2,013
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Research progress on antimicrobial materials for food packaging

, , , , , & show all

References

  • Aerts, O., M. Baeck, L. Constandt, B. Dezfoulian, M.-C. Jacobs, S. Kerre, H. Lapeere, L. Pierret, K. Wouters, and A. Goossens. 2014. The dramatic increase in the rate of methylisothiazolinone contact allergy in Belgium: A multicentre study. Contact Dermatitis 71 (1):41–8. doi: 10.1111/cod.12249.
  • Aerts, O., A. Goossens, J. Lambert, and J.-P. Lepoittevin. 2017. Contact allergy caused by isothiazolinone derivatives: An overview of non-cosmetic and unusual cosmetic sources. European Journal of Dermatology 27 (2):115–22. doi: 10.1684/ejd.2016.2951.
  • Ahmed, J., M. Mulla, H. Jacob, G. Luciano, T. B. Binni, and A. Almusallam. 2019. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packaging and Shelf Life 21:100355. doi: 10.1016/j.fpsl.2019.100355.
  • Ahmad, Z., M. A. Vargas-Reus, R. Bakhshi, F. Ryan, G. Ren, F. Oktar, and R. Allaker. 2012. Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. Methods in Enzymology 509:87–99.
  • Al-Tayyar, N. A., A. M. Youssef, and R. Al-Hindi. 2020. Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: A review. Food Chemistry 310:125915. doi: 10.1016/j.foodchem.2019.125915.
  • Assis, L. M. d., E. d. R. Zavareze, C. Prentice-Hernández, and L. A. d. Souza-Soares. 2012. Characteristics of nanoparticles and their potential applications in foods. Brazilian Journal of Food Technology 15 (2):99–109. doi: 10.1590/S1981-67232012005000004.
  • Ayala-Zavala, J. F., and G. A. González-Aguilar. 2010. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. Journal of Food Science 75 (7):M398–M405.
  • Beyki, M., S. Zhaveh, S. T. Khalili, T. Rahmani-Cherati, A. Abollahi, M. Bayat, M. Tabatabaei, and A. Mohsenifar. 2014. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products 54:310–19. doi: 10.1016/j.indcrop.2014.01.033.
  • Bezerra, D. P., A. K. N. Soares, and D. P. de Sousa. 2016. Overview of the role of vanillin on redox status and cancer development. Oxidative Medicine and Cellular Longevity 2016:9734816. doi: 10.1155/2016/9734816.
  • Bhullar, S. K., B. K. Özsel, R. Yadav, G. Kaur, M. Chintamaneni, and H. S. Buttar. 2015. Antibacterial activity of combination of synthetic and biopolymer non-woven structures. Journal of Complementary and Integrative Medicine 12 (4):289–94. doi: 10.1515/jcim-2015-0027.
  • Biddeci, G., G. Cavallaro, F. Di Blasi, G. Lazzara, M. Massaro, S. Milioto, F. Parisi, S. Riela, and G. Spinelli. 2016. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydrate Polymers 152:548–57. doi: 10.1016/j.carbpol.2016.07.041.
  • Botre, D. A., N. d. F. F. Soares, P. J. P. Espitia, S. d. Sousa, and I. R. T. Renhe. 2010. Avaliação de filme incorporado com óleo essencial de orégano para conservação de pizza pronta. Revista Ceres 57 (3):283–91. doi: 10.1590/S0034-737X2010000300001.
  • Chang, S.-T., P.-F. Chen, and S.-C. Chang. 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of Ethnopharmacology 77 (1):123–7. doi: 10.1016/s0378-8741(01)00273-2.
  • Cruz, R. S., G. P. Camilloto, and A. C. dos Santos Pires. 2012. Oxygen scavengers: An approach on food preservation. In: Structure and function of food engineering, ed. A. A. Eissa, 21–42 . Croatia: IntechOpen.
  • da Costa, R. J., F. L. S. Voloski, R. G. Mondadori, E. H. Duval, and Â. M. Fiorentini. 2019. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality 2019:1–12. doi: 10.1155/2019/4726510.
  • Day, B. P. J. 2008. Active packaging of food. In Smart packaging technologies for fast moving consumer goods, ed. J. Kerry and P. Butler, 1–18. Chichester: John Wiley & Sons, Ltd. doi: 10.1002/9780470753699.
  • de Azeredo, H. M. 2013. Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology 30 (1):56–69.
