1,188
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Functional effects of vitamin D: From nutrient to immunomodulator

, &

References

  • Ahn, J., K. Yu, R. Stolzenberg-Solomon, K. C. Simon, M. L. McCullough, L. Gallicchio, E. J. Jacobs, A. Ascherio, K. Helzlsouer, K. B. Jacobs, et al. 2010. Genome-wide association study of circulating vitamin D levels. Human Molecular Genetics 19 (13):2739–45. doi: 10.1093/hmg/ddq155.
  • Aktürk, T., Y. Turan, N. Tanik, M. E. Karadağ, H. Sacmaci, L. E. Inan, T. Aktürk, Y. Turan, N. Tanik, M. E. Karadağ, et al. 2019. Vitamin D, vitamin D binding protein, vitamin D receptor levels and cardiac dysautonomia in patients with multiple sclerosis: A cross-sectional study. Arquivos de Neuro-Psiquiatria 77 (12):848–54. doi: 10.1590/0004-282x20190182.
  • Al-Ghafari, A. B., K. S. Balamash, and H. A. Al Doghaither. 2020. Serum vitamin D receptor (VDR) levels as a potential diagnostic marker for colorectal cancer. Saudi Journal of Biological Sciences 27 (3):827–32. doi: 10.1016/j.sjbs.2020.01.006.
  • Álvarez-Hernández, D., M. Naves Díaz, C. Gómez Alonso, and J. B. Cannata Andía. 2007. Los polimorfismos del gen del receptor de la vitamina D (VDR) modulan la respuesta a la vitamina D de forma tejido específica. Revista Española de Enfermedades Metabólicas Óseas 16 (1):20–7. doi: 10.1016/S1132-8460(07)73498-0.
  • Apukhovskaia, L. I., N. L. Khrestovaia, L. V. Antonenko, L. I. Omel’chenko, and L. A. Dotsenko. 1990. Effect of varying vitamin D status in the body on intestinal absorption and metabolism of vitamin D in the rat liver. Ukrainskii Biokhimicheskii Zhurnal (1978) 62 (6):88–92.
  • Armas, L. A. G., B. W. Hollis, and R. P. Heaney. 2004. Vitamin D2 is much less effective than vitamin D3 in humans. The Journal of Clinical Endocrinology & Metabolism 89 (11):5387–91. doi: 10.1210/jc.2004-0360.
  • Arriagada, G., R. Paredes, J. Olate, A. van Wijnen, J. B. Lian, G. S. Stein, J. L. Stein, S. Onate, and M. Montecino. 2007. Phosphorylation at serine 208 of the 1alpha,25-dihydroxy Vitamin D3 receptor modulates the interaction with transcriptional coactivators . The Journal of Steroid Biochemistry and Molecular Biology 103 (3-5):425–9. doi: 10.1016/j.jsbmb.2006.12.021.
  • Avila, E., D. Barrera, and L. Díaz. 2007. Acciones calciotrópicas de la hormona paratiroidea y del sistema endocrino de la vitamina D. Revista de Investigación Clínica 59 (4):306–17.
  • Balasuriya, C. N. D., T. L. Larose, M. P. Mosti, K. A. I. Evensen, G. W. Jacobsen, P. M. Thorsby, A. K. Stunes, and U. Syversen. 2019. Maternal serum retinol, 25(OH)D and 1,25(OH)2D concentrations during pregnancy and peak bone mass and trabecular bone score in adult offspring at 26-year follow-up. PLoS One 14 (9):e0222712. doi: 10.1371/journal.pone.0222712.
  • Barletta, F., L. P. Freedman, and S. Christakos. 2002. Enhancement of VDR-mediated transcription by phosphorylation: Correlation with increased interaction between the VDR and DRIP205, a subunit of the VDR-interacting protein coactivator complex. Molecular Endocrinology 16 (2):301–14. doi: 10.1210/mend.16.2.0764.
  • Bikle, D. 2009. Nonclassic actions of vitamin D. The Journal of Clinical Endocrinology and Metabolism 94 (1):26–34. doi: 10.1210/jc.2008-1454.
