1,008
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Metabolism, absorption, and anti-cancer effects of sulforaphane: an update

, &

References

  • Ahmed, A. A. J., F. M. Richard, V. G. Amy, P. N. Shaw, J. M. Richard, A. O. Catharine, and A. B. David. 2006. Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. Journal of Chromatography B 844 (2):223–34. doi: 10.1016/j.jchromb.2006.07.007.
  • Alumkal, J. J., R. Slottke, J. Schwartzman, G. Cherala, M. Munar, J. N. Graff, T. M. Beer, C. W. Ryan, D. R. Koop, A. Gibbs, et al. 2015. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational New Drugs 33 (2):480–9. doi: 10.1007/s10637-014-0189-z.
  • Angelino, D., and E. Jeffery. 2014. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. Journal of Functional Foods 7 (1):67–76. doi: 10.1016/j.jff.2013.09.029.
  • Atwell, L. L., L. M. Beaver, J. Shannon, D. E. Williams, R. H. Dashwood, and E. Ho. 2015a. Epigenetic regulation by sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Current Pharmacology Reports 1 (2):102–11. doi: 10.1007/s40495-014-0002-x.
  • Atwell, L. L., Z. Z. Zhang, M. Mori, P. E. Farris, J. T. Vetto, A. M. Naik, K. Y. Oh, P. Thuillier, E. Ho, and J. Shannon. 2015b. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prevention Research (Philadelphia, PA) 8 (12):1184–91. doi: 10.1158/1940-6207.CAPR-15-0119.
  • Axelsson, A. S., E. Tubbs, B. Mecham, S. Chacko, H. A. Nenonen, Y. Tang, J. W. Fahey, J. M. J. Derry, C. B. Wollheim, N. Wierup, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9 (394):eaah4477. doi: 10.1126/scitranslmed.aah4477.
  • Bauman, J. E., Y. Zang, M. Sen, D. P. Normolle, T. W. Kensler, S. Trivedi, P. A. Egner, S. H. Sheth, J. R. Grandis, and D. E. Johnson. 2015. Sulforaphane as a chemopreventive agent against oral carcinogenesis. Cancer Research 75 (15):894. doi: 10.1158/1538-7445.AM2015-894.
  • Beaver, L. M., R. Kuintzle, A. Buchanan, M. W. Wiley, S. T. Glasser, C. P. Wong, G. S. Johnson, J. H. Chang, C. V. Löhr, D. E. Williams, et al. 2017. Long noncoding RNAs and sulforaphane: A target for chemoprevention and suppression of prostate cancer. The Journal of Nutritional Biochemistry 42:72–83. doi: 10.1016/j.jnutbio.2017.01.001.
  • Bennett, R. L., and J. D. Licht. 2018. Targeting epigenetics in cancer. Annual Review of Pharmacology and Toxicology 58:187–207. doi: 10.1146/annurev-phanntox-010716-105106. doi: 10.1146/annurev-pharmtox-010716-105106.
  • Bessler, H., and M. Djaldetti. 2018. Broccoli and human health: Immunomodulatory effect of sulforaphane in a model of colon cancer. International Journal of Food Sciences and Nutrition 69 (8):946–953. doi: 10.1080/09637486.2018.1439901.
  • Bhatti, M. T., and A. K. S. Salama. 2018. Neuro-ophthalmic side effects of molecularly targeted cancer drugs. Eye (London, England) 32 (2):287–301. doi: 10.1038/eye.2017.222.
  • Cao, C., H. Wu, S. N. Vasilatos, U. Chandran, Y. Qin, Y. Wan, S. Oesterreich, N. E. Davidson, and Y. Huang. 2018. HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulforaphane in human breast cancer cells. International Journal of Cancer 143 (6):1388–1401. doi: 10.1002/ijc.31419.
