1,381
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Cereal beta-glucans: an underutilized health endorsing food ingredient

References

  • Food and Drug Administration (FDA) and Department of Health and Human Services. 2008. Final rule for food labeling: Health claims; soluble fiber from certain foods and risk of coronary heart disease. Federal Register 73 (37): 9938–47.
  • Ahmad, A., F. M. Anjum, T. Zahoor, H. Nawaz, and S. M. Dilshad. 2012. Beta glucan: A valuable functional ingredient in foods. Critical Reviews in Food Science and Nutrition 52 (3):201–12. https://www.ncbi.nlm.nih.gov/pubmed/22214441. doi: 10.1080/10408398.2010.499806.
  • Ahmad, M., A. Gani, A. Shah, A. Gani, and F. A. Masoodi. 2016. Germination and microwave processing of barley (Hordeum vulgare L.) changes the structural and physicochemical properties of β-d-glucan and enhances its antioxidant potential. Carbohydrate Polymers 153:696–702. https://www.ncbi.nlm.nih.gov/pubmed/27561541. doi: 10.1016/j.carbpol.2016.07.022.
  • Alvaro, A., R. Sola, R. Rosales, J. Ribalta, A. Anguera, L. Masana, and J. C. Vallve. 2008. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life 60 (11):757–64. https://www.ncbi.nlm.nih.gov/pubmed/18642346. doi: 10.1002/iub.110.
  • Åman, P. 2006. Cholesterol-lowering effects of barley dietary fibre in humans: Scientific support for a generic health claim. Scandinavian Journal of Food and Nutrition 50 (4):173–6. doi: 10.1080/17482970601057990.
  • Aman, P., L. Rimsten, and R. Andersson. 2004. Molecular weight distribution of β-glucan in oat-based foods. Cereal Chemistry 81 (3):356–60. 10.1094/CCHEM.2004.81.3.356.
  • Andersen, B. V., L. H. Mielby, I. Viemose, W. L. P. Bredie, and G. Hyldig. 2017. Integration of the sensory experience and post-ingestive measures for understanding food satisfaction. A case study on sucrose replacement by Stevia rebaudiana and addition of beta glucan in fruit drinks. Food Quality and Preference 58:76–84. doi: 10.1016/j.foodqual.2017.01.005.
  • Andersson, A. A. M., and D. Börjesdotter. 2011. Effects of environment and variety on content and molecular weight of β-glucan in oats. Journal of Cereal Science 54 (1):122–8. doi: 10.1016/j.jcs.2011.03.003.
  • Andrzej, K. M., M. Małgorzata, K. Sabina, O. K. Horbańczuk, and E. Rodak. 2020. Application of rich in β-glucan flours and preparations in bread baked from frozen dough . Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 26 (1):53–64. https://www.ncbi.nlm.nih.gov/pubmed/31403832. doi: 10.1177/1082013219865379.
  • Angelov, A., V. Gotcheva, R. Kuncheva, and T. Hristozova. 2006. Development of a new oat-based probiotic drink. International Journal of Food Microbiology 112 (1):75–80. https://www.ncbi.nlm.nih.gov/pubmed/16854486. doi: 10.1016/j.ijfoodmicro.2006.05.015.
  • Bader Ul Ain, H., F. Saeed, N. Ahmad, A. Imran, B. Niaz, M. Afzaal, M. Imran, T. Tufail, and A. Javed. 2018. Functional and health-endorsing properties of wheat and barley cell wall’s non-starch polysaccharides. International Journal of Food Properties 21 (1):1463–80. doi: 10.1080/10942912.2018.1489837.
  • Beer, M. U., P. Wood, J. Weisz, and N. Fillion. 1997. Effect of cooking and storage on the amount and molecular weight of (1→3)(1→4)-β-d-glucan extracted from oat products by an in vitro digestion system. Cereal Chemistry 74 (6):705–9. doi: 10.1094/CCHEM.1997.74.6.705.
  • Benito-Román, Ó., E. Alonso, and M. J. Cocero. 2013a. Pressurized hot water extraction of β-glucans from waxy barley. The Journal of Supercritical Fluids 73:120–5. doi: 10.1016/j.supflu.2012.09.014.
  • Benito-Román, Ó., E. Alonso, and M. J. Cocero. 2013b. Ultrasound-assisted extraction of β-glucans from barley. LWT: Food Science and Technology 50 (1):57–63. doi: 10.1016/j.lwt.2012.07.006..
  • Benito-Román, O., E. Alonso, and S. Lucas. 2011. Optimization of the β-glucan extraction conditions from different waxy barley cultivars. Journal of Cereal Science 53 (3):271–6. doi: 10.1016/j.jcs.2011.01.003.
  • Biörklund, M., A. van Rees, R. P. Mensink, and G. Önning. 2005. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with β-glucans from oats or barley: A randomised dose-controlled trial. European Journal of Clinical Nutrition 59 (11):1272–81. doi: 10.1038/sj.ejcn.1602240.
  • Błaszczyk, K., J. Wilczak, J. Harasym, S. Gudej, D. Suchecka, T. Królikowski, E. Lange, and J. Gromadzka-Ostrowska. 2015. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocolloids. 51:272–80. doi: 10.1016/j.foodhyd.2015.05.025.
  • Brennan, C. S., and C. M. Tudorica. 2008. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. International Journal of Food Science and Technology 43 (5):824–33. doi: 10.1111/j.1365-2621.2007.01522.x.
  • Brown, L., B. Rosner, W. W. Willett, and F. M. Sacks. 1999. Cholesterol-lowering effects of dietary fiber: A meta-analysis. The American Journal of Clinical Nutrition 69 (1):30–42. doi: 10.1093/ajcn/69.1.30.
  • Brummer, Y., R. Duss, T. M. Wolever, and S. Tosh. 2012. Glycemic response to extruded oat bran cereals processed to vary in molecular weight. Cereal Chemistry Journal 89 (5):255–61. doi: 10.1094/CCHEM-03-12-0031-R.