  • Bikle, D., J. S. Adams, and S. Christakos. 2012. Vitamin D: Production, metabolism, mechanism of action, and clinical requirements. In Primer on the metabolic bone diseases and disorders of mineral metabolism, 235–48. John Wiley & Sons, Ltd. doi: 10.1002/9781118453926.ch29.
  • Blanco, J. C., I. M. Wang, S. Y. Tsai, M. J. Tsai, B. W. O'Malley, P. W. Jurutka, M. R. Haussler, and K. Ozato. 1995. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proceedings of the National Academy of Sciences of the United States of America 92 (5):1535–9. doi: 10.1073/pnas.92.5.1535.
  • Blomstrand, R., and L. Forsgren. 1967. Intestinal absorption and esterification of vitamin D3-1,2-3H in man. Acta Chemica Scandinavica 21 (6):1662–3. doi: 10.3891/acta.chem.scand.21-1662.
  • Boonstra, A., F. J. Barrat, C. Crain, V. L. Heath, H. F. Savelkoul, and A. O'garra. 2001. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. Journal of Immunology (Baltimore, Md. : 1950) 167 (9):4974–80. doi:10.4049/jimmunol.167.9.4974. PMC: 11673504
  • Borel, P., D. Caillaud, and N. J. Cano. 2015. Vitamin D bioavailability: State of the art. Critical Reviews in Food Science and Nutrition 55 (9):1193–205. doi: 10.1080/10408398.2012.688897.
  • Bover, J., J. Egido, E. Ferández-Giráldez, E. Fernández-Giráldez, M. Praga, C. Solozábal-Campos, J. V. Torregrosa, J. V. Torregrosa, and A. Martínez-Castelao. 2015. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia 35 (1):28–41. doi: 10.3265/Nefrologia.pre2014.Sep.11796.
  • Buitrago, C., V. G. Pardo, and R. Boland. 2013. Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. The Journal of Steroid Biochemistry and Molecular Biology 136:125–30. doi: 10.1016/j.jsbmb.2013.02.013.
  • Carlberg, C. 2019. Nutrigenomics of vitamin D. Nutrients 11 (3):676. doi: 10.3390/nu11030676.
  • Celikbilek, A., A. Y. Gocmen, G. Zararsiz, N. Tanik, H. Ak, E. Borekci, and N. Delibas. 2014. Serum levels of vitamin D, vitamin D-binding protein and vitamin D receptor in migraine patients from central Anatolia region. International Journal of Clinical Practice 68 (10):1272–7. doi: 10.1111/ijcp.12456.
  • Chang, S.-W., and H.-C. Lee. 2019. Vitamin D and health—The missing vitamin in humans. Pediatrics and Neonatology 60 (3):237–44. doi: 10.1016/j.pedneo.2019.04.007.
  • Charoenngam, N., and M. F. Holick. 2020. Immunologic effects of vitamin D on human health and disease. Nutrients 12 (7):2097. doi: 10.3390/nu12072097.
  • Chen, J., M. Doroudi, J. Cheung, A. L. Grozier, Z. Schwartz, and B. D. Boyan. 2013. Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)(2)D(3). Cellular Signalling 25 (12):2362–73. doi: 10.1016/j.cellsig.2013.07.020.
  • Choi, M., K. Yamamoto, H. Masuno, K. Nakashima, T. Taga, and S. Yamada. 2001. Ligand recognition by the vitamin D receptor. Bioorganic & Medicinal Chemistry 9 (7):1721–30. doi: 10.1016/S0968-0896(01)00060-8.
  • Compston, J. E., A. L. Merrett, F. G. Hammett, and P. Magill. 1981. Comparison of the appearance of radiolabelled vitamin D3 and 25-hydroxy-vitamin D3 in the chylomicron fraction of plasma after oral administration in man. Clinical Science 60 (2):241–3. doi: 10.1042/cs0600241.
  • Dall’Ara, F., M. Cutolo, L. Andreoli, A. Tincani, and S. Paolino. 2017. Vitamin D and systemic lupus erythematous: A review of immunological and clinical aspects. Clinical and Experimental Rheumatology 36 (1):153–62.