  • Chen, Y., J.-Q. Chen, M.-M. Ge, Q. Zhang, X.-Q. Wang, J.-Y. Zhu, C.-F. Xie, X.-T. Li, C.-Y. Zhong, and H.-Y. Han. 2019. Sulforaphane inhibits epithelial-mesenchymal transition by activating extracellular signal-regulated kinase 5 in lung cancer cells. Journal of Nutritional Biochemistry 72: 108219. doi: 10.1016/j.jnutbio.2019.108219.
  • Cramer, J., and E. Jeffery. 2011. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy Men. Nutrition and Cancer 63 (2):196–201. doi: 10.1080/01635581.2011.523495.
  • Curran, K. M., S. Bracha, C. P. Wong, L. M. Beaver, J. F. Stevens, and E. Ho. 2018. Sulforaphane absorption and histone deacetylase activity following single dosing of broccoli sprout supplement in normal dogs. Veterinary Medicine and Science 4 (4):357–363. doi: 10.1002/vms3.118.
  • Dinkova-Kostova, A. T., S. N. Jenkins, J. W. Fahey, L. X. Ye, S. L. Wehage, K. T. Liby, K. K. Stephenson, K. L. Wade, and P. Talalay. 2006. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Letters 240 (2):243–252. doi: 10.1016/j.canlet.2005.09.012.
  • Egner, P. A., J. G. Chen, J. B. Wang, Y. Wu, Y. Sun, J. H. Lu, J. Zhu, Y. H. Zhang, Y. S. Chen, M. D. Friesen, et al. 2011. Bioavailability of sulforaphane from two broccoli sprout beverages: Results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prevention Research (Philadelphia, PA) 4 (3):384–395. doi: 10.1158/1940-6207.CAPR-10-0296.
  • Egner, P. A., J.-G. Chen, A. T. Zarth, D. K. Ng, J.-B. Wang, K. H. Kensler, L. P. Jacobson, A. Muñoz, J. L. Johnson, J. D. Groopman, et al. 2014. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: Results of a randomized clinical trial in China. Cancer Prevention Research (Philadelphia, PA) 7 (8):813–823. doi: 10.1158/1940-6207.CAPR-14-0103.
  • Egner, P. A., T. W. Kensler, J.-G. Chen, J. G. Stephen, D. G. John, and M. D. Friesen. 2008. Quantification of sulforaphane mercapturic acid pathway conjugates in human urine by high-performance liquid chromatography and isotope-dilution tandem mass spectrometry. Chemical Research in Toxicology 21 (10):1991–1996. doi: 10.1021/tx800210k.
  • Fahey, J. W., W. D. Holtzclaw, S. L. Wehage, K. L. Wade, K. K. Stephenson, and P. Talalay. 2015. Sulforaphane bioavailability from glucoraphanin-rich Broccoli: Control by active endogenous myrosinase. PLoS One 10 (11):e0140963. doi: 10.1371/journal.pone.0140963.
  • Fahey, J. W., K. L. Wade, K. K. Stephenson, A. A. Panjwani, H. Liu, G. Cornblatt, B. S. Cornblatt, S. L. Ownby, E. Fuchs, W. D. Holtzclaw, et al. 2019. Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration. Nutrients 11 (7):1489. doi: 10.3390/Nu1107:1489.
  • Fahey, J. W., K. L. Wade, S. L. Wehage, W. D. Holtzclaw, H. Liu, P. Talalay, E. Fuchs, and K. K. Stephenson. 2017. Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Molecular Nutrition & Food Research 61 (4):1600766. doi: 10.1002/mnfr.201600766.
  • Fahey, J. W., S. L. Wehage, W. D. Holtzclaw, T. W. Kensler, P. A. Egner, T. A. Shapiro, and P. Talalay. 2012. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prevention Research (Philadelphia, PA) 5 (4):603–611. doi: 10.1158/1940-6207.CAPR-11-0538.
  • Fahey, J. W., Y. S. Zhang, and P. Talalay. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences of the United States of America 94 (19):10367–10372. doi: 10.1073/pnas.94.19.10367.
  • Fisher, M. L., N. Ciavattone, D. Grun, G. Adhikary, and R. L. Eckert. 2017. Sulforaphane reduces YAP/ΔNp63α signaling to reduce cancer stem cell survival and tumor formation. Oncotarget 8 (43):73407–73418. doi: 10.18632/oncotarget.20562.
