641
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds

, , &

References

  • Abbas, M., F. Saeed, F. Muhammad Anjum, M. Afzaal, T. Tufail, M. Shakeel Bashir, A. Ishtiaq, S. Hussain, H. Ansar, and R. Suleria. 2017. Natural polyphenols: an overview. International Journal of Food Properties 20 (8):1689–99. doi: 10.1080/10942912.2016.1220393.
  • Abbasi, F., F. Samadi, S. M. Jafari, S. Ramezanpour, and M. Shams-Shargh. 2019. Production of omega-3 fatty acid-enriched broiler chicken meat by the application of nanoencapsultsed flaxseed oil prepared via ultrasonication. Journal of Functional Foods 57:373–81. doi: 10.1016/j.jff.2019.04.030.
  • Aceituno-Medina, M.,. S. Mendoza, B. A. Rodrıguez, J. M. Lagaron, and A. Lopez-Rubio. 2015. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of Functional Foods 12:332–41. doi: 10.1016/j.jff.2014.11.028.
  • Aditya, N., A. S. Macedo, S. Doktorovova, E. B. Souto, S. Kim, P.-S. Chang, and S. Ko. 2014. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). Lwt – Food Science and Technology 59 (1):115–21. doi: 10.1016/j.lwt.2014.04.058.
  • Ahmad, S., M. A. Arshad, S. Ijaz, U. Khurshid, F. Rashid, and R. Azam. 2014. Review on methods used to determine antioxidant activity. International Journal of Multidisciplinary Research and Development 1 (1):41–4.
  • Akbarbaglu, Z., S. Mahdi Jafari, K. Sarabandi, M. Mohammadi, M. Khakbaz Heshmati, and A. Pezeshki. 2019. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloids and Surfaces. B, Biointerfaces 178:421–9. doi: 10.1016/j.colsurfb.2019.03.038.
  • Amendola, D., D. M. De Faveri, and G. Spigno. 2010. Grape marc phenolics: extraction kinetics, quality and stability of extracts. Journal of Food Engineering 97 (3):384–92. doi: 10.1016/j.jfoodeng.2009.10.033.
  • Ames, B. M., R. Cathcart, E. Schwiers, and P. Hochstein. 1981. Uric acid produces an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 73, 6858–62.
  • Antolovic, M., P. D. Prenzler, E. Patsalides, S. McDonald, and K. Robards. 2002. Methods for testing antioxidant activity. Analyst 127:183–98.
  • Apak, R., K. Güçlü, M. Özyürek, and S. E. Karademir. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric iron reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52 (26):7970–81. doi: 10.1021/jf048741x.
  • Arana-Sánchez, A.,. M. Estarrón-Espinosa, E. N. Obledo-Vázquez, E. Padilla-Camberos, R. Silva-Vázquez, and E. Lugo-Cervantes. 2010. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in b-cyclodextrin. Letters in Applied Microbiology 50 (6):585–90. doi: 10.1111/j.1472-765X.2010.02837.x.
  • Arpagaus, C., A. Collenberg, D. Rütti, E. Assadpour, and S. M. Jafari. 2018. Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics 546 (1-2):194–214. doi: 10.1016/j.ijpharm.2018.05.037.
  • Assadpour, E., S. M. Jafari, and A. F. Esfanjani. 2017. Protection of phenolic compounds within nanocarriers. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 12 (057):1–8. doi: 10.1079/PAVSNNR201712057.
  • Assadpour, E., and S. M. Jafari. 2019. 3-Nanoencapsulation: techniques and developments for food applications. Nanomaterials for Food Applications doi: 10.1016/B978-0-12-814130-4.00003-8.
  • Badarinath, A. V., K. Mallikarjuna, C. Rao, S. Madhu Sudhana Chetty, T. V. S. Ramkanth, K. Rajan, and K. Gnanaprakash. 2010. A review on in-vitro antioxidant methods: comparisons, correlations and considerations. International Journal of PharmTech Research 2:1276–85.
  • Bagherpour, S., A. Alizadeh, S. Ghanbarzadeh, M. Mohammadi, and H. Hamishehkar. 2017. Preparation and characterization of betasitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Bioscience 20:51–5. doi: 10.1016/j.fbio.2017.07.010.
  • Bard, A. J., and R. L. Faulkner. 2001. Electrochemical Methods: Fundamentals and Applications (2 ed.). Wiley.
  • Benzie, I. F., and J. J. Strain. 1999. Ferric reducing antioxidant power assay, direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration methods. Enzymology 299:15–27.
  • Bonanni, A., L. Campanella, T. Gatta, E. Gregori, and M. Tomassetti. 2007. Evaluation of the antioxidant and prooxidant properties of several commercial dry spices by different analytical methods. Food Chemistry 102 (3):751–8. doi: 10.1016/j.foodchem.2006.06.030.
  • Brand-Williams, W.,. M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lwt – Food Science and Technology 28 (1):25–30. doi: 10.1016/S0023-6438(95)80008-5.
  • Brcanović, M. J., A. N. Pavlović, S. S. Mitić, G. S. Stojanović, D. D. Manojlović, B. M. Kaličanin, and J. N. Veljković. 2013. Cyclic voltammetric determination of antioxidant capacity of cocoa powder, dark chocolate and milk chocolate samples: correlation with spectrophotometric assays and individual phenolic compounds. Food Technology and Biotechnology 51 (4):460–70.
  • Cadena, P. G., M. A. Pereira, R. B. S. Cordeiro, I. M. F. Cavalcanti, B. Barros Neto, M. d C. C. B. Pimentel, J. L. Lima Filho, V. L. Silva, and N. S. Santos-Magalhães. 2013. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochimica et Biophysica Acta 1828 (2):309–16. doi: 10.1016/j.bbamem.2012.10.022.
  • Caldwell, C. R. 2001. Oxygen radical absorbance capacity of the phenolic compounds in plant extracts fractionated by high-performance liquid chromatography. Analytical Biochemistry 293 (2):232–8. doi: 10.1006/abio.2001.5134.
  • Carocho, M., and C. F. R. Ferreira. 2013. A review on antioxidants, proxidants and related controversy. Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology 51:15–25. doi: 10.1016/j.fct.2012.09.021.
  • Chance, P. A., H. Sies, and A. Boveris. 1979. A hydroperoxide metabolism in mammalian organs. Physiological Reviews 59 (3):527–605. doi: 10.1152/physrev.1979.59.3.527.
  • Chang, C.,. T. Wang, Q. Hu, and Y. Luo. 2017. Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: effect of polysaccharide type and chemical cross-linking. Food Hydrocolloids. 72:254–62. doi: 10.1016/j.foodhyd.2017.05.039.