  • Burton, R. A., H. M. Collins, and G. B. Fincher. 2009. The role of endosperm cell walls in barley malting quality. In Genetics and improvement of barley malt quality. Springer.
  • Cassidy, Y. M., E. M. McSorley, and P. J. Allsopp. 2018. Effect of soluble dietary fibre on postprandial blood glucose response and its potential as a functional food ingredient. Journal of Functional Foods 46:1–439. 10.1016/j.jff.2018.05.019.
  • Charlet, R., C. Bortolus, M. Barbet, B. Sendid, and S. Jawhara. 2018. A decrease in anaerobic bacteria promotes Candida glabrata overgrowth while β-glucan treatment restores the gut microbiota and attenuates colitis. Gut Pathogens 10:50. . https://www.ncbi.nlm.nih.gov/pubmed/30524506. doi: 10.1186/s13099-018-0277-2.
  • Chatterjee, B., and T. Patel. 2016. Increased sensory quality and consumer acceptability by fortification of chocolate flavoured milk with oat beta glucan. International Journal of Clinical and Biomedical Research 2 (1):25–8.
  • Choo, C. L., and N. A. A. Aziz. 2010. Effects of banana flour and β-glucan on the nutritional and sensory evaluation of noodles. Food Chemistry 119 (1):34–40. doi: 10.1016/j.foodchem.2009.05.004.
  • Choromanska, A., J. Kulbacka, N. Rembialkowska, J. Pilat, R. Oledzki, J. Harasym, and J. Saczko. 2015. Anticancer properties of low molecular weight oat beta-glucan: An in vitro study. International Journal of Biological Macromolecules 80:23–8. https://www.ncbi.nlm.nih.gov/pubmed/26092171. doi: 10.1016/j.ijbiomac.2015.05.035.
  • Connolly, M. L., X. Tzounis, K. M. Tuohy, and J. A. Lovegrove. 2016. Hypocholesterolemic and prebiotic effects of a whole-grain oat-based granola breakfast cereal in a cardio-metabolic "at risk" population. Frontiers in Microbiology 7:1675. doi: 10.3389/fmicb.2016.01675..https://www.ncbi.nlm.nih.gov/pubmed/27872611.
  • Cui, W., and P. Wood. 2000. Relationships between structural features, molecular weight and rheological properties of cereal ß-d-glucans. In Hydrocolloids, ed. K. Nishinari, 159–68. Amsterdam: Elsevier Science.
  • Daou, C., and H. Zhang. 2012. Oat beta-glucan: Its role in health promotion and prevention of diseases. Comprehensive Reviews in Food Science and Food Safety 11 (4):355–65. doi: 10.1111/j.1541-4337.2012.00189.x.
  • De Arcangelis, E., S. Djurle, A. A. M. Andersson, E. Marconi, M. C. Messia, and R. Andersson. 2019. Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science 85:175–81. doi: 10.1016/j.jcs.2018.12.002.
  • De Paula, R., E.-S M. Abdel-Aal, M. C. Messia, I. Rabalski, and E. Marconi. 2017. Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta. Journal of Cereal Science 75:124–31. doi: 10.1016/j.jcs.2017.03.030.
  • Din, A., M. F. J. Chughtai, M. R. K. Khan, A. Shahzad, A. Khaliq, and M. A. Nasir. 2018. Nutritional and functional perspectives of barley ß-glucan. International Food Research Journal 25 (5):1773–83.
  • Dong, J., F. Cai, R. Shen, and Y. Liu. 2011. Hypoglycaemic effects and inhibitory effect on intestinal disaccharidases of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chemistry 129 (3):1066–71. https://www.ncbi.nlm.nih.gov/pubmed/25212338. doi: 10.1016/j.foodchem.2011.05.076.
  • Driscoll, M., R. Hansen, C. Ding, D. E. Cramer, and J. Yan. 2009. Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biology and Therapy 8 (3):218–25. https://www.ncbi.nlm.nih.gov/pubmed/19106638. doi: 10.4161/cbt.8.3.7337.
  • Du, B., F. Zhu, and B. Xu. 2014. β-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. Journal of Cereal Science 59 (1):95–100. doi: 10.1016/j.jcs.2013.11.004.
  • EFSA. 2011. Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851,852). EFSA Journal 9 (2207): 1–21. doi: 10.2903/j.efsa.2011.2207..
  • Ehrenbergerova, J., N. Brezinova Belcredi, V. Psota, P. Hrstkova, R. Cerkal, and C. W. Newman. 2008. Changes caused by genotype and environmental conditions in beta-glucan content of spring barley for dietetically beneficial human nutrition. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 63 (3):111–7. https://www.ncbi.nlm.nih.gov/pubmed/18551369. doi: 10.1007/s11130-008-0079-7.
  • El Khoury, D., C. Cuda, B. L. Luhovyy, and G. H. Anderson. 2012. Beta glucan: Health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism 2012:851362. . https://www.ncbi.nlm.nih.gov/pubmed/22187640. doi: 10.1155/2012/851362.
  • Elleuch, M., D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, and H. Attia. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124 (2):411–21. doi: 10.1016/j.foodchem.2010.06.077.
  • Faure, A. M., A. Sanchez-Ferrer, A. Zabara, M. L. Andersen, and L. Nystrom. 2014. Modulating the structural properties of β-d-glucan degradation products by alternative reaction pathways. Carbohydrate Polymers 99:679–86. https://www.ncbi.nlm.nih.gov/pubmed/24274558. doi: 10.1016/j.carbpol.2013.08.022.
  • Frank, J., B. Sundberg, A. Kamal-Eldin, B. Vessby, and P. Åman. 2004. Yeast-leavened oat breads with high or low molecular weight ß-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humans. The Journal of Nutrition 134 (6):1384–8. doi: 10.1093/jn/134.6.1384.
