and P. Rishi. 2013. Value addition in the efficacy of conventional antibiotics by nisin against Salmonella. PLoS One 8 (10):e76844. doi: 10.1371/journal.pone.0076844.
  • Skaugen, M., C. I. M. Abildgaard, and I. F. Nes. 1997. Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Molecular and Molecular & General Genetics: MGG 253 (6):674–86. doi: 10.1007/s004380050371.
  • Skaugen, M., E. L. Andersen, V. H. Christie, and I. F. Nes. 2002. Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Applied and Environmental Microbiology 68 (2):720–7. doi: 10.1128/aem.68.2.720-727.2002.
  • Skaugen, M., J. Nissen-Meyer, G. Jung, S. StevanoVic, K. Sletten, C. Inger, M. Abildgaard, and I. F. Nes. 1994. In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide. Journal of Biological Chemistry 269 (44):27183–5.
  • Sobrino-López, A., and O. Martín-Belloso. 2008. Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal 18 (4):329–43. doi: 10.1016/j.idairyj.2007.11.009.
  • Suda, S., D. P. Cotter, C. Hill, and R. Paul Ross. 2012. Lacticin 3147-biosynthesis, molecular analysis, immunity, bioengineering and applications. Current Protein & Peptide Science 13 (3):193–204. doi: 10.2174/138920312800785021.
  • Suda, S., E. M. Lawton, D. Wistuba, P. D. Cotter, C. Hill, and R. P. Ross. 2012. Homologues and bioengineered derivatives of LtnJ vary in ability to form D-alanine in the lantibiotic lacticin 3147. Journal of Bacteriology 194 (3):708–14. doi: 10.1128/JB.06185-11.
  • Suo, C., Y. Yin, X. Wang, X. Lou, D. Song, X. Wang, and Q. Gu. 2012. Effects of lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Veterinary Research 8 (1):89 doi: 10.1186/1746-6148-8-89.
  • Szatraj, K., A. K. Szczepankowska, and M. Chmielewska-Jeznach. 2017. Lactic acid bacteria - Promising vaccine vectors: possibilities, limitations, doubts. Journal of Applied Microbiology 123 (2):325–39. doi: 10.1111/jam.13446.
  • Thanh, N. T., T. C. Loh, H. L. Foo, M. Hair-Bejo, and B. K. Azhar. 2009. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. British Poultry Science 50 (3):298–306. doi: 10.1080/00071660902873947.
  • Tianli, Y., Z. Jiangbo, and Y. Yahong. 2014. Spoilage by Alicyclobacillus bacteria in juice and beverage products: Chemical, physical, and combined control methods. Comprehensive Reviews in Food Science and Food Safety 13 (5):771–97. doi: 10.1111/1541-4337.12093.
  • Toba, T., S. K. Samant, E. Yoshioka, and T. Itoh. 1991. Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6. Letters in Applied Microbiology 13 (6):281–6. doi: 10.1111/j.1472-765X.1991.tb00629.x.
  • Tong, Z., L. Zhou, J. Li, W. Jiang, L. Ma, and L. Ni. 2011. In vitro evaluation of the antibacterial activities of MTAD in combination with nisin against Enterococcus faecalis. Journal of Endodontics 37 (8):1116–20. doi: 10.1016/j.joen.2011.03.020.
  • Trinh, T. B., P. Upadhyaya, Z. Qian, and D. Pei. 2016. Discovery of a direct Ras inhibitor by screening a combinatorial library of cell-permeable bicyclic peptides. ACS Combinatorial Science 18 (1):75–85. doi: 10.1021/acscombsci.5b00164.
  • Tu, L., and A. Mustapha. 2002. Reduction of Brochothrix thermosphacta and Salmonella serotype typhimurium on vacuum-packaged fresh beef treated with nisin and nisin combined with EDTA. Journal of Food Science 67 (1):302–6. doi: 10.1111/j.1365-2621.2002.tb11401.x.
  • Turner, D. L., L. Brennan, H. E. Meyer, C. Lohaus, C. Siethoff, H. S. Costa, B. Gonzalez, H. Santos, and J. E. Suárez. 1999. Solution structure of plantaricin C, a novel lantibiotic. European Journal of Biochemistry 264 (3):833–9. doi: 10.1046/j.1432-1327.1999.00674.x.
  • Ugurlu, T., M. Turkoglu, U. S. Gurer, and B. G. Akarsu. 2007. Colonic delivery of compression coated nisin tablets using pectin/HPMC polymer mixture. European Journal of Pharmaceutics and Biopharmaceutics 67 (1):202–10. doi: 10.1016/j.ejpb.2007.01.016.
  • Van Belkum, M. J., L. A. Martin-Visscher, and J. C. Vederas. 2011. Structure and genetics of circular bacteriocins. Trends in Microbiology 19 (8):411–8. doi: 10.1016/j.tim.2011.04.004.
  • van den Hooven, H. W., F. M. Lagerwerf, W. Heerma, J. Haverkamp, J. C. Piard, C. W. Hilbers, R. J. Siezen, O. P. Kuipers, and H. S. Rollema. 1996. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis: Location of the thioether bridges. FEBS Letters 391 (3):317–22. doi: 10.1016/0014-5793(96)00771-5.