  • Chen, P., Y.-J. Sun, Z.-C. Zhu, R.-X. Wang, X.-D. Shi, C. Lin, and Y.-T. Ye. 2010. A controlled release system of superoxide dismutase by electrospun fiber and its antioxidant activity in vitro. Journal of Materials Science. Materials in Medicine 21 (2):609–14. doi: 10.1007/s10856-009-3927-6.
  • Chen, L., G. E. Remondetto, and M. Subirade. 2006. Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology 17 (5):272–83.
  • Chen, J., J. Zheng, D. J. McClements, and H. Xiao. 2014. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance. Food Chemistry 158:466–72. doi: 10.1016/j.foodchem.2014.03.003.
  • Chong, P. L., and M. Olsher. 2007. Fluorometric assay for detection of sterol oxidation in liposomal membranes. Methods in Molecular Biology (Clifton, N.J.) 400:145–58. doi: 10.1007/978-1-59745-519-0_10.
  • Chow, H. H. S., Y. Cai, I. A. Hakim, J. A. Crowell, F. Shahi, C. A. Brooks, R. T. Dorr, Y. Hara, and D. S. Alberts. 2003. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clinical Cancer Research 9 (9):3312–9. − 
  • Chu, B.-S., S. Ichikawa, S. Kanafusa, and M. Nakajima. 2007. Preparation and characterization of β-carotene nanodispersions prepared by solvent displacement technique. Journal of Agricultural and Food Chemistry 55 (16):6754–60. doi: 10.1021/jf063609d.
  • Chuacharoen, T., and C. M. Sabliov. 2016. The potential of zein nanoparticles to protect entrappedβ-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. Lwt – Food Science and Technology 72:302–9. doi: 10.1016/j.lwt.2016.05.006.
  • Cízová, H., A. Lojek, L. Kubala, and M. Cíz. 2004. The effect of intestinal ischemia duration on changes in plasma antioxidant defense status in rats. Physiological Research 53 (5):523–31.
  • Davidov-Pardo, G., and D. J. Mcclements. 2015. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chemistry 167:205–12. doi: 10.1016/j.foodchem.2014.06.082.
  • Denev, P., M. Ciz, G. Ambrozova, A. Lojek, I. Yanakieva, and M. Kratchanova. 2010. Solidphase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chemistry 123 (4):1055–61. doi: 10.1016/j.foodchem.2010.05.061.
  • Desobry, S. A., F. M. Netto, and T. P. Labuza. 1997. Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science 62 (6):1158–62. doi: 10.1111/j.1365-2621.1997.tb12235.x.
  • Dhurai, B., N. Saraswathy, R. Maheswaran, P. Sethupathi, P. Vanitha, S. Vigneshwaran, and V. Rameshbabu. 2013. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Frontiers of Materials Science 7 (4):350–61. doi: 10.1007/s11706-013-0222-8.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020. Bioactive-loaded nanocarriers for functional foods: from designing to bioavailability. Current Opinion in Food Science 33:21–9. doi: 10.1016/j.cofs.2019.11.006.
  • Donhowe, E. G., and F. Kong. 2014. Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food and Bioprocess Technology 7 (2):338–54. doi: 10.1007/s11947-013-1244-z.
  • Donsì, F., B. Senatore, Q. Huang, and G. Ferrari. 2010. Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals. Journal of Agricultural and Food Chemistry 58 (19):10653–60. doi: 10.1021/jf101804g.
  • Dube, A., N. Ken, J. A. Nicolazzo, and L. Ian. 2010. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry 122 (3):662–7. doi: 10.1016/j.foodchem.2010.03.027.
  • Dutta, S., and P. Bhattacharjee. 2017. Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction. Journal of Food Engineering 201:49–56. doi: 10.1016/j.jfoodeng.2017.01.006.
  • Elgrishi, N., K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey. 2018. A practical beginner's guide to cyclic voltammetry. Journal of Chemical Education 95 (2):197–206. doi: 10.1021/acs.jchemed.7b00361.
  • Esfanjani, A. F., E. Assadpour, and S. M. Jafari. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science and Technology 76:56–66.
  • Esfanjani, A. F., and S. M. Jafari. 2017. Nanoencapsulation of phenolic compounds and antioxidants. In Nanoencapsulation of Food Bioactive Ingredients. Academic in Press. 63–101.
  • Esfanjani, A. F., and S. M. Jafari. 2016. Biopolymer nanoparticles and natural nanocarriers for nanoencapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces 146:532–43.
  • Esmaili, M., S. M. Ghaffari, Z. Moosavi-Movahedi, M. S. Atri, A. Sharifizadeh, M. Farhadi, R. Yousefi, J.-M. Chobert, T. Haertlé, and A. A. Moosavi-Movahedi. 2011. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. Lwt - Food Science and Technology 44 (10):2166–72. doi: 10.1016/j.lwt.2011.05.023.
  • Ezhilarasi, P. N., P. Karthik, N. Chhanwal, and C. Anandharamakrishnan. 2013. Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology 6 (3):628–47. doi: 10.1007/s11947-012-0944-0.
  • Fang, Z., and B. Bhandari. 2010. Encapsulation of polyphenols—a review. Trends in Food Science & Technology 21:510–23.
  • Fang, Z., and B. Bhandari. 2011. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry 129 (3):1139–47. 1139doi: 10.1016/j.foodchem.2011.05.093.
  • Ferreira, I., S. Rocha, and M. Coelho. 2007. Encapsulation of antioxidants by spray-drying. Chemical Engineering Transactions 11 (9):713–7.
  • Ferreira, C. D., E. J. I. Conceição, B. A. S. Machado, V. S. Hermes, A. O. Rios, J. I. Druzian, and I. L. Nunes. 2015. Physicochemical characterization and oxidative stability of microencapsulated crude palm oil by spray drying. Food Bioprocess Technology 15:1–13.
  • Frankel, E. N., and J. W. Finley. 2008. How to standardized the multiplicity of methods to evaluate natural antioxidants? Journal of Agricultural and Food Chemistry 56 (13):4901–8. doi: 10.1021/jf800336p.
  • Frei, B., L. England, and B. N. Ames. 1989. Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America, 86, 6377–81.
  • Fruhwirth, G. O., T. H. Wenzl, R. El-Toukhy, F. S. Wagner, and A. Hermetter. 2003. Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. European Journal of Lipid Science and Technology 105 (6):266–74.
  • Gharsallaoui, A., G. Roudaut, O. Chambin, A. Voilley, and R. Saurel. 2007. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International 40 (9):1107–21. doi: 10.1016/j.foodres.2007.07.004.