  • Gamel, T. H., E.-S. M. Abdel-Aal, N. P. Ames, R. Duss, and S. M. Tosh. 2014. Enzymatic extraction of beta-glucan from oat bran cereals and oat crackers and optimization of viscosity measurement. Journal of Cereal Science 59 (1):33–40. doi: 10.1016/j.jcs.2013.10.011.
  • Gamel, T. H., K. Badali, and S. M. Tosh. 2013. Changes of β-glucan physicochemical characteristics in frozen and freeze dried oat bran bread and porridge. Journal of Cereal Science 58 (1):104–9. doi: 10.1016/j.jcs.2013.03.014.
  • Gangopadhyay, N., M. B. Hossain, D. K. Rai, and N. P. Brunton. 2015. Optimisation of yield and molecular weight of β-glucan from barley flour using response surface methodology. Journal of Cereal Science 62:38–44. doi: 10.1016/j.jcs.2014.10.007.
  • Glei, M., S. Zetzmann, S. Lorkowski, C. Dawczynski, and W. Schlormann. 2020. Chemopreventive effects of raw and roasted oat flakes after in vitro fermentation with human faecal microbiota. International Journal of Food Science and Nutrition 72 (1): 1–13. doi: 10.1080/09637486.2020.1772205..https://www.ncbi.nlm.nih.gov/pubmed/32482126.
  • Grundy, M. M., A. Fardet, S. M. Tosh, G. T. Rich, and P. J. Wilde. 2018. Processing of oat: The impact on oat's cholesterol lowering effect. Food and Function 9 (3):1328–43. https://www.ncbi.nlm.nih.gov/pubmed/29431835. doi: 10.1039/c7fo02006f.
  • Gunness, P., J. Michiels, L. Vanhaecke, S. De Smet, O. Kravchuk, A. Van de Meene, and M. J. Gidley. 2016. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat beta-glucan. The FASEB Journal 30 (12):4227–38. https://www.ncbi.nlm.nih.gov/pubmed/27630168. doi: 10.1096/fj.201600465R.
  • Hager, A.-S., L. A. M. Ryan, C. Schwab, M. G. Gänzle, J. V. O’Doherty, and E. K. Arendt. 2011. Influence of the soluble fibres inulin and oat β-glucan on quality of dough and bread. European Food Research and Technology 232 (3):405–13. doi: 10.1007/s00217-010-1409-1.
  • Håkansson, A., M. Ulmius, and L. Nilsson. 2012. Asymmetrical flow field-flow fractionation enables the characterization of molecular and supramolecular properties of cereal β-glucan dispersions. Carbohydrate Polymers 87 (1):518–23. doi: 10.1016/j.carbpol.2011.08.014.
  • Harasym, J., E. Żyła, K. Dziendzikowska, and J. Gromadzka-Ostrowska. 2019. Proteinaceous residue removal from oat beta-glucan extracts obtained by alkaline water extraction. Molecules 24 (9):1729. https://www.ncbi.nlm.nih.gov/pubmed/31058866. doi: 10.3390/molecules24091729.
  • Harasym, J., D. Suchecka, and J. Gromadzka-Ostrowska. 2015. Effect of size reduction by freeze-milling on processing properties of beta-glucan oat bran. Journal of Cereal Science 61:119–25. doi: 10.1016/j.jcs.2014.10.010.
  • Hassani, A., S. Procopio, and T. Becker. 2016. Influence of malting and lactic acid fermentation on functional bioactive components in cereal-based raw materials: A review paper. International Journal of Food Science and Technology 51 (1):14–22. doi: 10.1111/ijfs.12965.
  • Heiniö, R. L., M. W. J. Noort, K. Katina, S. A. Alam, N. Sozer, H. L. de Kock, M. Hersleth, and K. Poutanen. 2016. Sensory characteristics of wholegrain and bran-rich cereal foods: A review. Trends in Food Science and Technology 47:25–38. doi: 10.1016/j.tifs.2015.11.002.
  • Henrion, M., C. Francey, K. A. Le, and L. Lamothe. 2019. Cereal ß-glucans: The impact of processing and how it affects physiological responses. Nutrients 11 (8):1729. . https://www.ncbi.nlm.nih.gov/pubmed/31357461. doi: 10.3390/nu11081729.
  • Herrera, M. P., Gao, J. T., Vasanthan, F., Temelli, K., and Henderson, A. 2016. β-glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science 96 (2):183–96. doi: 10.1139/cjps-2014-0440.
  • Hollmann, J., and M. Lindhauer. 2005. Pilot-scale isolation of glucuronoarabinoxylans from wheat bran. Carbohydrate Polymers 59 (2):225–30. doi: 10.1016/j.carbpol.2004.09.015.
  • Hu, X., J. Zhao, Q. Zhao, and J. Zheng. 2015. Structure and characteristic of β-glucan in cereal: A review. Journal of Food Processing and Preservation 39 (6):3145–53. doi: 10.1111/jfpp.12384.
  • Hübner, F., T. O’Neil, K. D. Cashman, and E. K. Arendt. 2010. The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. European Food Research and Technology 231 (1):27–35. doi: 10.1007/s00217-010-1247-1.
  • Hussain, P. R., S. A. Rather, and P. P. Suradkar. 2018. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β-glucan. Radiation Physics and Chemistry 144:218–30. doi: 10.1016/j.radphyschem.2017.08.018.
  • Izydorczyk, M. S., and J. E. Dexter. 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products: A review. Food Research International 41 (9):850–68. doi: 10.1016/j.foodres.2008.04.001.
  • Izydorczyk, M. S., L. J. Macri, and A. W. MacGregor. 1998. Structure and physicochemical properties of barley non-starch polysaccharides-II. Alkali-extractable ß-glucans and arabinoxylans. Carbohydrate Polymers 35 (3–4):259–69.. doi: 10.1016/S0144-8617(97)00136-7.
  • Jayachandran, M., J. Chen, S. S. M. Chung, and B. Xu. 2018. A critical review on the impacts of β-glucans on gut microbiota and human health. The Journal of Nutritional Biochemistry 61:101–10. https://www.ncbi.nlm.nih.gov/pubmed/30196242. doi: 10.1016/j.jnutbio.2018.06.010.