  • Dimapilis, E. A. S., C.-S. Hsu, R. M. O. Mendoza, and M.-C. Lu. 2018. Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research 28 (2):47–56. doi: 10.1016/j.serj.2017.10.001.
  • Donsì, F., M. Sessa, and G. Ferrari. 2010. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Journal of Biotechnology 150 (150):67. doi: 10.1016/j.jbiotec.2010.08.175.
  • Duque-Benítez, S. M., L. A. Ríos-Vásquez, R. Ocampo-Cardona, D. L. Cedeño, M. A. Jones, I. D. Vélez, and S. M. Robledo. 2016. Synthesis of novel quaternary ammonium salts and their in vitro antileishmanial activity and U-937 cell cytotoxicity. Molecules (Basel, Switzerland) 21 (4):381. doi: 10.3390/molecules21040381.
  • Duran, A., and H. I. Kahve. 2020. The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Science 162:107961. doi: 10.1016/j.meatsci.2019.107961.
  • Ellahi, H., E. Khalili Sadrabad, S. Hekmatimoghaddam, A. Jebali, E. Sarmast, and F. Akrami Mohajeri. 2020. Application of essential oil of Pistacia atlantica Gum, polypropylene and silica nanoparticles as a new milk packaging. Food Science and Nutrition 8 (8):4037–43. doi: 10.1002/fsn3.1660.
  • Ellis, M., K. Cooksey, P. Dawson, I. Han, and P. Vergano. 2006. Quality of fresh chicken breasts using a combination of modified atmosphere packaging and chlorine dioxide sachets. Journal of Food Protection 69 (8):1991–6. doi: 10.4315/0362-028x-69.8.1991.
  • Espitia, P. J. P., N. D. F. Ferreira Soares, L. C. M. Botti, W. A. Da Silva, N. R. De Melo, and O. L. Pereira. 2011. Active sachet: Development and evaluation for the conservation of Hawaiian papaya quality. Italian Journal of Food Science 23:107–110.
  • Espitia, P. J. P., N. D. F. Ferreira Soares, L. C. M. Botti, N. R. De Melo, O. L. Pereira, and W. A. D. Silva. 2012. Assessment of the efficiency of essential oils in the preservation of postharvest papaya in an antimicrobial packaging system. Brazilian Journal of Food Technology 15 (4): 333–42.
  • Espitia, P. J. P., N. D. F. Ferreira Soares, R. F. Teófilo, J. S. d. R. Coimbra, D. M. Vitor, R. A. Batista, S. O. Ferreira, N. J. de Andrade, and E. A. A. Medeiros. 2013. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers 94 (1):199–208. doi: 10.1016/j.carbpol.2013.01.003.
  • Gan, I., and W. S. Chow. 2018. Antimicrobial poly (lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packaging and Shelf Life 17:150–61. doi: 10.1016/j.fpsl.2018.06.012.
  • Ghaani, M., C. A. Cozzolino, G. Castelli, and S. Farris. 2016. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology 51:1–11.
  • Gómez-Estaca, J., C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá, and R. Gavara. 2014. Advances in antioxidant active food packaging. Trends in Food Science & Technology 35 (1):42–51.
  • Han, G., R. Guo, Z. Yu, and G. Chen. 2020. Progress on biodegradable films for antibacterial food packaging. E3S Web of Conferences 145:01036. doi: 10.1051/e3sconf/202014501036.
  • He, X., and H.-M. Hwang. 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis 24 (4):671–81. doi: 10.1016/j.jfda.2016.06.001.
  • Hempel, A. W., D. B. Papkovsky, and J. P. J. F. Kerry. 2013. Use of optical oxygen sensors in non-destructively determining the levels of oxygen present in combined vacuum and modified atmosphere packaged pre-cooked convenience-style foods and the use of ethanol emitters to extend product shelf-life. Foods (Basel, Switzerland) 2 (4):507–20. doi: 10.3390/foods2040507.
  • Hoseinnejad, M., S. M. Jafari, and I. Katouzian. 2018. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology 44 (2):161–81. doi: 10.1080/1040841X.2017.1332001.
  • Hosteing, S., N. Meyer, J. Waton, A. Barbaud, J.-L. Bourrain, N. Raison-Peyron, B. Felix, B. Milpied-Homsi, M.-C. Ferrier Le Bouedec, M. Castelain, et al.; On behalf of REVIDAL-GERDA network. 2014. Outbreak of contact sensitization to methylisothiazolinone: An analysis of F rench data from the REVIDAL-GERDA network. Contact Dermatitis 70 (5):262–9. doi: 10.1111/cod.12207.