  • Ghorbanzade, T., S. M. Jafari, S. Akhavan, and R. Hadavi. 2017. Nanoencapsulation of fish oil in nanoliposomes and its application in fortification of yogurt. Food Chemistry 216:146–52. doi: 10.1016/j.foodchem.2016.08.022.
  • Giardi, M. T., G. Rea, and B. Berra. 2010. Bio Farms for Nutraceuticals, Functional Food and Safety Control by Biosensors. Landes Bioscience and Springer Science.
  • Gil, D. M. A., and M. J. F. Rebelo. 2010. Evaluating the antioxidant capacity of wines: a laccase-based biosensor approach. European Food Research and Technology 231 (2):303–8. doi: 10.1007/s00217-010-1280-0.
  • Gil, M. I., F. A. Tomas-Barberan, B. Hess-Pierce, and A. A. Kader. 2002. Antioxidant capacities, phenolic compounds, carotenoids and vitamin C contents of nectarine, peach and plum cultivars from. Journal of Agricultural and Food Chemistry 50 (17):4976–82. doi: 10.1021/jf020136b.
  • Gomes, C., R. G. Moreira, and E. Castell-Perez. 2011. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. Journal of Food Science 76 (2):N16–24. doi: 10.1111/j.1750-3841.2010.01985.x.
  • Gonçalves, J., R. Ramos, A. Luís, S. Rocha, T. Rosado, E. Gallardo, and A. Duarte. 2019. Assessment of the bioaccessibility and bioavailability of the phenolic compounds of Prunus avium L. by in vitro digestion and cell model. ACS Omega. 4 (4):7605–13. − doi: 10.1021/acsomega.8b03499.
  • Ha, H.-K., J. W. Kim, M.-R. Lee, and W.-J. Lee. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/β-lactoglobulin nanoparticle. Food Research International 52 (1):82–90. doi: 10.1016/j.foodres.2013.02.021.
  • Halvorsen, B. L., K. Holte, M. C. W. Myhrstad, I. Barikmo, E. Hvattum, S. F. Remberg, A.-B. Wold, K. Haffner, H. Baugerød, L. F. Andersen, et al. 2002. A systematic screening of total antioxidants in dietary plants. The Journal of Nutrition 132 (3):461–71. doi: 10.1093/jn/132.3.461.
  • Han, H. J., S. A. Lee, J.-B. Park, H. G. Ahn, and J. S. Lee. 2015. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids and Surfaces B: Biointerfaces 1 (130):93–100.
  • Han, J., A.-S. Guenier, S. Salmieri, and M. Lacroix. 2008. Alginate and chitosan functionalization for micronutrient encapsulation. Journal of Agricultural and Food Chemistry 56 (7):2528–35. doi: 10.1021/jf703739k.
  • Hao, J., B. Guo, S. Yu, W. Zhang, D. Zhang, J. Wang, and Y. Wang. 2017. Encapsulation of the flavonoid quercetin with chitosan-coated nanoliposomes. Lwt – Food Science and Technology 85:37–44. doi: 10.1016/j.lwt.2017.06.048.
  • Haratifar, S., and M. Corredig. 2014. Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chemistry 143:27–32. doi: 10.1016/j.foodchem.2013.07.092.
  • Hass, L. I. R. 2011. Physico-chemical and phytochemical characterization and antioxidant activity in vitro and in vivo and anti-proliferative effects of araca (Psidium cattleianum Sabine) and guabiroba (Campomanesia xanthocarpa O. Berg) fruit extracts. Food and Agroindustrial Science. Federal University of Pelotas, Pelotas.
  • Helal, A., D. Tagliazucchi, A. Conte, and S. Desobry. 2012. Antioxidant properties of polyphenols incorporated in casein/sodium caseinate films. International Dairy Journal 25 (1):10–5. doi: 10.1016/j.idairyj.2011.12.002.
  • Heinze, J. 1984. Cyclic Voltammetry-Electrochemical Spectroscopy. Angewandte Chemie International Edition in English 23 (11):831–47. doi: 10.1002/anie.198408313.
  • Hejri, A., A. Khosravi, K. Gharanjig, and M. Hejazi. 2013. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chemistry 141 (1):117–23. doi: 10.1016/j.foodchem.2013.02.080.
  • Heyang, J., X. Fei, J. Cuilan, Z. Yaping, and H. Lin. 2009. Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chinese Journal of Chemical Engineering 17 (4):672–7.
  • Hu, B., Y. Ting, X. Zeng, and Q. Huang. 2013. Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (−)-epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry 61 (4):875–81. doi: 10.1021/jf304821k.
  • Huang, D., B. Ou, and R. L. Prior. 2005. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry 53 (6):1841–56. doi: 10.1021/jf030723c.
  • Jafari, S. M. 2019. Biopolymer nanostructures for food encapsulation purposes. Volume 1- in Nanoencapsulation in the Food Industry. Academic Press.
  • Jafari, S. M., E. Assadpoor, Y. He, and B. Bhandari. 2008. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology 26 (7):816–35. doi: 10.1080/07373930802135972.
  • Jain, A., D. Thakur, G. Ghoshal, O. Katare, and U. Shivhare. 2016. Characterization of microencapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules 87:101–13. doi: 10.1016/j.ijbiomac.2016.01.117.
  • Jayaprakasha, G. K., B. Girennavar, and B. S. Patil. 2008. Radical scavenging activities of rio red grapefruits and sour orange fruit extracts in different in vitro model systems. Bioresource Technology 99 (10):4484–94. doi: 10.1016/j.biortech.2007.07.067.
  • Jeon, Y. O., J.-S. Lee, and H. G. Lee. 2016. Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids and Surfaces B: Biointerfaces 147:224–33. doi: 10.1016/j.colsurfb.2016.07.062.
  • Jincheng, W., Z. Xiaoyu, and C. Sihao. 2010. Preparation and properties of nanoencapsulated capsaicin by complex coacervation method. Chemical Engineering Communications 197 (7):919–33. doi: 10.1080/00986440903249700.
  • Kagami, Y., S. Sugimura, N. Fujishima, K. Matsuda, T. Kometani, and Y. Matsumura. 2003. Oxidative stability, structure, and physical characteristics of microcapsules formed by spray drying of fish oil with protein and dextrin wall materials. Journal of Food Science 68 (7):2248–55. doi: 10.1111/j.1365-2621.2003.tb05755.x.
  • Kakkar, V., S. Singh, D. Singla, and I. P. Kaur. 2011. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular Nutrition & Food Research 55:495–503.
  • Kalcher, K.,. I. Svancara, M. Buzuk, K. Vytras, and A. Walcarius. 2009. Electrochemical sensors and biosensors based on heterogeneous carbon materials. Monatshefte Für Chemie – Chemical Monthly 140 (8):861–89. doi: 10.1007/s00706-009-0131-9.