  • Joyce, S. A., A. Kamil, L. Fleige, and C. G. M. Gahan. 2019. The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome. Frontiers in Nutrition 6 (171). doi: 10.3389/fnut.2019.00171. https://www.ncbi.nlm.nih.gov/pubmed/31828074.
  • Kanauchi, M., and C. W. Bamforth. 2001. Release of β-glucan from cell walls of starchy endosperm of barley. Cereal Chemistry Journal 78 (2):121–4. doi: 10.1094/CCHEM.2001.78.2.121.
  • Karp, S., J. Wyrwisz, and M. A. Kurek. 2019. Comparative analysis of the physical properties of o/w emulsions stabilised by cereal β-glucan and other stabilisers. International Journal of Biological Macromolecules 132:236–43. https://www.ncbi.nlm.nih.gov/pubmed/30930267. doi: 10.1016/j.ijbiomac.2019.03.212.
  • Kaur, R., M. Sharma, D. Ji, M. Xu, and D. Agyei. 2019. Structural features, modification, and functionalities of beta-glucan. Fibers 8 (1):1. doi: 10.3390/fib8010001.
  • Keenan, J. M., M. Goulson, T. Shamliyan, N. Knutson, L. Kolberg, and L. Curry. 2007. The effects of concentrated barley beta-glucan on blood lipids in a population of hypercholesterolaemic men and women. The British Journal of Nutrition 97 (6):1162–8. https://www.ncbi.nlm.nih.gov/pubmed/17445284. doi: 10.1017/S0007114507682968.
  • Kivelä, R., U. Henniges, T. Sontag-Strohm, and A. Potthast. 2012. Oxidation of oat β-glucan in aqueous solutions during processing. Carbohydrate Polymers 87 (1):589–97. doi: 10.1016/j.carbpol.2011.08.028.
  • Kivelä, R., L. Nyström, H. Salovaara, and T. Sontag-Strohm. 2009. Role of oxidative cleavage and acid hydrolysis of oat beta-glucan in modelled beverage conditions. Journal of Cereal Science 50 (2):190–7. doi: 10.1016/j.jcs.2009.04.012.
  • Kurek, M. A., J. Wyrwisz, M. Brzeska, M. Moczkowska, S. Karp, and A. Wierzbicka. 2018. Effect of different beta-glucan preparation pretreatments on fortified bread quality. Food Science and Technology 38 (4):606–11. doi: 10.1590/fst.06917.
  • Kwong, M. G., T. M. Wolever, Y. Brummer, and S. M. Tosh. 2013. Increasing the viscosity of oat beta-glucan beverages by reducing solution volume does not reduce glycaemic responses. British Journal of Nutrition 110 (8):1465–71. https://www.ncbi.nlm.nih.gov/pubmed/23789885. doi: 10.1017/S000711451300069X.
  • Laigle, M., and C. A. Barakat. 2017. Electrostatic separation as an entry into environmentally eco-friendly dry biorefining of plant materials. Journal of Chemical Engineering and Process Technology 08 (04): 1–6. doi: 10.4172/2157-7048.1000354..
  • Lan-Pidhainy, X., Y. Brummer, S. Tosh, T. M. Wolever, and P. Wood. 2007. Reducing beta-glucan solubility in oat bran muffins by freeze–thaw treatment attenuates its hypoglycemic effect. Cereal Chemistry Journal 84 (5):512–7. doi: 10.1094/CCHEM-84-5-0512.
  • Lazaridou, A., and C. G. Biliaderis. 2007. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. Journal of Cereal Science 46 (2):101–18. doi: 10.1016/j.jcs.2007.05.003.
  • Lee, S. H., G. Y. Jang, M. Y. Kim, I. G. Hwang, H. Y. Kim, K. S. Woo, M. J. Lee, T. J. Kim, J. Lee, and H. S. Jeong. 2016. Physicochemical and in vitro binding properties of barley β-glucan treated with hydrogen peroxide. Food Chemistry 192:729–35. https://www.ncbi.nlm.nih.gov/pubmed/26304404. doi: 10.1016/j.foodchem.2015.07.063.
  • Leuzinger, S., A. Steingotter, and L. Nystrom. 2018. Viscosity of cereal β-glucan in the gastrointestinal tract. Chimia 72 (10):733–5. https://www.ncbi.nlm.nih.gov/pubmed/30376927. doi: 10.2533/chimia.2018.733.
  • Li, L., M. Pan, S. Pan, W. Li, Y. Zhong, J. Hu, and S. Nie. 2020. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 135:110937. . https://www.ncbi.nlm.nih.gov/pubmed/31682932. doi: 10.1016/j.fct.2019.110937.
  • Lim, H.-J., S.-Y. Kim, and W.-K. Lee. 2004. Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. Journal of Veterinary Science 5 (4):391–5. doi: 10.4142/jvs.2004.5.4.391.
  • Limberger-Bayer, V. M., A. de Francisco, A. Chan, T. Oro, P. J. Ogliari, and P. L. Barreto. 2014. Barley β-glucans extraction and partial characterization. Food Chemistry 154:84–9. https://www.ncbi.nlm.nih.gov/pubmed/24518319. doi: 10.1016/j.foodchem.2013.12.104.
  • Liu, K. 2014. Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. Journal of Cereal Science 60 (2):317–22. doi: 10.1016/j.jcs.2014.06.002.
  • Loebnitz, N., and K. G. Grunert. 2018. Impact of self-health awareness and perceived product benefits on purchase intentions for hedonic and utilitarian foods with nutrition claims. Food Quality and Preference 64:221–31. doi: 10.1016/j.foodqual.2017.09.005.
  • López-Vargas, J. H., J. Fernández-López, J. A. Pérez-Álvarez, and M. Viuda-Martos. 2013. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International 51 (2):756–63. doi: 10.1016/j.foodres.2013.01.055.