  • van Hemert, S., M. Meijerink, D. Molenaar, P. A. Bron, P. de Vos, M. Kleerebezem, J. M. Wells, and M. L. Marco. 2010. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology 10 (1):293. doi: 10.1186/1471-2180-10-293.
  • Van Overtvelt, L., H. Moussu, S. Horiot, S. Samson, V. Lombardi, L. Mascarell, A. Van de Moer, R. Bourdet-Sicard, and P. Moingeon. 2010. Lactic acid bacteria as adjuvants for sublingual allergy vaccines. Vaccine 28 (17):2986–92. doi: 10.1016/j.vaccine.2010.02.009.
  • Vela, A. I., J. Vázquez, A. Gibello, M. M. Blanco, M. A. Moreno, P. Liébana, C. Albendea, B. Alcalá, A. Mendez, L. Domínguez, et al. 2000. Phenotypic and Genetic Characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. Journal of Clinical Microbiology 38 (10):3791–5. doi: 10.1128/JCM.38.10.3791-3795.2000.
  • Vogel, R. F., B. S. Pohle, P. S. Tichaczek, and W. P. Hammes. 1993. The competitive advantage of Lactobacillus curvatus LTH 1174 in sausage fermentations is caused by formation of curvacin A. Systematic and Applied Microbiology 16 (3):457–62. doi: 10.1016/S0723-2020(11)80280-8.
  • Walsh, M. C., G. E. Gardiner, O. M. Hart, P. G. Lawlor, M. Daly, B. Lynch, B. T. Richert, S. Radcliffe, L. Giblin, C. Hill, et al. 2008. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiology Ecology 64 (2):317–27. doi: 10.1111/j.1574-6941.2008.00454.x.
  • Wang, M., Z. Gao, Y. Zhang, and L. Pan. 2016. Lactic acid bacteria as mucosal delivery vehicles: A realistic therapeutic option. Applied Microbiology and Biotechnology 100 (13):5691–701. doi: 10.1007/s00253-016-7557-x.
  • Wiedemann, I., E. Breukink, C. van Kraaij, O. P. Kuipers, G. Bierbaum, B. de Kruijff, and H. G. Sahl. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. The Journal of Biological Chemistry 276 (3):1772–9. doi: 10.1074/jbc.M006770200.
  • Wiedemann, I., T. Böttiger, R. R. Bonelli, T. Schneider, H. G. Sahl, and B. Martínez. 2006. Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Applied and Environmental Microbiology 72 (4):2809–14. doi: 10.1128/AEM.72.4.2809-2814.2006.
  • Wiedemann, I., T. Böttiger, R. R. Bonelli, A. Wiese, S. O. Hagge, T. Gutsmann, U. Seydel, L. Deegan, C. Hill, P. Ross, et al. 2006. The mode of action of the lantibiotic lacticin 3147—A complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Molecular Microbiology 61 (2):285–96. doi: 10.1111/j.1365-2958.2006.05223.x.
  • Wijnker, J. J., E. A. W. S. Weerts, E. J. Breukink, J. H. Houben, and L. J. A. Lipman. 2011. Reduction of Clostridium sporogenes spore outgrowth in natural sausage casings using nisin. Food Microbiology 28 (5):974–9. doi: 10.1016/j.fm.2011.01.009.
  • Wyszyńska, A., P. Kobierecka, J. Bardowski, and E. K. Jagusztyn-Krynicka. 2015. Lactic acid bacteria-20 years exploring their potential as live vectors for mucosal vaccination. Applied Microbiology and Biotechnology 99 (7):2967–77. doi: 10.1007/s00253-015-6498-0.
  • Xie, L., L. M. Miller, C. Chatterjee, O. Averin, N. L. Kelleher, and W. A. Van Der Donk. 2004. Lacticin 481: In vitro reconstitution of lantibiotic synthetase activity. Science (New York, N.Y.) 303 (5658):679–81. doi: 10.1126/science.1092600.
  • Ye, M., H. Neetoo, and H. Chen. 2008. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiology 25 (2):260–8. doi: 10.1016/j.fm.2007.10.014.
  • Zapico, P., M. Medina, P. Gaya, and M. Nuñez. 1998. Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. International Journal of Food Microbiology 40 (1–2):35–42. doi: 10.1016/S0168-1605(98)00008-7.
  • Zendo, T., M. Fukao, K. Ueda, T. Higuchi, J. Nakayama, and K. Sonomoto. 2003. Identification of the lantibiotic nisin Q, a new natural nisin variant produced by Lactococcus lactis 61-14 isolated from a river in Japan. Bioscience, Biotechnology, and Biochemistry 67 (7):1616–9. doi: 10.1271/bbb.67.1616.
  • Zhang, Z., F. Vriesekoop, Q. Yuan, and H. Liang. 2014. Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chemistry 150:307–12. doi: 10.1016/j.foodchem.2013.10.160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.