  • Huang, T., Y. Qian, J. Wei, and C. J. P. Zhou. 2019. Polymeric antimicrobial food packaging and its applications. Polymers 11 (3):560.
  • Hussain, A. I., F. Anwar, S. T. Hussain Sherazi, and R. Przybylski. 2008. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry 108 (3):986–95. doi: 10.1016/j.foodchem.2007.12.010.
  • Jridi, M., O. Abdelhedi, A. Salem, H. Kechaou, M. Nasri, and Y. Menchari. 2020. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids 103:105688. doi: 10.1016/j.foodhyd.2020.105688.
  • Ju, J., X. Chen, Y. Xie, H. Yu, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology 92:22–32. doi: 10.1016/j.tifs.2019.08.005.
  • Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park. 2008. Antibacterial Activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology 74 (7):2171.
  • Kapetanakou, A. E., and P. N. Skandamis. 2016. Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Current Opinion in Food Science 12:1–12. doi: 10.1016/j.cofs.2016.06.001.
  • Khan, P., S. Rahman, A. Queen, S. Manzoor, F. Naz, G. M. Hasan, S. Luqman, J. Kim, A. Islam, F. Ahmad, et al. 2017. Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and in vitro studies. Scientific Reports 7 (1):1–15. doi: 10.1038/s41598-017-09941-4.
  • Khedri, S., E. Sadeghi, M. Rouhi, Z. Delshadian, A. M. Mortazavian, J. de Toledo Guimarães, and R. Mohammadi. 2020. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. LWT 138: 110649.
  • Kim, S., and M.-S. Rhee. 2016. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control. 60:447–54. doi: 10.1016/j.foodcont.2015.08.022.
  • Koizhaiganova, M., I. Yaşa, and G. Gülümser. 2015. Assessment of antibacterial activity of lining leather treated with silver doped hydroxyapatite. International Biodeterioration & Biodegradation 105:262–7.
  • Kuuliala, L., T. Pippuri, J. Hultman, S.-M. Auvinen, K. Kolppo, T. Nieminen, M. Karp, J. Björkroth, J. Kuusipalo, and E. Jääskeläinen. 2015. Preparation and antimicrobial characterization of silver-containing packaging materials for meat. Food Packaging and Shelf Life 6:53–60. doi: 10.1016/j.fpsl.2015.09.004.
  • Lan, W., L. He, and Y. Liu. 2018. Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings 8 (8):291. doi: 10.3390/coatings8080291.
  • Lan, W., S. Li, S. Shama, Y. Zhao, D. E. Sameen, L. He, and Y. J. P. Liu. 2020. Investigation of ultrasonic treatment on physicochemical structural and morphological properties of sodium alginate/AgNPs/apple polyphenol films and its preservation effect on strawberry. Polymers 12 (9):2096. doi: 10.3390/polym12092096.
  • Lan, W., S. Wang, M. Chen, D. E. Sameen, K. Lee, and Y. Liu. 2020. Developing poly(vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. International Journal of Biological Macromolecules 145:722–32. doi: 10.1016/j.ijbiomac.2019.12.230.
  • Lee, S. Y., S. J. Lee, D. S. Choi, and S. J. Hur. 2015. Current topics in active and intelligent food packaging for preservation of fresh foods. Journal of the Science of Food and Agriculture 95 (14):2799–810. doi: 10.1002/jsfa.7218.
  • Li, J., L. Tan, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, P. K. Chu, and S. Wu. 2017. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 11 (11):11250–63. doi: 10.1021/acsnano.7b05620.
  • Li, S., S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, and X. Chen. 2018. Antibacterial Hydrogels. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 5 (5):1700527. doi: 10.1002/advs.201700527.
  • Lima, E. M. B., A. M. Lima, A. P. S. Minguita, N. R. Rojas dos Santos, I. C. S. Pereira, T. T. M. Neves, L. F. da Costa Gonçalves, A. P. D. Moreira, A. Middea, R. Neumann, et al. 2019. Poly(lactic acid) biocomposites with mango waste and organo-montmorillonite for packaging. Journal of Applied Polymer Science 136 (21):47512. doi: 10.1002/app.47512.
  • Lin, L., L. Xue, S. Duraiarasan, and C. Haiying. 2018. Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packaging and Shelf Life 17:134–41. doi: 10.1016/j.fpsl.2018.06.013.