  • Gao, L., D. Cheng, J. Yang, R. Wu, W. Li, and A.-N. Kong. 2018. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. The Journal of Nutritional Biochemistry 56:109–115. doi: 10.1016/j.jnutbio.2018.01.015.
  • Ge, M., L. Zhang, L. Cao, C. Xie, X. Li, Y. Li, Y. Meng, Y. Chen, X. Wang, J. Chen, et al. 2019. Sulforaphane inhibits gastric cancer stem cells via suppressing sonic hedgehog pathway. International Journal of Food Sciences and Nutrition 70 (5):570–578. doi: 10.1080/09637486.2018.1545012.
  • Geng, Y., Y. Zhou, S. Wu, Y. Hu, K. Lin, Y. Wang, Z. Zheng, and W. Wu. 2017. Sulforaphane induced apoptosis via promotion of mitochondrial fusion and ERK1/2-mediated 26s proteasome degradation of novel pro-survival bim and upregulation of bax in human non-small cell lung cancer cells. Journal of Cancer 8 (13):2456–2470. doi: 10.7150/jca.19383.
  • Georgikou, C., L. Yin, J. Gladkich, X. Xiao, C. Sticht, C. d l Torre, N. Gretz, W. Gross, M. Schäfer, S. Karakhanova, et al. 2020. Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer. Cancer Letters 469:238–245. doi: 10.1016/j.canlet.2019.10.042.
  • Gu, H.-F., X.-Y. Mao, and M. Du. 2020. Prevention of breast cancer by dietary polyphenols-role of cancer stem cells. Critical Reviews in Food Science and Nutrition 60 (5):810–825. doi: 10.1080/10408398.2018.1551778.
  • Hossain, S., Z. Liu, and R. J. Wood. 2020. Histone deacetylase activity and vitamin D‐dependent gene expressions in relation to sulforaphane in human breast cancer cells. Journal of Food Biochemistry 44 (2): e13114. doi: 10.1111/jfbc.13114.
  • Huang, J., C. Tao, Y. Yu, F. Yu, H. Zhang, J. Gao, D. Wang, Y. Chen, J. Gao, G. Zhang, et al. 2016. Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel- and sulforaphane-loaded self-assembled poly(D, L-lactide-co-glycolide)/hyaluronic acid block copolymer-based nanoparticles. Journal of Biomedical Nanotechnology 12 (7):1463–1477. doi: 10.1166/jbn.2016.2234.
  • Huang, L., B.-L. Li, C.-X. He, Y.-J. Zhao, X.-L. Yang, B. Pang, X.-H. Zhang, and Y.-J. Shan. 2018. Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. Journal of Functional Foods 41:118–126. doi: 10.1016/j.jff.2017.12.034.
  • Jessica, G., G. Laura, P. Chiara, R. Andrea, M. Alex, C. Roberto, G. Roberto, and F. Alessia. 2020. High levels of apoptosis are induced in the human colon cancer HT-29 cell line by co-administration of sulforaphane and a peptide nucleic acid targeting miR-15b-5p. Nucleic Acid Therapeutics 30 (3):164–174. doi: 10.1089/nat.2019.0825.
  • Kan, S.-F., J. Wang, and G.-X. Sun. 2018. Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. International Journal of Molecular Medicine 42 (5):2447–2458. doi: 10.3892/ijmm.2018.3860.
  • Kelly, M., G. Vijaya, F. D. Jessica, and R. Bernhard. 2015. Perioperative implications of the global cancer epidemic. Current Anesthesiology Reports 5 (3):243–249. doi: 10.1007/s40140-015-0123-8.
  • Kensler, T. W., J.-G. Chen, P. A. Egner, J. W. Fahey, L. P. Jacobson, K. K. Stephenson, L. Ye, J. L. Coady, J.-B. Wang, Y. Wu, et al. 2005. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China. Cancer Epidemiology Biomarkers & Prevention 14 (11):2605–2613. doi: 10.1158/1055-9965.EPI-05-0368.