  • Lyly, M., M. Salmenkallio-Marttila, T. Suortti, K. Autio, K. Poutanen, and L. Lähteenmäki. 2003. Influence of oat ß-glucan preparations on the perception of mouthfeel and on rheological properties in beverage prototypes. Cereal Chemistry Journal 80 (5):536–41. doi: 10.1094/CCHEM.2003.80.5.536.
  • Macagnan, F. T., L. P. da Silva, and L. H. Hecktheuer. 2016. Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International (Ottawa, Ont.) 85:144–54. https://www.ncbi.nlm.nih.gov/pubmed/29544829. doi: 10.1016/j.foodres.2016.04.032.
  • Maheshwari, G., S. Sowrirajan, and B. Joseph. 2017. Extraction and isolation of β-glucan from grain sources: A review. Journal of Food Science 82 (7):1535–45. https://www.ncbi.nlm.nih.gov/pubmed/28608543. doi: 10.1111/1750-3841.13765.
  • Makela, N., T. Sontag-Strohm, and N. H. Maina. 2015. The oxidative degradation of barley β-glucan in the presence of ascorbic acid or hydrogen peroxide. Carbohydrate Polymers 123:390–5. https://www.ncbi.nlm.nih.gov/pubmed/25843872. doi: 10.1016/j.carbpol.2015.01.037.
  • Makela, N., T. Sontag-Strohm, S. Schiehser, A. Potthast, H. Maaheimo, and N. H. Maina. 2017. Reaction pathways during oxidation of cereal β-glucans. Carbohydrate Polymers 157:1769–76. https://www.ncbi.nlm.nih.gov/pubmed/27987894. doi: 10.1016/j.carbpol.2016.11.060.
  • Mäkelä, N., O. Brinck, and T. Sontag-Strohm. 2020. Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model. Food Hydrocolloids 100:105422. doi: 10.1016/j.foodhyd.2019.105422.
  • Mäkelä, N., N. H. Maina, P. Vikgren, and T. Sontag-Strohm. 2017. Gelation of cereal β-glucan at low concentrations. Food Hydrocolloids 73:60–6. doi: 10.1016/j.foodhyd.2017.06.026.
  • Malkki, Y., O. Myllymäki, K. Teinilä, and S. Koponen. 2004. Method for preparing an oat product and a foodstuff enriched in the content of ß-glucan. USA Filed 28.09 2004.
  • Messia, M. C., M. Oriente, M. Angelicola, E. De Arcangelis, and E. Marconi. 2019. Development of functional couscous enriched in barley β-glucans. Journal of Cereal Science 85:137–42. doi: 10.1016/j.jcs.2018.12.007.
  • Mikkelsen, M. S., B. M. Jespersen, F. H. Larsen, A. Blennow, and S. B. Engelsen. 2013. Molecular structure of large-scale extracted β-glucan from barley and oat: Identification of a significantly changed block structure in a high β-glucan barley mutant. Food Chemistry 136 (1):130–8. https://www.ncbi.nlm.nih.gov/pubmed/23017403. doi: 10.1016/j.foodchem.2012.07.097.
  • Mikkelsen, M. S., B. M. Jespersen, B. L. Møller, H. N. Laerke, F. H. Larsen, and S. B. Engelsen. 2010. Comparative spectroscopic and rheological studies on crude and purified soluble barley and oat β-glucan preparations. Food Research International 43 (10):2417–24. doi: 10.1016/j.foodres.2010.09.016.
  • Mio, K., C. Yamanaka, Y. Ichinose, N. Kohyama, T. Yanagisawa, and S. Aoe. 2020. Effects of barley β‐glucan with various molecular weights partially hydrolyzed by endogenous β‐glucanase on glucose tolerance and lipid metabolism in mice. Cereal Chemistry 97 (5):1056–65. doi: 10.1002/cche.10328.
  • Miyamoto, J., K. Watanabe, S. Taira, M. Kasubuchi, X. Li, J. Irie, H. Itoh, and I. Kimura. 2018. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS One 13 (4):e0196579. . https://www.ncbi.nlm.nih.gov/pubmed/29698465. doi: 10.1371/journal.pone.0196579.
  • Moriartey, S., F. Temelli, and T. Vasanthan. 2010. Effect of formulation and processing treatments on viscosity and solubility of extractable barley ß-glucan in bread dough evaluated under in vitro conditions. Cereal Chemistry 87 (1):65–72. doi: 10.1094/CCHEM-87-1-0065.
  • Nakashima, A., K. Yamada, O. Iwata, R. Sugimoto, K. Atsuji, T. Ogawa, N. Ishibashi-Ohgo, and K. Suzuki. 2018. β-glucan in foods and its physiological functions. Journal of Nutritional Science and Vitaminology (Tokyo) 64 (1):8–17. doi: 10.3177/jnsv.64.8.
  • Naumann, E., A. B. van Rees, G. Önning, R. Öste, M. Wydra, and R. P. Mensink. 2006. Beta-glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations. The American Journal of Clinical Nutrition 83 (3):601–5. doi: 10.1093/ajcn.83.3.601.
  • Nishantha, M. D., Lalith Chandana, X. Zhao, D. C. Jeewani, J. Bian, X. Nie, and S. Weining. 2018. Direct comparison of β-glucan content in wild and cultivated barley. International Journal of Food Properties 21 (1):2218–28. doi: 10.1080/10942912.2018.1500486.
  • Rahmani, J., A. Miri, R. Černevičiūtė, J. Thompson, N. N. de Souza, R. Sultana, H. Kord Varkaneh, S. M. Mousavi, and A. Hekmatdoost. 2019. Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: A meta-analysis of randomized controlled trials. Complementary Therapies in Medicine 43:131–9. https://www.ncbi.nlm.nih.gov/pubmed/30935520. doi: 10.1016/j.ctim.2019.01.018.