  • Dankers, W., E. M. Colin, J. P. van Hamburg, and E. Lubberts. 2016. Vitamin D in autoimmunity: Molecular mechanisms and therapeutic potential. Frontiers in Immunology 7:697. doi: 10.3389/fimmu.2016.00697.
  • Doroudi, M., Z. Schwartz, and B. D. Boyan. 2015. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca(2+)/calmodulin-dependent protein kinase II. The Journal of Steroid Biochemistry and Molecular Biology 147:81–4. doi: 10.1016/j.jsbmb.2014.11.002.
  • Duan, L., Z. Xue, H. Ji, D. Zhang, and Y. Wang. 2018. Effects of CYP2R1 gene variants on vitamin D levels and status: A systematic review and meta-analysis. Gene 678:361–9. doi: 10.1016/j.gene.2018.08.056.
  • Eyles, D. W., S. Smith, R. Kinobe, M. Hewison, and J. J. McGrath. 2005. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemical Neuroanatomy 29 (1):21–30. doi: 10.1016/j.jchemneu.2004.08.006.
  • Ferrer-Mayorga, G., M. J. Larriba, P. Crespo, and A. Muñoz. 2019. Mechanisms of action of vitamin D in colon cancer. The Journal of Steroid Biochemistry and Molecular Biology 185:1–6. doi: 10.1016/j.jsbmb.2018.07.002.
  • Fleet, J. C. 2004. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: What are they and what do they mean? The Journal of Nutrition 134 (12):3215–8. doi: 10.1093/jn/134.12.3215.
  • Goncalves, A., B. Gleize, R. Bott, M. Nowicki, M.-J. Amiot, D. Lairon, P. Borel, and E. Reboul. 2011. Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Molecular Nutrition & Food Research 55 (S2):S303–S311. doi: 10.1002/mnfr.201100055.
  • Haussler, M. R., P. W. Jurutka, M. Mizwicki, and A. W. Norman. 2011. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Practice & Research. Clinical Endocrinology & Metabolism 25 (4):543–59. doi: 10.1016/j.beem.2011.05.010.
  • Hii, C. S., and A. Ferrante. 2016. The non-genomic actions of vitamin D. Nutrients 8 (3):135. doi: 10.3390/nu8030135.
  • Holick, M. F. 2007. Vitamin D deficiency. The New England Journal of Medicine 357 (3):266–81. doi: 10.1056/NEJMra070553.
  • Holick, M. F., J. A. MacLaughlin, and S. H. Doppelt. 1981. Regulation of cutaneous previtamin D3 photosynthesis in man: Skin pigment is not an essential regulator. Science 211 (4482):590–3. doi: 10.1126/science.6256855.
  • Holick, M. F., R. M. Biancuzzo, T. C. Chen, E. K. Klein, A. Young, D. Bibuld, R. Reitz, W. Salameh, A. Ameri, and A. D. Tannenbaum. 2008. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. The Journal of Clinical Endocrinology and Metabolism 93 (3):677–81. doi: 10.1210/jc.2007-2308.
  • Holick, M. F., N. C. Binkley, H. A. Bischoff-Ferrari, C. M. Gordon, D. A. Hanley, R. P. Heaney, M. H. Murad, and C. M. Weaver. 2011. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism 96 (7):1911–30. doi: 10.1210/jc.2011-0385.
  • Hollander, D., K. S. Muralidhara, and A. Zimmerman. 1978. Vitamin D-3 intestinal absorption in vivo: Influence of fatty acids, bile salts, and perfusate pH on absorption. Gut 19 (4):267–72. doi: 10.1136/gut.19.4.267.
  • Hollis, B. W., J. W. Lowery, W. B. Pittard, D. G. Guy, and J. W. Hansen. 1996. Effect of age on the intestinal absorption of vitamin D3-palmitate and nonesterified vitamin D2 in the term human infant. The Journal of Clinical Endocrinology and Metabolism 81 (4):1385–8. doi: 10.1210/jcem.81.4.8636338.
  • IOM (Institute of Medicine). 2011. Dietary reference intakes: Calcium, vitamin D. Washington, DC: The National Academies Press.
  • Jones, G. 2008. Pharmacokinetics of vitamin D toxicity. The American Journal of Clinical Nutrition 88 (2):582S–6S. doi: 10.1093/ajcn/88.2.582S.