  • Kanner, J., J. B. German, and J. E. Kinsella. 1987. Initiation of lipid peroxidation in biological systems. Critical Reviews in Food Science and Nutrition 25 (4):317–64. doi: 10.1080/10408398709527457.
  • Katouzian, I., and S. M. Jafari. 2016. Nanoencapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology 53:34–48.
  • Keogh, M. K., B. T. O'Kennedy, J. Kelly, M. A. Auty, P. M. Kelly, A. Fureby, and A.-M. Haahr. 2001. Stability to oxidation of spray dried fish oil powder microencapsulated using milk ingredients. Journal of Food Science 66 (2):217–24. doi: 10.1111/j.1365-2621.2001.tb11320.x.
  • Khaled, F. M., S. A. Hatem, and A. A. Azza. 2018. Nanoencapsulation of bioactive compounds extracted from egyptian prickly pears peel fruit: antioxidant and their application in guava juice. Asian Journal of Scientific Research 11 (4):574–86.
  • Ko, A., J. S. Lee, H. S. Nam, and H. G. Lee. 2017. Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. Journal of Food Biochemistry 41 (2):e12316. doi: 10.1111/jfbc.12316.
  • Koç, M., O. Güngör, A. Zungur, B. Yalçın, I. Selek, F. Kaymak, and S. Ötles. 2015. Microencapsulation of extra virgin olive oil by spray drying: effect of wall materials composition, process conditions, and emulsification method. Food and Bioprocess Technology 8 (2):301–18. doi: 10.1007/s11947-014-1404-9.
  • Krishnaswamy, K.,. V. Orsat, and K. Thangavel. 2012. Synthesis and characterization of nanoencapsulated catechin by molecular inclusion with beta-cyclodextrin. Journal of Food Engineering 111 (2):255–64. doi: 10.1016/j.jfoodeng.2012.02.024.
  • Kristl, J., K. Teskac, C. Caddeo, Z. Abramović, and M. Sentjurc. 2009. Improvements of cellular stress response on resveratrol in liposomes. European Journal of Pharmaceutics and Biopharmaceutics 73 (2):253–9. doi: 10.1016/j.ejpb.2009.06.006.
  • Kumar, P. N., and S. Anand. 2016. Antioxidant activity of Hemidesmus indicus (L.) R. Br. encapsulated poly (lactide-co-glycolide) (PLGA) nanoparticles. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) 11:9–17.
  • Kupina, S., C. Fields, M. Roman, and S. L. Brunelle. 2018. Determination of total phenolic content using the folin-C assay: single-laboratory validation, first action 2017.13. Journal of AOAC International 101 (5):1466–72. doi: 10.5740/jaoacint.18-0031.
  • Lambert, J. D., S. M. Sang, and C. S. Yang. 2007. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Molecular Pharmaceutics 4 (6):819–25. − doi: 10.1021/mp700075m.
  • Lamuela‐Raventós. M. 2018. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Chapter 6. Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, ed. Apak, Capanoglu, and Shahidi. 1st ed. Wiley.
  • Leach, G., G. Oliveira, and R. Morais. 1998. Spray-drying of Dunaliella salinato produce a β-carotene rich powder. Journal of Industrial Microbiology and Biotechnology 20 (2):82–5. doi: 10.1038/sj.jim.2900485.
  • Leonarduzzi, G., G. Testa, B. Sottero, P. Gamba, and G. Poli. 2010. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Current Medicinal Chemistry 17 (1):74–95. − doi: 10.2174/092986710789957760.
  • Li, H., X. Zhao, Y. Ma, G. Zhai, L. Li, and H. Lou. 2009a. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. Journal of Controlled Release 133 (3):238–44. doi: 10.1016/j.jconrel.2008.10.002.
  • Li, Z., H. Jiang, C. Xu, and L. Gu. 2015. A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids. 43:153–64. doi: 10.1016/j.foodhyd.2014.05.010.
  • Li, B., W. Du, J. Jin, and Q. Du. 2012. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Journal of Agricultural and Food Chemistry 60 (13):3477–84. doi: 10.1021/jf300307t.
  • Liang, T., R. Guan, H. Shen, Q. Xia, and M. Liu. 2017. Optimization of conditions for cyanidin-3-OGlucoside (C3G) nanoliposome production by response surface methodology and cellular uptake studies in caco-2 cells. Molecules 22 (3):457. doi: 10.3390/molecules22030457.
  • Lim, H. K., C. P. Tan, J. Bakar, and S. Pei. 2012. Effects of different wall materials on the physicochemical properties and oxidative stability of spray-dried microencapsulated red-fleshed pitaya (Hylocereus polyrhizus) seed oil. Food and Bioprocess Technology 5 (4):1220–7. doi: 10.1007/s11947-011-0555-1.
  • Lindsay, D. G., and S. B. Astley. 2002. European research on the functional effects of dietary antioxidants – EUROFEDA. Molecular Aspects of Medicine 23 (1-3):1–38. doi: 10.1016/s0098-2997(02)00005-5.
  • Lira, M. C. B., M. S. Ferraz, D. G. V. C. Silva, M. E. Cortes, K. I. Teixeira, N. P. Caetano, R. D. Sinisterra, G. Ponchel, and N. S. Santos-Magalhães. 2009. Inclusion complex of usnic acid with β-cyclodextrin: characterization and nanoencapsulation into liposomes. Journal of Inclusion Phenomena and Macrocyclic Chemistry 64 (3–4):215–24. doi: 10.1007/s10847-009-9554-5.
  • Litescu, S. C., A. V. Sandra, S. A. V. Eremia, M. Diaconu, and A. Tache. 2011. Biosensors applications on assessment of reactive oxygen species and antioxidants. Environmental Biosensors
  • Liu, R. H., and J. Finley. 2005. Potential cell culture models for antioxidant research. Journal of Agricultural and Food Chemistry 53 (10):4311–4. doi: 10.1021/jf058070i.
  • Livney, Y. D. 2015. Nanostructured delivery systems in food: latest developments and potential future directions. Current Opinion in Food Science 3:125–35. doi: 10.1016/j.cofs.2015.06.010.
  • Lo Nostro, P., R. Ramsch, E. Fratini, M. Lagi, F. Ridi, E. Carretti, M. Ambrosi, B. W. Ninham, and P. Baglioni. 2007. Organogels from a vitamin c-based surfactant. Journal of Physical Chemistry. B 111 (40):11714–21. doi: 10.1021/jp0730085.