  • Redaelli, R., V. Del Frate, S. Bellato, G. Terracciano, R. Ciccoritti, C. U. Germeier, E. De Stefanis, and D. Sgrulletta. 2013. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. Journal of Cereal Science 57 (2):193–9. doi: 10.1016/j.jcs.2012.09.003.
  • Regand, A., Z. Chowdhury, S. M. Tosh, T. M. S. Wolever, and P. Wood. 2011. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chemistry 129 (2):297–304. https://www.ncbi.nlm.nih.gov/pubmed/30634230. doi: 10.1016/j.foodchem.2011.04.053.
  • Rieder, A., S. H. Knutsen, A. S. Fernandez, and S. Ballance. 2019. At a high dose even partially degraded beta-glucan with decreased solubility significantly reduced the glycaemic response to bread. Food and Function 10 (3):1529–39. https://www.ncbi.nlm.nih.gov/pubmed/30785128. doi: 10.1039/c8fo02098a.
  • Ripsin, C. M., J. M. Keenan, J. Jacobs, P. J. Elmer, R. R. Welch, L. Van Horn, K. Liu, W. H. Turnbull, F. W. Thype, M. Kestin, et al. 1992. Oat products and lipid lowering. A meta-analysis. JAMA 267 (24):3317–25. 10.1001/jama.1992.03480240079039.
  • Ryu, J. H., S. Lee, S. You, J. H. Shim, and S. H. Yoo. 2012. Effects of barley and oat β-glucan structures on their rheological and thermal characteristics. Carbohydrate Polymers 89 (4):1238–43. https://www.ncbi.nlm.nih.gov/pubmed/24750937. doi: 10.1016/j.carbpol.2012.04.025.
  • Sanders, M. E., D. J. Merenstein, G. Reid, G. R. Gibson, and R. A. Rastall. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews. Gastroenterology and Hepatology 16 (10):605–16. https://www.ncbi.nlm.nih.gov/pubmed/31296969. doi: 10.1038/s41575-019-0173-3.
  • Schlormann, W., J. Atanasov, S. Lorkowski, C. Dawczynski, and M. Glei. 2020. Study on chemopreventive effects of raw and roasted β-glucan-rich waxy winter barley using an in vitro human colon digestion model. Food and Function 11 (3):2626–38. https://www.ncbi.nlm.nih.gov/pubmed/32176229. doi: 10.1039/c9fo03009c.
  • Schlormann, W., S. Zetzmann, B. Wiege, N. U. Haase, A. Greiling, S. Lorkowski, C. Dawczynski, and M. Glei. 2019. Impact of different roasting conditions on chemical composition, sensory quality and physicochemical properties of waxy–barley products. Food and Function 10 (9):5436–45. https://www.ncbi.nlm.nih.gov/pubmed/31403146. doi: 10.1039/c9fo01429b.
  • Schlormann, W., S. Zetzmann, B. Wiege, N. U. Haase, A. Greiling, S. Lorkowski, C. Dawczynski, and M. Glei. 2020. Impact of different roasting conditions on sensory properties and health-related compounds of oat products. Food Chemistry 307 (125548): 1–7. 10.1016/j.foodchem.2019.125548. https://www.ncbi.nlm.nih.gov/pubmed/31654949.
  • Shehata, M. G., S. A. El Sohaimy, M. A. El-Sahn, and M. M. Youssef. 2016. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Sciences 61 (1):65–75. doi: 10.1016/j.aoas.2016.03.001.
  • Shewry, P. R., V. Piironen, A.-M. Lampi, L. Nyström, L. Li, M. Rakszegi, A. Fraś, D. Boros, K. Gebruers, C. M. Courtin, et al. 2008. Phytochemical and fiber components in oat varieties in the healthgrain diversity screen. Journal of Agricultural and Food Chemistry 56 (21):9777–84. doi: 10.1021/jf801880d.
  • Sibakov, J., J. Abecassis, C. Barron, and K. Poutanen. 2014. Electrostatic separation combined with ultra-fine grinding to produce β-glucan enriched ingredients from oat bran. Innovative Food Science and Emerging Technologies 26:445–55. doi: 10.1016/j.ifset.2014.10.004.
  • Sibakov, J., O. Myllymäki, T. Suortti, A. Kaukovirta-Norja, P. Lehtinen, and K. Poutanen. 2013. Comparison of acid and enzymatic hydrolyses of oat bran β-glucan at low water content. Food Research International 52 (1):99–108. doi: 10.1016/j.foodres.2013.02.037.
  • Sikora, P., S. M. Tosh, Y. Brummer, and O. Olsson. 2013. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chemistry 137 (1–4):83–91. doi: 10.1016/j.foodchem.2012.10.007.
  • Singh, M., S. X. Liu, and S. F. Vaughn. 2012. Effect of corn bran as dietary fiber addition on baking and sensory quality. Biocatalysis and Agricultural Biotechnology 1 (4):348–52. doi: 10.1016/j.bcab.2012.02.005.
  • Skendi, A., C. G. Biliaderis, M. Papageorgiou, and M. S. Izydorczyk. 2010. Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chemistry 119 (3):1159–67. doi: 10.1016/j.foodchem.2009.08.030.
  • Skendi, A., M. Papageorgiou, and C. G. Biliaderis. 2009. Effect of barley β-glucan molecular size and level on wheat dough rheological properties. Journal of Food Engineering 91 (4):594–601. doi: 10.1016/j.jfoodeng.2008.10.009.
  • Slavin, J. L., D. Jacobs, and L. Marquart. 2000. Grain processing and nutrition. Critical Reviews in Food Science and Nutrition 40 (4):309–26. https://www.ncbi.nlm.nih.gov/pubmed/10943592. doi: 10.1080/10408690091189176.
  • Soltanian, S., E. Stuyven, E. Cox, P. Sorgeloos, and P. Bossier. 2009. Beta-glucans as immunostimulant in vertebrates and invertebrates. Critical Reviews in Microbiology 35 (2):109–38. https://www.ncbi.nlm.nih.gov/pubmed/19514911. doi: 10.1080/10408410902753746.