  • Jurutka, P. W., J. C. Hsieh, S. Nakajima, C. A. Haussler, G. K. Whitfield, and M. R. Haussler. 1996. Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America 93 (8):3519–24. doi: 10.1073/pnas.93.8.3519.
  • Jurutka, P. W., J. C. Hsieh, L. S. Remus, G. K. Whitfield, P. D. Thompson, C. A. Haussler, J. C. Blanco, K. Ozato, and M. R. Haussler. 1997. Mutations in the 1,25-dihydroxyvitamin D3 receptor identifying C-terminal amino acids required for transcriptional activation that are functionally dissociated from hormone binding, heterodimeric DNA binding, and interaction with basal transcription factor IIB, in vitro. The Journal of Biological Chemistry 272 (23):14592–9. doi: 10.1074/jbc.272.23.14592.
  • Jurutka, P. W., L. S. Remus, G. K. Whitfield, P. D. Thompson, J. C. Hsieh, H. Zitzer, P. Tavakkoli, M. A. Galligan, H. T. Dang, C. A. Haussler, et al. 2000. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Molecular Endocrinology 14 (3):401–20. doi: 10.1210/mend.14.3.0435.
  • Jurutka, P. W., P. N. MacDonald, S. Nakajima, J. C. Hsieh, P. D. Thompson, G. K. Whitfield, M. A. Galligan, C. A. Haussler, and M. R. Haussler. 2002. Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor. Journal of Cellular Biochemistry 85 (2):435–57. doi: 10.1002/jcb.10134.
  • Kajikawa, M., H. Ishida, S. Fujimoto, E. Mukai, M. Nishimura, J. Fujita, Y. Tsuura, Y. Okamoto, A. W. Norman, and Y. Seino. 1999. An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction. Endocrinology 140 (10):4706–12. doi: 10.1210/endo.140.10.7025.
  • Khorasanizadeh, S., and F. Rastinejad. 2001. Nuclear-receptor interactions on DNA-response elements. Trends in Biochemical Sciences 26 (6):384–90. doi: 10.1016/S0968-0004(01)01800-X.
  • Koivisto, O., A. Hanel, and C. Carlberg. 2020. Key vitamin D target genes with functions in the immune system. Nutrients 12 (4):1140. doi: 10.3390/nu12041140.
  • Kültür, T., D. Öztaş, D. Keskin, G. Keskin, A. İnal, and H. Kara. 2019. The relationship of serum vitamin D receptor levels with disease activity and clinical parameters in patients with ankylosing spondylitis. Turkish Journal of Physical Medicine and Rehabilitation 65 (4):389–93. doi: 10.5606/tftrd.2019.3296.
  • Lavigne, A.-C., G. Mengus, Y.-G. Gangloff, J.-M. Wurtz, and I. Davidson. 1999. Human TAF(II)55 interacts with the vitamin D(3) and thyroid hormone receptors and with derivatives of the retinoid X receptor that have altered transactivation properties. Molecular and Cellular Biology 19 (8):5486–94. doi: 10.1128/mcb.19.8.5486.
  • Lombardo, D., and O. Guy. 1980. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochimica et Biophysica Acta 611 (1):147–55. doi: 10.1016/0005-2744(80)90050-9.
  • Lopes, N., B. Sousa, D. Martins, M. Gomes, D. Vieira, L. A. Veronese, F. Milanezi, J. Paredes, J. L. Costa, and F. Schmitt. 2010. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: A study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 10:483. doi: 10.1186/1471-2407-10-483.
  • Lysandropoulos, A. P., E. Jaquiéry, S. Jilek, G. Pantaleo, M. Schluep, and R. A. Du Pasquier. 2011. Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects. Journal of Neuroimmunology 233 (1-2):240–4. doi: 10.1016/j.jneuroim.2010.11.008.
  • Maislos, M., and S. Shany. 1987. Bile salt deficiency and the absorption of vitamin D metabolites. In vivo study in the rat. Israel Journal of Medical Sciences 23 (11):1114–7.