  • Lopez, M., F. Martinez, C. Del Valle, C. Orte, and M. Miro. 2001. Analysis of phenolic constituents of biological interest in red wines by high performance liquid chromatography. Journal of Chromatography A 922:359–63.
  • Lu, X. W., C. B. Ji, H. E. Xu, X. L. Li, H. X. Ding, M. Ye, Z. S. Zhu, D. Ding, X. Q. Jiang, X. S. Ding, et al. 2009. Resveratrol-loaded polymeric micelles protect cells from A betainduced oxidative stress. International Journal of Pharmaceutics 375 (1-2):89–96. doi: 10.1016/j.ijpharm.2009.03.021.
  • Lucas-Abellan, C., I. Fortea, J. M. Lopez-Nicolas, and E. Nunez-Delicado. 2007. Cyclodextrins as resveratrol carrier system. Food Chemistry 104:39–44.
  • Mao, L., D. Xu, J. Yang, F. Yuan, Y. Gao, and J. Zhao. 2009. Effects of small and large molecule emulsifiers on the characteristics of b-carotene nanoemulsions prepared by high pressure homogenization. Food Technology and Biotechnology 47:336–42.
  • Maqsoudlou, A., E. Assadpour, H. Mohebodini, and S. M. Jafari. 2020. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science 278:102122 doi: 10.1016/j.cis.2020.102122.
  • Marc, F., A. Davin, L. Deglène-Benbrahim, C. Ferrand, and M. Baccaunaud. 2004. Studies of several analytical methods for antioxidant potential evaluation in food. Medical Sciences 20:458–63.
  • Martinez, S., L. Valek, J. Rešetić, and D. F. Ružić. 2006. Cyclic voltammetry study of plasma antioxidant capacity – comparison with the DPPH and TAS spectrophotometric methods. Journal of Electroanalytical Chemistry 588 (1):68–73. doi: 10.1016/j.jelechem.2005.12.016.
  • Masek, A., E. Chrzescijanska, A. Kosmalska, and M. Zaborski. 2014. Characteristics of compounds in hops using cyclic voltammetry, UV-VIS, FTIR and GC-MS analysis. Food Chemistry 156:353–61. doi: 10.1016/j.foodchem.2014.02.005.
  • Mcclements, D. J. 2015. Food emulsions: principles, practices, and techniques. New York: CRC Press.
  • Mello, L. D., and L. T. Kubota. 2007. Biosensors as a tool for the antioxidant status evaluation. Talanta 72 (2):335–48. doi: 10.1016/j.talanta.2006.11.041.
  • Mello, L. D., M. T. Sotomayor, and L. T. Kubota. 2003. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sensors and Actuators B: Chemical 96 (3):636–45. doi: 10.1016/j.snb.2003.07.008.
  • Meng, J., Y. Fang, A. Zhang, S. Chen, and T. Xu. 2011. Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province. Food Research International 4 (9):2830–6.
  • Milardovic, S., D. Ivekovic, and B. S. Grabaric. 2006. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–80.
  • Milardovic, S., D. Ivekovic, V. Rumenjak, and B. S. Grabaric. 2005. Use of DPPH•/DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis 17:1847–53. doi: 10.1002/elan.200503312.
  • Min, J. B., E. S. Kim, J.-S. Lee, and H. G. Lee. 2018. Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Science and Biotechnology 27 (2):441–50. doi: 10.1007/s10068-017-0272-2.
  • Ming-Hua, Y., and K. M. Schaich. 1996. Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. Free Radical Biology & Medicine 20:225–36.
  • Mitri, K., R. Shegokar, S. Gohla, C. Anselmi, and R. H. Muller. 2011. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. International Journal of Pharmaceutics 414 (1–2):267–75. doi: 10.1016/j.ijpharm.2011.05.008.
  • Mohammadi, A., S. M. Jafari, E. Assadpour, and A. F. Esfanjani. 2016. Nanoencapsulation of olive leaf phenolic compounds through WPC pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules 82:816–22. doi: 10.1016/j.ijbiomac.2015.10.025.
  • Moharram, H. A., and M. M. Youssef. 2014. Methods for determining the antioxidant activity: a review. Alex. Journal of Food Science & Technology 11:1, 31–42.
  • Mokhtari, S., S. M. Jafari, and E. Assadpour. 2017. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate . Food Chemistry 229:286–95. doi: 10.1016/j.foodchem.2017.02.071.
  • Moeiniafshari, A.-A., A. Zarrabi, and A.-K. Bordbar. 2015. Exploring the interaction of naringenin with bovine beta-casein nanoparticles using spectroscopy. Food Hydrocolloids. 51:1–6. doi: 10.1016/j.foodhyd.2015.04.036.
  • Moon, J.-K., and T. Shibamoto. 2009. Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry 57 (5):1655–66. doi: 10.1021/jf803537k.
  • Mosquera, M.,. B. Giménez, I. Mallmann, J. F. Boelter, P. Montero, M. C. Gómez-Guillén, and A. Brandelli. 2014. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry 156:144–50. doi: 10.1016/j.foodchem.2014.02.011.
  • Mozafari, M.,. C. Johnson, S. Hatziantoniou, and C. Demetzos. 2008. Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research 18 (4):309–27. doi: 10.1080/08982100802465941.
  • Mukerjee, A., and J. K. Vishwanatha. 2009. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research 29 (10):3867–76.
  • Mueller, D., K. Jung, M. Winter, D. Rogoll, R. Melcher, U. Kulozik, K. Schwarz, and E. Richling. 2018. Encapsulation of anthocyanins from bilberries – effects on bioavailability and intestinal accessibility in humans. Food Chemistry 248:217–24. doi: 10.1016/j.foodchem.2017.12.058.
  • Nanditha, B., and P. Prabhasankar. 2009. Antioxidants in bakery products: a review. Critical Reviews in Food Science and Nutrition 49 (1):1–27. doi: 10.1080/10408390701764104.
  • Naghavi, S., S. Peighambardoust, S. Azadmard-Damirchi, and M. S. Khiabani. 2016. Preparation and evaluation of nanoliposomes containing green tea extract and investigating its efficacy in extending the shelf life of fresh orange and pomegranate juices. Biological Forum :73–87.
  • Neo, Y. P., S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M. K. Nieuwoudt, D. Liu, and S. Y. Quek. 2013. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chemistry 136 (2):1013–21. doi: 10.1016/j.foodchem.2012.09.010.
  • Nicholson, R. S., and S. Irving. 1964. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Analytical Chemistry 36 (4):706–23. doi: 10.1021/ac60210a007.
  • Oliveira, E. R., R. V. B. Fernandes, D. A. Botrel, F. L. Carmo, S. V. Borges, and F. Queiroz. 2017. Study of different wall matrix biopolymers on the properties of spray-dried pequi oil and on the stability of bioactive compounds. Food Bioprocess Technology 4 (7):126–45.