  • Liu, J., D. A. Sonshine, S. Shervani, and R. H. Hurt. 2010. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4 (11):6903–6913. doi: 10.1021/nn102272n.
  • Liu, Y., S. Wang, W. Lan, and W. Qin. 2019. Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. Ultrasonics Sonochemistry 51:386–94. doi: 10.1016/j.ultsonch.2018.07.043.
  • Lloret, E., P. Picouet, and A. Fernández. 2012. Matrix effects on the antimicrobial capacity of silver based nanocomposite absorbing materials. LWT - Food Science and Technology 49 (2):333–8. doi: 10.1016/j.lwt.2012.01.042.
  • Luís, Â., A. Duarte, J. Gominho, F. Domingues, and A. P. Duarte. 2016. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products 79:274–82. doi: 10.1016/j.indcrop.2015.10.055.
  • Ma, J. 2012. Allyl isothiocyanate derived from oriental mustard meal as a natural antimicrobial to inhibit the growth of moulds on bread. PhD diss., The University of Guelph.
  • Makwana, S., R. Choudhary, and P. Kohli. 2015. Advances in antimicrobial food packaging with nanotechnology and natural antimicrobials. International Journal of Food Science and Nutrition Engineering 5 (4):169–75.
  • Malhotra, B., A. Keshwani, and H. Kharkwal. 2015. Antimicrobial food packaging: Potential and pitfalls. Frontiers in Microbiology 6:611. doi: 10.3389/fmicb.2015.00611.
  • McManamon, O., T. Kaupper, J. Scollard, and A. Schmalenberger. 2019. Nisin application delays growth of Listeria monocytogenes on fresh-cut iceberg lettuce in modified atmosphere packaging, while the bacterial community structure changes within one week of storage. Postharvest Biology and Technology 147:185–95. doi: 10.1016/j.postharvbio.2018.10.002.
  • Mellinas, C., A. Valdés, M. Ramos, N. Burgos, M. d. C. Garrigós, and A. Jiménez. 2016. Active edible films: Current state and future trends. Journal of Applied Polymer Science 133 (2). doi: 10.1002/app.42631.
  • Melo, A. A. M. d., R. M. Geraldine, M. F. A. Silveira, M. C. L. Torres, C. S. M. E. Rezende, T. H. Fernandes, and A. N. D. Oliveira. 2012. Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil. Brazilian Journal of Microbiology 43 (4):1419–27. doi: 10.1590/S1517-83822012000400025.
  • Mijnendonckx, K., N. Leys, J. Mahillon, S. Silver, and R. Van Houdt. 2013. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 26 (4):609–21. doi: 10.1007/s10534-013-9645-z.
  • Mirzaee, M., M. Vaezi, and Y. Palizdar. 2016. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Materials Science & Engineering C Materials for Biological Applications 69:675–684. doi: 10.1016/j.msec.2016.07.057.
  • Mlalila, N., A. Hilonga, H. Swai, F. Devlieghere, and P. Ragaert. 2018. Antimicrobial packaging based on starch, poly (3-hydroxybutyrate) and poly (lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology 74:1–11.
  • Moon, H., and M. S. Rhee. 2016. Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact. International Journal of Food Microbiology 217:35–41. doi: 10.1016/j.ijfoodmicro.2015.10.009.
  • Moore, A. N., T. L. L. Silva, N. C. Carrejo, C. A. O. Marmolejo, I.-C. Li, and J. D. Hartgerink. 2018. Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells. Biomaterials 161:154–63. doi: 10.1016/j.biomaterials.2018.01.033.
  • Moustafa, H., A. M. Youssef, N. A. Darwish, and A. I. Abou-Kandil. 2019. Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering 172:16–25. doi: 10.1016/j.compositesb.2019.05.048.
  • Norcino, L. B., J. F. Mendes, C. V. L. Natarelli, A. Manrich, J. E. Oliveira, and L. H. C. Mattoso. 2020. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocolloids 106:105862. doi: 10.1016/j.foodhyd.2020.105862.
  • Otoni, C. G., P. J. Espitia, R. J. Avena-Bustillos, and T. H. McHugh. 2016. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International 83:60–73. doi: 10.1016/j.foodres.2016.02.018.
  • Otoni, C. G., N. d. F. F. Soares, W. A. da Silva, E. A. A. Medeiros, and J. C. Baffa Junior. 2014. Use of allyl isothiocyanate‐containing sachets to reduce aspergillus flavus sporulation in peanuts. Packaging Technology and Science 27 (7):549–58.