  • Maislos, M., J. Silver, and M. Fainaru. 1981. Intestinal absorption of vitamin D sterols: Differential absorption into lymph and portal blood in the rat. Gastroenterology 80 (6):1528–34. 10.1016/0016-5085(81)90268-7
  • Masuyama, H., C. M. Brownfield, R. St-Arnaud, and P. N. MacDonald. 1997. Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction. Molecular Endocrinology 11 (10):1507–17. doi: 10.1210/mend.11.10.9990.
  • Masuyama, H., and P. N. MacDonald. 1998. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. Journal of Cellular Biochemistry 71 (3):429–40. doi: 10.1002/(SICI)1097-4644(19981201)71:3 < 429::AID-JCB11 > 3.0.CO;2-P.
  • Masvidal Aliberch, R. M., S. Ortigosa Gómez, M. C. Baraza Mendoza, and O. Garcia-Algar. 2012. [Vitamin D: Pathophysiology and clinical applicability in paediatrics]. Anales de Pediatria 77 (4):279.e1–279.e10. doi: 10.1016/j.anpedi.2012.05.019.
  • Matusiak, D., and R. V. Benya. 2007. CYP27A1 and CYP24 expression as a function of malignant transformation in the colon. The Journal of Histochemistry and Cytochemistry 55 (12):1257–64. doi: 10.1369/jhc.7A7286.2007.
  • Menegaz, D., A. Barrientos-Duran, A. Kline, F. R. M. B. Silva, A. W. Norman, M. T. Mizwicki, and L. P. Zanello. 2010. 1alpha,25(OH)2-Vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells. The Journal of Steroid Biochemistry and Molecular Biology 119 (3-5):127–34. doi:10.1016/j.jsbmb.2010.01.011. PMC: 20156558
  • Mulligan, M. L., S. K. Felton, A. E. Riek, and C. Bernal-Mizrachi. 2010. Implications of vitamin D deficiency in pregnancy and lactation. American Journal of Obstetrics and Gynecology 202 (5):429.e1–e9. doi: 10.1016/j.ajog.2009.09.002.
  • Mutt, S. J., E. Hyppönen, J. Saarnio, M.-R. Järvelin, and K.-H. Herzig. 2014. Vitamin D and adipose tissue-more than storage. Frontiers in Physiology 5 https://doi.org/10.3389/fphys.2014.00228 doi: 10.3389/fphys.2014.00228.[PMC] [:228.
  • Natri, A. M., P. Salo, T. Vikstedt, A. Palssa, M. Huttunen, M. U. M. Kärkkäinen, H. Salovaara, V. Piironen, J. Jakobsen, and C. J. Lamberg-Allardt. 2006. Bread fortified with cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement. J Nutr 136 (1):123–7. doi: 10.1093/jn/136.1.123.
  • Niramitmahapanya, S., S. S. Harris, and B. Dawson-Hughes. 2011. Type of dietary fat is associated with the 25-hydroxyvitamin D3 increment in response to vitamin D supplementation. The Journal of Clinical Endocrinology and Metabolism 96 (10):3170–4. doi: 10.1210/jc.2011-1518.
  • Norman, A. W. 2006. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology 147 (12):5542–8. doi: 10.1210/en.2006-0946.
  • Norman, A. W., W. H. Okamura, M. W. Hammond, J. E. Bishop, M. C. Dormanen, R. Bouillon, H. van Baelen, A. L. Ridall, E. Daane, R. Khoury, et al. 1997. Comparison of 6-s-cis- and 6-s-trans-locked analogs of 1alpha,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses. Molecular Endocrinology 11 (10):1518–31. doi: 10.1210/mend.11.10.9993.
  • Ortega-Domínguez, B., M. Herrera-Ramírez, and A. C. Tecalco-Cruz. 2015. Receptores nucleares: Del núcleo al citoplasma. Tip 18 (2):131–43. doi: 10.1016/j.recqb.2015.09.005.
  • Outila, T. A., P. H. Mattila, V. I. Piironen, and C. J. Lamberg-Allardt. 1999. Bioavailability of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured with a human bioassay. The American Journal of Clinical Nutrition 69 (1):95–8. doi: 10.1093/ajcn/69.1.95.