  • Olsher, M., and P. L G. Chong. 2008. Sterol superlattice affects antioxidant potency and can be used to assess adverse effects of antioxidants. Analytical Biochemistry 382 (1):1–8. doi: 10.1016/j.ab.2008.07.021.
  • Ou, B., M. Hampsch-Woodill, J. Flanagan, E. K. Deemer, R. L. Prior, and D. Huang. 2002. Novel fluorimetric assay for hydroxyl radical prevention capacity using fluorescein as the probe. Journal of Agricultural and Food Chemistry 50 (10):2772–7. doi: 10.1021/jf011480w.
  • Palafox-Carlos, H., J. F. Ayala-Zavala, and G. A. GonzáLez-Aguilar. 2011. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science 76 (1):R6–R15. doi: 10.1111/j.1750-3841.2010.01957.x.
  • Pan, K., Q. X. Zhong, and S. J. Baek. 2013. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. Journal of Agricultural and Food Chemistry 61 (25):6036–43. doi: 10.1021/jf400752a.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods, mechanisms and kinetics of degradation. Trends in Food Science & Technology 21:3–11.
  • Peiwu, L., A. Hopia, S. Jari, T. Yrjonenand, and H. Vuorela. 1999. TLC method for evaluation of free radical scavenging activity of rapeseed meal by video scanning technology. 10th international Rapseed congress, Canberra, Australia.
  • Pellegrini, N., M. Serafini, B. Colombi, D. Del Rio, S. Salvatore, M. Bianchi, and F. Brighenti. 2003. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of Nutrition 133 (9):2812–9. doi: 10.1093/jn/133.9.2812.
  • Pereira, M. C., D. A. Oliveira, L. E. Hill, R. Carlos Zambiazi, C. D. Borges, M. Vizzotto, S. Mertens-Talcott, S. Talcott, and C. L. Gomes. 2017. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry 1 (240):396–404.
  • Piccolella, S., and S. Pacifico. 2015. Plant-derived polyphenols: a chemopreventive and chemoprotectant worth exploring resource in toxicology. Advances in Molecular Toxicology 9:161–214.
  • Pisoschi, A. M., and G. P. Negulescu. 2011. Methods for total antioxidant activity determination: a Review. Biochemistry and Analytical Biochemistry 1:52–63. 1,
  • Pisoschi, A. M., M. C. Cheregi, and A. F. Danet. 2009. Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches. Molecules (Basel, Switzerland) 14 (1):480–93. doi: 10.3390/molecules14010480.
  • Prior, R. L., X. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53 (10):4290–302. doi: 10.1021/jf0502698.
  • Priprem, A., J. Watanatorn, S. Sutthiparinyanont, W. Phachonpai, and S. Muchimapura. 2008. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine: Nanotechnology. Biology and Medicine 4 (1):70–8. doi: 10.1016/j.nano.2007.12.001.
  • Pool, H., D. Quintanar, J. d D. Figueroa, C. Marinho Mano, J. E. H. Bechara, L. A. Godínez, and S. Mendoza. 2012. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. Journal of Nanomaterials 2012:1–12. doi: 10.1155/2012/145380.
  • Qi, C., Y. Chen, J. H. Huang, Q. Z. Jin, and X. G. Wang. 2012. Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. Journal of the Science of Food and Agriculture 92 (4):787–93. doi: 10.1002/jsfa.4646.
  • Qian, C., E. A. Decker, H. Xiao, and D. J. Mcclements. 2012. Physical and chemical stability of β-carotene-enriched nanoemulsions: influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry 132 (3):1221–9. doi: 10.1016/j.foodchem.2011.11.091.
  • Rafiee, Z., M. Nejatian, M. Daeihamed, and S. M. Jafari. 2018. Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition :1–77.
  • Ramadan, M. F., M. M. A. Amer, and A. E. M. Sulieman. 2006. Correlation between physicochemical analysis and radical scavenging activity of vegetable oil blends as affected by frying of French fries. European Journal of Lipid Science and Technology 108 (8):670–8. doi: 10.1002/ejlt.200600058.
  • Ramadan-Hassanien, M. F. 2008. Total antioxidant potential of juices, beverages and hot drinks consumed in Egypt screened by DPPH in vitro assay. Grasas y Aceites 59 (3):254–9. doi: 10.3989/gya.2008.v59.i3.516.
  • Ramezanzade, L., S. F. Hosseini, and M. Nikkhah. 2017. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry 234:220–9. doi: 10.1016/j.foodchem.2017.04.177.
  • Ranjbar-Mohammadi, M., and S. H. Bahrami. 2016. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application . International Journal of Biological Macromolecules 84:448–56. doi: 10.1016/j.ijbiomac.2015.12.024.
  • Rezaei, A., and A. Nasirpour. 2018. Encapsulation of curcumin using electrospun almond gum nanofibers: fabrication and characterization. International Journal of Food Properties 21 (1):1608–18. doi: 10.1080/10942912.2018.1503300.
  • Ribeiro, H. S., B.-S. Chu, S. Ichikawa, and M. Nakajima. 2008. Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloids. 22 (1):12–7. doi: 10.1016/j.foodhyd.2007.04.009.
  • Roman, M. J., B. J. Burri, and R. P. Singh. 2012. Release and bioaccessibility of β-carotene from fortified almond butter during in vitro digestion. Journal of Agricultural and Food Chemistry 60 (38):9659–66. doi: 10.1021/jf302843w.
  • Rostami, M., M. Yousefi, A. Khezerlou, M. Aman Mohammadi, and S. M. Jafari. 2019. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids. 97:105170. doi: 10.1016/j.foodhyd.2019.06.015.
  • Sadilova, E., R. Carle, and F. C. Stintzing. 2007. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition & Food Research 51 (12):1461–71. doi: 10.1002/mnfr.200700179.
  • Salah, M., M. Mansour, D. Zogona, and X. Xu. 2020. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: characterization, stability, and bioavailability in vitro. Food Research International (Ottawa, Ont.) 137:109635 doi: 10.1016/j.foodres.2020.109635.
  • Samborska, k., A. Jedlińska, A. Wiktor, D. Derewiaka, R. Wołosiak, A. Matwijczuk, W. Jamróz, K. Skwarczyńska-Maj, D. Kiełczewski, L. Błażowski, et al. 2019. The effect of low-temperature spray drying with dehumidified air on phenolic compounds, antioxidant activity, and aroma compounds of rapeseed honey powders. Food and Bioprocess Technology 12 (6):919–42. doi: 10.1007/s11947-019-02260-8.