  • Padmavathy, N., and R. Vijayaraghavan. 2008. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Science and Technology of Advanced Materials 9 (3):035004. doi: 10.1088/1468-6996/9/3/035004.
  • Park, J. K., Y.-J. Kim, J. Yeom, J. H. Jeon, G.-C. Yi, J. H. Je, and S. K. Hahn. 2010. The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Advanced Materials 22 (43):4857–61. doi: 10.1002/adma.201002255.
  • Park, S. I., M. Daeschel, and Y. Zhao. 2004. Functional properties of antimicrobial lysozyme-chitosan composite films. Journal of Food Science 69 (8):M215–M221. doi: 10.1111/j.1365-2621.2004.tb09890.x.
  • Passarinho, A. T. P., N. F. Dias, G. P. Camilloto, R. S. Cruz, C. G. Otoni, A. R. F. Moraes, and N. d. F. F. Soares. 2014. Sliced bread preservation through oregano essential oil-containing sachet. Journal of Food Process Engineering 37 (1), 53–62.
  • Pavoski, G., D. L. S. Baldisserotto, T. Maraschin, L. F. W. Brum, C. dos Santos, J. H. Z. dos Santos, A. Brandelli, and G. B. Galland. 2019. Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization. European Polymer Journal 117:38–54. doi: 10.1016/j.eurpolymj.2019.04.055.
  • Pisoschi, A. M., A. Pop, C. Georgescu, V. Turcuş, N. K. Olah, and E. Mathe. 2018. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry 143:922–35. doi: 10.1016/j.ejmech.2017.11.095.
  • Rezaei, A., A. Nasirpour, H. Tavanai, and M. Fathi. 2016. A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. Flavour and Fragrance Journal 31 (6):442–447. doi: 10.1002/ffj.3335.
  • Riahi, L., M. Elferchichi, H. Ghazghazi, J. Jebali, S. Ziadi, C. Aouadhi, H. Chograni, Y. Zaouali, N. Zoghlami, and A. Mliki. 2013. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Industrial Crops and Products 49:883–9. doi: 10.1016/j.indcrop.2013.06.032.
  • Ribeiro-Santos, R., M. Andrade, and A. Sanches-Silva. 2017. Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science 14:78–84. doi: 10.1016/j.cofs.2017.01.012.
  • Ritchie, H., and M. Roser. 2018. Plastic pollution. Our world in data. Accessed December 12, 2020. https://ourworldindata.org/plastic-pollution.
  • Saugo, M., D. O. Flamini, L. I. Brugnoni, and S. B. Saidman. 2015. Silver deposition on polypyrrole films electrosynthesised onto nitinol alloy. Corrosion protection and antibacterial activity. Materials Science & Engineering C Materials for Biological Applications 56:95–103. doi: 10.1016/j.msec.2015.06.014.
  • Sekiyama, Y., Y. Mizukami, and A. Takada. 1995. Corrosiveness of allyl isothiocyanate towards metals, rubbers and plastics and ability of allyl isothiocyanate vapor to permeate plastic films. Food Hygiene and Safety Science 36 (3):375–382_371.
  • Severino, R., G. Ferrari, K. D. Vu, F. Donsì, S. Salmieri, and M. Lacroix. 2015. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella typhimurium on green beans. Food Control 50:215–22. doi: 10.1016/j.foodcont.2014.08.029.
  • Shahbazi, Y., N. Shavisi, and N. Karami.2013. Development of edible bioactive coating based on mucilages for increasing the shelf life of strawberries. Journal of Food Measurement and Characterization. doi: 10.1007/s11694-020-00638-3.
  • Silva, V., C. Silva, P. Soares, E. M. Garrido, F. Borges, and J. Garrido. 2020. Isothiazolinone biocides: Chemistry, biological, and toxicity profiles. Molecules 25 (4):991. doi: 10.3390/molecules25040991.
  • Silver, S., J. Schottel, and A. Weiss. 2001. Bacterial resistance to toxic metals determined by extrachromosomal R factors. International Biodeterioration & Biodegradation 48 (1):263–81.
  • Singh, S., K. C. Barick, and D. Bahadur. 2013. Shape-controlled hierarchical ZnO architectures: Photocatalytic and antibacterial activities. CrystEngComm 15 (23):4631–9. doi: 10.1039/c3ce27084j.