  • Ovesen, L., C. Brot, and J. Jakobsen. 2003. Food contents and biological activity of 25-hydroxyvitamin D: A vitamin D metabolite to be reckoned with? Annals of Nutrition and Metabolism 47 (3-4):107–13. doi: 10.1159/000070031.
  • Pasquier, B., M. Armand, C. Castelain, F. Guillon, P. Borel, H. Lafont, and D. Lairon. 1996. Emulsification and lipolysis of triacylglycerols are altered by viscous soluble dietary fibres in acidic gastric medium in vitro. Biochemical Journal 314 (1):269–75. doi: 10.1042/bj3140269.
  • Pelajo, C. F., J. M. Lopez-Benitez, and L. C. Miller. 2010. Vitamin D and autoimmune rheumatologic disorders. Autoimmunity Reviews 9 (7):507–10. doi: 10.1016/j.autrev.2010.02.011.
  • Pierides, A. M. 1981. Pharmacology and therapeutic use of vitamin D and its analogues. Drugs 21 (4):241–56. doi: 10.2165/00003495-198121040-00001.
  • Pierrot-Deseilligny, C., and J. C. Souberbielle. 2017. Vitamin D and multiple sclerosis: An update. Multiple Sclerosis and Related Disorders 14:35–45. doi: 10.1016/j.msard.2017.03.014.
  • Pilz, S., W. März, K. D. Cashman, M. E. Kiely, S. J. Whiting, M. F. Holick, W. B. Grant, P. Pludowski, M. Hiligsmann, C. Trummer, et al. 2018. Rationale and plan for vitamin D food fortification: A review and guidance paper. Frontiers in Endocrinology 373 (9). doi: 10.3389/fendo.2018.00373.
  • Powe, C. E., M. K. Evans, J. Wenger, A. B. Zonderman, A. H. Berg, M. Nalls, H. Tamez, D. Zhang, I. Bhan, S. A. Karumanchi, et al. 2013. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. New England Journal of Medicine 369 (21):1991–2000. doi: 10.1056/NEJMoa1306357.
  • Rautureau, M., and J. C. Rambaud. 1981. Aqueous solubilisation of vitamin D3 in normal man. Gut 22 (5):393–7. doi: 10.1136/gut.22.5.393.
  • Reboul, E., and P. Borel. 2011. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Progress in Lipid Research 50 (4):388–402. doi: 10.1016/j.plipres.2011.07.001.
  • Rebsamen, M. C., J. Sun, A. W. Norman, and J. K. Liao. 2002. 1alpha,25-dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase. Circulation Research 91 (1):17–24. doi:10.1161/01.res.0000025269.60668.0f. PMC: 12114317
  • Rochel, N., J. M. Wurtz, A. Mitschler, B. Klaholz, and D. Moras. 2000. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Molecular Cell 5 (1):173–9. doi: 10.1016/S1097-2765(00)80413-X.
  • Romagnoli, E., M. L. Mascia, C. Cipriani, V. Fassino, F. Mazzei, E. D’Erasmo, V. Carnevale, A. Scillitani, and S. Minisola. 2008. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. The Journal of Clinical Endocrinology & Metabolism 93 (8):3015–20. doi: 10.1210/jc.2008-0350.
  • Schneider, L., A. S. P. dos Santos, M. Santos, R. M. da Silva Chakr, and O. A. Monticielo. 2014. Vitamin D and systemic lupus erythematosus: State of the art. Clinical Rheumatology 33 (8):1033–8. doi: 10.1007/s10067-014-2530-5.
  • Shaffer, P. L., D. P. McDonnell, and D. T. Gewirth. 2005. Characterization of transcriptional activation and DNA-binding functions in the hinge region of the vitamin D receptor. Biochemistry 44 (7):2678–85. doi: 10.1021/bi0477182.
  • Shoenfeld, Y., R. Giacomelli, S. Azrielant, O. Berardicurti, J. A. Reynolds, and I. N. Bruce. 2018. Vitamin D and systemic lupus erythematosus—The hype and the hope. Autoimmunity Reviews 17 (1):19–23. doi: 10.1016/j.autrev.2017.11.004.