  • Sun, H., X. Ge, Y. Lv, and A. Wang. 2012. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. Journal of Chromatography A 1237:1–23. https://www.ncbi.nlm.nih.gov/pubmed/22465684. doi: 10.1016/j.chroma.2012.03.003.
  • Sunilkumar, B. A., S. Leonova, R. Öste, and O. Olsson. 2017. Identification and characterization of high protein oat lines from a mutagenized oat population. Journal of Cereal Science 75:100–7. doi: 10.1016/j.jcs.2017.03.003.
  • Temelli, F. 1997. Extraction and functional properties of barley ß-glucan as affected by temperature and pH. Journal of Food Science 62 (6):1194–201. . doi: 10.1111/j.1365-2621.1997.tb12242.x.
  • Temelli, F., C. Bansema, and K. Stobbe. 2004. Development of an orange-flavoured barley ß-glucan beverage. Cereal Chemistry 81 (4):499–503.. doi: 10.1094/CCHEM.2004.81.4.499.
  • Tessari, P., and A. Lante. 2017. A multifunctional bread rich in beta glucans and low in starch improves metabolic control in type 2 diabetes: A controlled trial. Nutrients 9 (3):297. . https://www.ncbi.nlm.nih.gov/pubmed/28304350. doi: 10.3390/nu9030297.
  • Thandapilly, S. J., S. P. Ndou, Y. Wang, C. M. Nyachoti, and N. P. Ames. 2018. Barley beta-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food and Function 9 (6):3092–6. https://www.ncbi.nlm.nih.gov/pubmed/29872803. doi: 10.1039/C8FO00157J.
  • Thondre, P. S., and C. J. Henry. 2011. Effect of a low molecular weight, high-purity β-glucan on in vitro digestion and glycemic response . International Journal of Food Sciences and Nutrition 62 (7):678–84. https://www.ncbi.nlm.nih.gov/pubmed/21561391. doi: 10.3109/09637486.2011.566849.
  • Thondre, P. S., L. Ryan, and C. J. K. Henry. 2011. Barley β-glucan extracts as rich sources of polyphenols and antioxidants. Food Chemistry 126 (1):72–7. doi: 10.1016/j.foodchem.2010.10.074.
  • Thondre, P. S., A. Shafat, and M. E. Clegg. 2013. Molecular weight of barley β-glucan influences energy expenditure, gastric emptying and glycaemic response in human subjects . The British Journal of Nutrition 110 (12):2173–9. https://www.ncbi.nlm.nih.gov/pubmed/23742725. doi: 10.1017/S0007114513001682.
  • Tosh, S. 2004. Evaluation of structure in the formation of gels by structurally diverse (1-3)(1-4)-glucans from four cereal and one lichen species. Carbohydrate Polymers 57 (3):249–59. doi: 10.1016/j.carbpol.2004.05.009.
  • Tosh, S., Y. Brummer, T. M. Wolever, and P. Wood. 2008. Glycemic response to oat bran muffins treated to vary molecular weight of ß-glucan. Cereal Chemistry Journal 85 (2):211–7. doi: 10.1094/CCHEM-85-2-0211.
  • Tosh, S. M. 2013. The research legacy of Peter J. Wood. Bioactive Carbohydrates and Dietary Fibre 2 (2):170–80. doi: 10.1016/j.bcdf.2013.10.003.
  • Tsai, C. C., P. P. Lin, Y. M. Hsieh, Z. Y. Zhang, H. C. Wu, and C. C. Huang. 2014. Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. The Scientific World Journal 2014:690752. https://www.ncbi.nlm.nih.gov/pubmed/25538960. doi: 10.1155/2014/690752.
  • Vasanthan, T., and F. Temelli. 2008. Grain fractionation technologies for cereal beta-glucan concentration. Food Research International 41 (9):876–81. doi: 10.1016/j.foodres.2008.07.022.
  • Vasquez Mejia, S. M., A. de Francisco, and B. Bohrer. 2020. A comprehensive review on cereal beta-glucan: Extraction, characterization, causes of degradation, and food application. Critical Reviews in Food Science and Nutrition 60 (21): 3693–3704. doi: 10.1080/10408398.2019.1706444. https://www.ncbi.nlm.nih.gov/pubmed/31899946.
  • Vitaglione, P., R. B. Lumaga, C. Montagnese, M. C. Messia, E. Marconi, and L. Scalfi. 2010. Satiating effect of a barley beta-glucan-enriched snack. Journal of the American College of Nutrition 29 (2):113–21. https://www.ncbi.nlm.nih.gov/pubmed/20679146. doi: 10.1080/07315724.2010.10719824.
  • Vizhi, V. K., and J. N. Many. 2014. Study on estimation, extraction and analysis of barley beta-glucan. International Journal of Science and Research 3 (10):1480–4.
  • Wang, J., J. Bai, M. Fan, T. Li, Y. Li, H. Qian, L. Wang, H. Zhang, X. Qi, and Z. Rao. 2020. Cereal-derived arabinoxylans: Structural features and structure–activity correlations. Trends in Food Science and Technology 96:157–65. doi: 10.1016/j.tifs.2019.12.016.
  • Wang, S., H. Zhou, T. Feng, R. Wu, X. Sun, N. Guan, L. Qu, Z. Gao, J. Yan, N. Xu, et al. 2014. β-Glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway. Nutrition, Metabolism and Cardiovascular Diseases 24 (3):248–55. https://www.ncbi.nlm.nih.gov/pubmed/24418375. doi: 10.1016/j.numecd.2013.09.019.
  • Wang, Y., S. V. Harding, P. Eck, S. J. Thandapilly, T. H. Gamel, S. M. Abdel-Aal el, G. H. Crow, S. M. Tosh, P. J. Jones, and N. P. Ames. 2016. High-molecular-weight β-glucan decreases serum cholesterol differentially based on the CYP7A1 rs3808607 polymorphism in mildly hypercholesterolemic adults. The Journal of Nutrition 146 (4):720–7. https://www.ncbi.nlm.nih.gov/pubmed/26936139. doi: 10.3945/jn.115.223206.