  • Sarabandi, K., A. Sadeghi Mahoonak, H. Hamishekar, M. Ghorbani, and S. M. Jafari. 2018. Microencapsulation of casein hydrolysates: physicochemical, antioxidant and microstructure properties. Journal of Food Engineering 237:86–95. doi: 10.1016/j.jfoodeng.2018.05.036.
  • Sari, T., B. Mann, R. Kumar, R. Singh, R. Sharma, M. Bhardwaj, and S. Athira. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids. 43:540–6. doi: 10.1016/j.foodhyd.2014.07.011.
  • SáIz-Abajo, M.-J., C. Gonza ´Lez-Ferrero, A. Moreno-Ruiz, A. Romo-Hualde, and C. J. Gonza ´Lez-Navarro. 2013. Thermal protection ofβ-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chemistry 138:1581–7.
  • Semo, E., E. Kesselman, D. Danino, and Y. D. Livney. 2007. Casein micelle as a natural nanocapsular vehicle for nutraceuticals. Food Hydrocolloids. 21 (5-6):936–42. doi: 10.1016/j.foodhyd.2006.09.006.
  • Sessa, M., R. Tsao, R. H. Liu, G. Ferrari, and F. Donsi. 2011. Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. Journal of Agricultural and Food Chemistry 59 (23):12352–60. − doi: 10.1021/jf2031346.
  • Sessa, M., M. L. Balestrieri, G. Ferrari, L. Servillo, D. Castaldo, N. D'Onofrio, F. Donsì, and R. Tsao. 2014. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chemistry 147:42–50. doi: 10.1016/j.foodchem.2013.09.088.
  • Shekarforoush, E., F. Ajalloueian, G. Zeng, A. C. Mendes, and I. S. Chronakis. 2018. Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Materials Letters 228:322–6. doi: 10.1016/j.matlet.2018.06.033.
  • Shin, G. H., S. K. Chung, J. T. Kim, H. J. Joung, and H. J. Park. 2013. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Journal of Agricultural and Food Chemistry 61 (46):11119–26. doi: 10.1021/jf4035404.
  • Shutava, T. G., S. S. Balkundi, P. Vangala, J. J. Steffan, R. L. Bigelow, J. A. Cardelli, D. P. O'Neal, and Y. M. Lvov. 2009. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3 (7):1877–85. − doi: 10.1021/nn900451a.
  • Soares Alves, A. C., R. M. Mainardes, and N. M. Khalil. 2016. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Materials Science and Engineering C 60:126–34.
  • Sowasod, N., S. T. Charinpanitkul, and W. Tanthapanichakoon. 2008. Nanoencapsulation of curcumin in biodegradable chitosan via multiple emulsion/solvent evaporation. International Journal of Pharmaceutics 347:93–101.
  • Stalmach, A., W. Mullen, C. Nagai, and A. Crozier. 2006. On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee. Brazilian Journal of Plant Physiology 18 (1):253–62. doi: 10.1590/S1677-04202006000100018.
  • Stănciuc, N., M. Turturică, A. M. Oancea, V. Barbu, E. Ioniţă, I. Aprodu, and G. Râpeanu. 2017. Microencapsulation of anthocyanins from grape skins by whey protein isolates and different polymers. Food and Bioprocess Technology 10 (9):1715–25. doi: 10.1007/s11947-017-1938-8.
  • Stankovic, M. S. 2011. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal of Science 33:63–72.
  • Stevanovic, M., and D. Uskokovic. 2009. Poly(lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Current Nanoscience 5:1–14.
  • Stocker, R., Y. Yamamoto, A. McDonagh, A. N. Glazer, and B. N. Ames. 1987. Bilirubin is an antioxidant of possible physiological importance. Science (New York, N.Y.) 235 (4792):1043–5. doi: 10.1126/science.3029864.
  • Suhag, Y., and V. Nanda. 2015. Optimization of process parameters to develop nutritionally rich spray-dried honey powder with vitamin C content and antioxidant properties. International Journal of Food Science & Technology 50 (8):1771–7. doi: 10.1111/ijfs.12841.
  • Suhag, Y., and V. Nanda. 2016. Optimization for spray drying process parameters of nutritionally rich honey powder using response surface methodology. Cogent Food and Agriculture 2 (1):1–12.
  • Sun-Waterhouse, D., and G. I. N. Waterhouse. 2015. Spray-drying of green or gold kiwifruit juice-milk mixtures, novel formulations and processes to retain natural fruit colour and antioxidants. Food and Bioprocess Technology 8 (1):191–207. doi: 10.1007/s11947-014-1397-4.
  • Sun-Waterhouse, D., S. S. Wadhwa, and G. I. Waterhouse. 2013. Spray drying microencapsulation of polyphenol bioactives: a comparative study using different natural fiber polymers as encapsulants. Food and Bioprocess Technology 6 (9):2376–88. doi: 10.1007/s11947-012-0946-y.
  • Taghvaei, M., and S. M. Jafari. 2015. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology 52 (3):1272–82. doi: 10.1007/s13197-013-1080-1.
  • Taghvaei, M., S. M. Jafari, A. S. Mahoonak, A. M. Nikoo, N. Rahmanian, J. Hajitabar, and N. Meshginfar. 2014. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT – Food Science and Technology 56 (1):124–30. doi: 10.1016/j.lwt.2013.11.009.
  • Takahashi, M., S. Uechi, K. Takara, Y. Asikin, and K. Wada. 2009. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agricultural and Food Chemistry 57 (19):9141–6. doi: 10.1021/jf9013923.
  • Tang, D.-W., S.-H. Yu, Y.-C. Ho, B.-Q. Huang, G.-J. Tsai, H.-Y. Hsieh, H.-W. Sung, and F.-L. Mi. 2013. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids. 30 (1):33–41. doi: 10.1016/j.foodhyd.2012.04.014.
  • Tavakoli, H. R., M. Naderi, S. M. Jafari, and M. H. Naeli. 2019. Post-marketing surveillance of the oxidative stability for cooking oils, frying oils, and vanaspati supplied in the retail market. Food Science & Nutrition 7 (4):1455–65.
  • Teng, Z., Y. Li, and Q. Wang. 2014. Insight into curcumin-loaded β-lactoglobulin nanoparticles: incorporation, particle disintegration, and releasing profiles. Journal of Agricultural and Food Chemistry 62 (35):8837–47. doi: 10.1021/jf503199g.
  • Teeranachaideekul, V., R. H. Muller, and V. B. Junyaprasert. 2007. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)-effects of formulation parameters on physicochemical stability . International Journal of Pharmaceutics 340 (1-2):198–206. doi: 10.1016/j.ijpharm.2007.03.022.