  • Speeckaert, M., G. Huang, J. R. Delanghe, and Y. E. C. Taes. 2006. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clinica Chimica Acta; International Journal of Clinical Chemistry 372 (1-2):33–42. doi: 10.1016/j.cca.2006.03.011.
  • Stamp, T. C., J. G. Haddad, and C. A. Twigg. 1977. Comparison of oral 25-hydroxycholecalciferol, vitamin D, and ultraviolet light as determinants of circulating 25-hydroxyvitamin D. Lancet (London, England) 1 (8026):1341–3. doi: 10.1016/s0140-6736(77)92553-3.
  • Sunn, K. L., T.-A. Cock, L. A. Crofts, J. A. Eisman, and E. M. Gardiner. 2001. Novel N-terminal variant of human VDR. Molecular Endocrinology 15 (9):1599–609. doi: 10.1210/mend.15.9.0693.
  • Thompson, G. R., B. Lewis, and C. C. Booth. 1966. Absorption of vitamin D3-3H in control subjects and patients with intestinal malabsorption. The Journal of Clinical Investigation 45 (1):94–102. doi: 10.1172/JCI105327.
  • Thompson, P. D., L. S. Remus, J. C. Hsieh, P. W. Jurutka, G. K. Whitfield, M. A. Galligan, C. Encinas Dominguez, C. A. Haussler, and M. R. Haussler. 2001. Distinct retinoid X receptor activation function-2 residues mediate transactivation in homodimeric and vitamin D receptor heterodimeric contexts. Journal of Molecular Endocrinology 27 (2):211–27. doi: 10.1677/jme.0.0270211.
  • U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015. 2015–2020 dietary guidelines for Americans. 8th Edition. December. http://health.gov/dietaryguidelines/2015/guidelines/.
  • Wacker, M., and M. F. Holick. 2013. Sunlight and vitamin D: A global perspective for health. Dermato-endocrinology 5 (1):51–108. doi: 10.4161/derm.24494.
  • Webb, A. R., B. R. DeCosta, and M. F. Holick. 1989. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. The Journal of Clinical Endocrinology and Metabolism 68 (5):882–7. doi: 10.1210/jcem-68-5-882.
  • Weber, F. 1981. Absorption mechanisms for fat-soluble vitamins and the effect of other food constituents. Progress in Clinical and Biological Research 77:119–35.
  • White, P., and N. Cooke. 2000. The multifunctional properties and characteristics of vitamin D-binding protein. Trends in Endocrinology and Metabolism: TEM 11 (8):320–7. doi: 10.1016/s1043-2760(00)00317-9.
  • Yin, K., and D. K. Agrawal. 2014. Vitamin D and inflammatory diseases. Journal of Inflammation Research 7:69–87. doi: 10.2147/JIR.S63898.
  • Zanello, L.-P., and A.-W. Norman. 2004. Rapid modulation of osteoblast ion channel responses by 1alpha,25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proceedings of the National Academy of Sciences of the United States of America 101 (6):1589–94. doi: 10.1073/pnas.0305802101.
  • Zenata, O., and R. Vrzal. 2017. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget 8 (21):35390–402. doi: 10.18632/oncotarget.15697.
  • Zhang, C., D. R. Dowd, A. Staal, C. Gu, J. B. Lian, A. J. v Wijnen, G. S. Stein, and P. N. MacDonald. 2003. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. The Journal of Biological Chemistry 278 (37):35325–36. doi: 10.1074/jbc.M305191200.
  • Zhang, J., M. J. Chalmers, K. R. Stayrook, L. L. Burris, Y. Wang, S. A. Busby, B. D. Pascal, R. D. Garcia-Ordonez, J. B. Bruning, M. A. Istrate, et al. 2011. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nature Structural & Molecular Biology 18 (5):556–63. doi: 10.1038/nsmb.2046.
  • Zhang, X., M. Zhou, Y. Guo, Z. Song, and B. Liu. 2015. 1,25-dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. BioMed Research International 2015:157834. doi: 10.1155/2015/157834.
  • Zhu, J., and H. F. DeLuca. 2012. Vitamin D 25-hydroxylase—Four decades of searching, are we there yet? Archives of Biochemistry and Biophysics 523 (1):30–6. doi: 10.1016/j.abb.2012.01.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.