  • Whitehead, A., E. J. Beck, S. Tosh, and T. M. Wolever. 2014. Cholesterol-lowering effects of oat beta-glucan: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 100 (6):1413–21. https://www.ncbi.nlm.nih.gov/pubmed/25411276. doi: 10.3945/ajcn.114.086108.
  • Wiege, I., M. Sluková, K. Vaculová, B. Pančíková, and B. Wiege. 2016. Characterization of milling fractions from new sources of barley for use in food industry. Starch – Stärke 68 (3–4):321–8. doi: 10.1002/star.201500253.
  • Wilson, T. A., R. J. Nicolosi, B. Delaney, K. Chadwell, V. Moolchandani, T. Kotyla, S. Ponduru, G.-H. Zheng, R. Hess, N. Knutson, et al. 2004. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. The Journal of Nutrition 134 (10):2617–22. doi: 10.1093/jn/134.10.2617.
  • Wolever, T. M. S., A. L. Jenkins, K. Prudence, J. Johnson, R. Duss, Y. Chu, and R. E. Steinert. 2018. Effect of adding oat bran to instant oatmeal on glycaemic response in humans: A study to establish the minimum effective dose of oat beta-glucan. Food and Function 9 (3):1692–700. https://www.ncbi.nlm.nih.gov/pubmed/29480316. doi: 10.1039/C7FO01768E.
  • Wolever, T. M., S. M. Tosh, A. L. Gibbs, J. Brand-Miller, A. M. Duncan, V. Hart, B. Lamarche, B. A. Thomson, R. Duss, and P. J. Wood. 2010. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. The American Journal of Clinical Nutrition 92 (4):723–32. https://www.ncbi.nlm.nih.gov/pubmed/20660224. doi: 10.3945/ajcn.2010.29174.
  • Wood, P. 2010. Oat and rye ß-glucan: Properties and function. Cereal Chemistry 87 (4):315–30. doi: 10.1094/CCHEM-87-4-0315.
  • Wood, P., J. Weisz, M. U. Beer, C. W. Newman, and R. K. Newman. 2003. Structure of (1->3)(1->4)-ß-d-glucan in waxy and nonwaxy barley. Cereal Chemistry Journal 80 (3):329–32. doi: 10.1094/CCHEM.2003.80.3.329.
  • Wood, P. J. 2004. Relationships between solution properties of cereal β-glucans and physiological effects: A review. Trends in Food Science and Technology 15 (6):313–20. doi: 10.1016/j.tifs.2003.03.001.
  • Yau, Y. F., H. El-Nezami, J. M. Galano, Z. M. Kundi, T. Durand, and J. C. Lee. 2020. Lactobacillus rhamnosus GG and oat beta-glucan regulated fatty acid profiles along the gut–liver–brain axis of mice fed with high fat diet and demonstrated antioxidant and anti-inflammatory potentials. Molecular Nutrition and Food Research 64 (18):e2000566. https://www.ncbi.nlm.nih.gov/pubmed/32780531. doi: 10.1002/mnfr.202000566.
  • Yoo, H. U., M. J. Ko, and M. S. Chung. 2020. Hydrolysis of beta-glucan in oat flour during subcritical–water extraction. Food Chemistry 308:125670. https://www.ncbi.nlm.nih.gov/pubmed/31655478. doi: 10.1016/j.foodchem.2019.125670.
  • Yu, J. S., G. M. Jo, Y. M. Shin, O. Y. Kwon, M. K. Kim, H. Y. Jo, and M. R. Kim. 2007. Physicochemical and sensory characteristics of sponge cake with added β-glucan. Korean Journal of Food and Cookery Science 23 (1):70–7.
  • Yuan, B., C. Ritzoulis, and J. Chen. 2019. Rheological investigations of beta glucan functionality: Interactions with mucin. Food Hydrocolloids 87:180–6. doi: 10.1016/j.foodhyd.2018.07.049.
  • Zhang, H., N. Zhang, Z. Xiong, G. Wang, Y. Xia, P. Lai, and L. Ai. 2018. Structural characterization and rheological properties of β-d-glucan from hull-less barley (Hordeum vulgare L. var. nudum Hook. f.). Phytochemistry 155:155–63. https://www.ncbi.nlm.nih.gov/pubmed/30121430. doi: 10.1016/j.phytochem.2018.08.004.
  • Zhang, J., K. Luo, and G. Zhang. 2017. Impact of native form oat β-glucan on starch digestion and postprandial glycemia. Journal of Cereal Science 73:84–90. doi: 10.1016/j.jcs.2016.11.013.
  • Zhao, Y., H.-M. Zhou, Z.-H. Huang, and R.-Y. Zhao. 2020. Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocolloids. 101:105543. doi: 10.1016/j.foodhyd.2019.105543.
  • Zhu, F., B. Du, and B. Xu. 2016. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids 52:275–88. doi: 10.1016/j.foodhyd.2015.07.003.
  • Zielke, C., O. Kosik, M. L. Ainalem, A. Lovegrove, A. Stradner, and L. Nilsson. 2017. Characterization of cereal β-glucan extracts from oat and barley and quantification of proteinaceous matter . PLoS One 12 (2):e0172034. https://www.ncbi.nlm.nih.gov/pubmed/28196092. doi: 10.1371/journal.pone.0172034.
  • Zielke, C., A. Stradner, and L. Nilsson. 2018. Characterization of cereal β-glucan extracts: Conformation and structural aspects. Food Hydrocolloids 79:218–27. doi: 10.1016/j.foodhyd.2017.12.036.
  • Zielke, C., Y. Lu, and L. Nilsson. 2019. Aggregation and microstructure of cereal β-glucan and its association with other biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 560:402–9. doi: 10.1016/j.colsurfa.2018.10.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.