  • Sivakumar, D., and S. Bautista-Baños. 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection 64:27–37. doi: 10.1016/j.cropro.2014.05.012.
  • Souza, A. C., G. E. O. Goto, J. A. Mainardi, A. C. V. Coelho, and C. C. Tadini. 2013. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology 54 (2):346–52. doi: 10.1016/j.lwt.2013.06.017.
  • Stroescu, M., A. Stoica-Guzun, G. Isopencu, S. I. Jinga, O. Parvulescu, T. Dobre, and M. Vasilescu. 2015. Chitosan-vanillin composites with antimicrobial properties. Food Hydrocolloids. 48:62–71. doi: 10.1016/j.foodhyd.2015.02.008.
  • Sun, X., Z. Sheng, and Y. Liu. 2013. Effects of silver nanoparticles on microbial community structure in activated sludge. Science of the Total Environment 443:828–35. doi: 10.1016/j.scitotenv.2012.11.019.
  • Sundaram, J., J. Pant, M. J. Goudie, S. Mani, and H. Handa. 2016. Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose-chitosan packaging membranes. Journal of Agricultural and Food Chemistry 64 (25):5260–6. doi: 10.1021/acs.jafc.6b01936.
  • Sung, S.-Y., L. T. Sin, T.-T. Tee, S.-T. Bee, A. Rahmat, W. Rahman, A. C. Tan, and M. Vikhraman. 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology 33 (2):110–23.
  • Surendhiran, D., C. Li, H. Cui, and L. Lin. 2020. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packaging and Shelf Life 23:100439. doi: 10.1016/j.fpsl.2019.100439.
  • Tiwari, V., N. Mishra, K. Gadani, P. S. Solanki, N. A. Shah, and M. Tiwari. 2018. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Frontiers in Microbiology 9:1218. doi: 10.3389/fmicb.2018.01218.
  • Topuz, F., and T. J. Uyar. 2020. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Research International 130:108927. doi: 10.1016/j.foodres.2019.108927.
  • Triebel, C., S. Vasylyev, C. Damm, H. Stara, C. Özpınar, S. Hausmann, W. Peukert, and H. Münstedt. 2011. Polyurethane/silver-nanocomposites with enhanced silver ion release using multifunctional invertible polyesters. Journal of Materials Chemistry 21 (12):4377–83. doi: 10.1039/c0jm03487h.
  • Tsezos, M., E. Remoudaki, and V. Angelatou. 1995. A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. International Biodeterioration & Biodegradation 35 (1):129–53.
  • Wang, Y., R. Zhang, S. Ahmed, W. Qin, and Y. Liu. 2019. Preparation and characterization of corn starch bio-active edible packaging films based on zein incorporated with orange-peel oil. Antioxidants 8 (9):391. doi: 10.3390/antiox8090391.
  • Wen, P., D.-H. Zhu, H. Wu, M.-H. Zong, Y.-R. Jing, and S.-Y. Han. 2016. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–76. doi: 10.1016/j.foodcont.2015.06.005.
  • Wrona, M., M. J. Cran, C. Nerín, and S. W. Bigger. 2017. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers 156:108–17. doi: 10.1016/j.carbpol.2016.08.094.
  • Xue, P., Y. Shan, Q. Shen, Y. Li, J. Jiang, Y. Liu, and X. Liu. 2019. Potential impact of organic ligands on the antibacterial activity of silver nanoparticles. New Journal of Chemistry 43 (7):2870–4. doi: 10.1039/C8NJ05919E.
  • Yousefi, H., Su, H.-M., Imani, S. M.,, Alkhaldi, K., Filipe, M. C. D.. and Didar, T. F. 2019. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors 4 (4):808–21. doi: 10.1021/acssensors.9b00440.
  • Zanetti, M., T. K. Carniel, F. Dalcanton, R. S. dos Anjos, H. Gracher Riella, P. H. H. de Araújo, D. de Oliveira, and M. Antônio Fiori. 2018. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends in Food Science & Technology 81:51–60.
  • Zhou, F. F., J. J. Liao, and J. Teng. 2014. Green ecological design research of tourism product packaging. Applied Mechanics and Materials 670–671:960–3. doi: 10.4028/www.scientific.net/AMM.670-671.960.
  • Zinoviadou, K. G., K. P. Koutsoumanis, and C. G. Biliaderis. 2009. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science 82 (3):338–45. doi: 10.1016/j.meatsci.2009.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.