  • Teskac, K., and J. Kristl. 2010. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. International Journal of Pharmaceutics 390 (1):61–9. doi: 10.1016/j.ijpharm.2009.10.011.
  • Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, and D. H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19 (6-7):669–75. doi: 10.1016/j.jfca.2006.01.003.
  • Tiyaboonchai, W., W. Tungpradit, and P. Plianbangchang. 2007. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. International Journal of Pharmaceutics 337 (1-2):299–306. doi: 10.1016/j.ijpharm.2006.12.043.
  • Tonon, R. V., C. R. F. Grosso, and M. D. Hubinger. 2011. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International 44 (1):282–9. doi: 10.1016/j.foodres.2010.10.018.
  • Tougas, T. P., J. M. Jannetti, and W. G. Collier. 1985. Theoretical and experimental response of a biamperometric detector for flow injection analysis. Analytical Chemistry 57 (7):1377–81. doi: 10.1021/ac00284a044.
  • Vallverdú‐Queralt, A., J. de Alvarenga, R. Estruch, and R. Lamuela‐Raventós. 2013. Bioactive compounds present in the Mediterranean sofrito. Food Chemistry 141 (4):3366–72.
  • Vallverdú‐Queralt, A., A. Medina‐Remón, and M. Martinez‐Huelamo. 2011. Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. Journal of Agricultural and Food Chemistryistry 59 (8):3994–4001.
  • Vallverdú-Queralt, A., J. Regueiro, M. Martínez-Huélamo, J. F. Rinaldi Alvarenga, L. N. Leal, and R. M. Lamuela-Raventos. 2014. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry 154:299–307. doi: 10.1016/j.foodchem.2013.12.106.
  • Vallverdú-Queralt, A., J. Regueiro, J. F. R. Alvarenga, M. Martinez-Huelamo, L. N. Leal, and R. M. Lamuela-Raventos. 2015. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: caraway, turmeric, dill, marjoram and nutmeg. Food Science and Technology (Campinas) 35 (1):189–95. doi: 10.1590/1678-457X.6580.
  • Wang, W.,. N. Wu, Y. G. Zu, and Y. J. Fu. 2008. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry 108 (3):1019–22. doi: 10.1016/j.foodchem.2007.11.046.
  • Wang, X., Y. Jiang, Y.-W. Wang, M.-T. Huang, C.-T. Ho, and Q. Huang. 2008b. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry 108 (2):419–24. doi: 10.1016/j.foodchem.2007.10.086.
  • Waterhouse, G. N., D. Sun-Waterhouse, G. Su, H. Zhao, and M. Zhao. 2017. Spray-drying of antioxidant-rich blueberry waste extracts, interplay between waste pretreatments and spray-drying process. Food Bioprocess Technology 30:111–29.
  • Weatherby, C. 2007. Wild blueberries reclaim antioxidant crown. Vital Choices 4:187.
  • Weiss, J., P. Takhistov, and D. J. Mcclements. 2006. Functional materials in food nanotechnology. Journal of Food Science 71 (9):R107–R116. doi: 10.1111/j.1750-3841.2006.00195.x.
  • Wischke, C., and S. P. Schwendeman. 2008. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics 364 (2):298–327. doi: 10.1016/j.ijpharm.2008.04.042.
  • Wolf, K., and R. H. Liu. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, Foods, and Dietary Supplements. Journal of Agricultural and Food Chemistry 55:8896–907.
  • Wu, Y., Y. Luo, and Q. Wang. 2012. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. LwtFood Science and Technology 48 (2):283–90. doi: 10.1016/j.lwt.2012.03.027.
  • Wu, Y., and X. Wang. 2017. Binding, stability, and antioxidant activity of curcumin with self-assembled casein–dextran conjugate micelles. International Journal of Food Properties 20 (12):3295–307. doi: 10.1080/10942912.2017.1286505.
  • Wu, G., J. Li, J. Yue, S. Zhang, and K. Yunusi. 2018. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Molecular Medicine Reports 17 (2):2456–64. doi: 10.3892/mmr.2017.8185.
  • Xu, G., C. Wang, and P. Yao. 2017. Stable emulsion produced from casein and soy polysaccharide compacted complex for protection and oral delivery of curcumin. Food Hydrocolloids. 71:108–17. doi: 10.1016/j.foodhyd.2017.05.010.
  • Yadav, A., V. Lomash, M. Samim, and S. J. Flora. 2012. Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chemico-Biological Interactions 199 (1):49–61. doi: 10.1016/j.cbi.2012.05.011.
  • Yallapu, M. M., M. Jaggi, and S. C. Chauhan. 2012. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today 17 (1–2):71–80. doi: 10.1016/j.drudis.2011.09.009.
  • Yeh, T.-H., L.-W. Hsu, M. T. Tseng, P.-L. Lee, K. Sonjae, Y.-C. Ho, and H.-W. Sung. 2011. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32 (26):6164–73. doi: 10.1016/j.biomaterials.2011.03.056.
  • Yi, J., T. I. Lam, W. Yokoyama, L. W. Cheng, and F. Zhong. 2015. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids. 43:31–40. doi: 10.1016/j.foodhyd.2014.04.028.
  • Yi, J., Y. Li, F. Zhong, and W. Yokoyama. 2014. The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids. 35:19–27. doi: 10.1016/j.foodhyd.2013.07.025.
  • Yrojonen, T., L. Peiwu, J. Summanen, A. Hopia, and H. Vuorela. 2003. Free radical scavenging activity of phenolics by reversed phase TLC. Journal of the American Oil Chemists’ Society 80 (1):9–14.
  • Yu, H. L., J. Li, K. Shi, and Q. R. Huang. 2011. Structure of modified ε-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids. Food & Function 2 (7):373–80. ). − doi: 10.1039/c1fo10053j.
  • Yuan, Y.,. Y. Gao, L. Mao, and J. Zhao. 2008. Optimization of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chemistry 107 (3):1300–6. doi: 10.1016/j.foodchem.2007.09.015.
  • Zimet, P., and Y. D. Livney. 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles forω-3 polyunsaturated fatty acids. Food Hydrocolloids 23 (4):1120–6. doi: 10.1016/j.foodhyd.2008.10.008.
  • Zhang, Y., Y. Yan, T. Kai, H. Xing, and Z. Guolin. 2008. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. Journal of Applied Polymer Science 107 (2):891–7. doi: 10.1002/app.26402.
  • Zigoneanu, I. G., C. E. Astete, and C. M. Sabliov. 2008. Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release. Nanotechnology 19 (10):105606. doi: 10.1088/0957-4484/19/10/105606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.