  • Kiani, S., H. Akhavan-Niaki, S. Fattahi, S. Kavoosian, N. Babaian Jelodar, N. Bagheri, and H. Najafi Zarrini. 2018. Purified sulforaphane from broccoli (Brassica oleracea var. italica) leads to alterations of CDX1 and CDX2 expression and changes in miR-9 and miR-326 levels in human gastric cancer cells. Gene 678:115–123. doi: 10.1016/j.gene.2018.08.026.
  • Kim, J., A. J. Woo, J. Chu, J. W. Snow, Y. Fujiwara, C. G. Kim, A. B. Cantor, and S. H. Orkin. 2010. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143 (2):313–324. doi: 10.1016/j.cell09.010.
  • Kostov, R. V., T. W. Kensler, A. T. Dinkova-Kostova, and J. W. Fahey. 2017. KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends in Food Science & Technology 69 (Pt B):257–269. doi: 10.1016/j.tifs.2017.02.002.
  • Labsch, S., L. Liu, N. Bauer, Y. Zhang, E. Aleksandrowicz, J. Gladkich, F. Schönsiegel, and I. Herr. 2014. Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. International Journal of Oncology 44 (5):1470–1480. doi: 10.3892/ijo.2014.2335.
  • Lai, R.-H., M. J. Miller, and E. Jeffery. 2010. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food & Function 1 (2):161–166. doi: 10.1039/c0fo00110d.
  • Langner, E., M. K. Lemieszek, and W. Rzeski. 2019. Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. Journal of Food Biochemistry 43 (4):e12802. doi: 10.1111/jfbc.12802.
  • Lenzi, M., C. Fimognari, and P. Hrelia. 2014. Sulforaphane as a promising molecule for fighting cancer. Cancer Treatment and Research 159:207–223. doi: 10.1007/978-3-642-38007-5_12.
  • Lewinska, A., J. Adamczyk-Grochala, A. Deregowska, and M. Wnuk. 2017. Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microrna profile in breast cancer cells. Theranostics 7 (14):3461–3477. doi: 10.7150/thno.20657.
  • Li, Q., G. Eades, Y. Yao, Y. Zhang, and Q. Zhou. 2014a. Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lesions. The Journal of Biological Chemistry 289 (3):1303–1312. doi: 10.1074/jbc.M113.502278.
  • Li, Q., Y. Yao, G. Eades, Z. Liu, Y. Zhang, and Q. Zhou. 2014b. Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 33 (20):2589–2600. doi: 10.1038/onc.2013.226.
  • Li, Q.-Q., Y.-K. Xie, Y. Wu, L.-L. Li, Y. Liu, X.-B. Miao, Q.-Z. Liu, K.-T. Yao, and G.-H. Xiao. 2017. Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget 8 (7):12067–12080. doi: 10.18632/oncotarget.14512.
  • Li, S. H., J. Fu, D. N. Watkins, R. K. Srivastava, and S. Shankar. 2013. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Molecular and Cellular Biochemistry 373 (1–2):217–227. doi: 10.1007/s11010-012-1493-6.
  • Li, W., X. Ma, N. Li, H. Liu, Q. Dong, J. Zhang, C. Yang, Y. Liu, Q. Liang, S. Zhang, et al. 2016. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Experimental Cell Research 349 (2):320–327. doi: 10.1016/j.yexcr.2016.11.002.
  • Li, X., S. He, and B. Ma. 2020. Autophagy and autophagy-related proteins in cancer. Molecular Cancer 19 (1):12. doi: 10.1186/s12943-020-1138-4.
  • Li, Y., T. Zhang, H. Korkaya, S. Liu, H. F. Lee, B. Newman, Y. Yu, S. G. Clouthier, S. J. Schwartz, M. S. Wicha, et al. 2010. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research 16 (9):2580–2590. doi: 10.1158/1078-0432.CCR-09-2937.
  • Chang, Y.-W., Y.-J. Su, M. Hsiao, K.-C. Wei, W.-H. Lin, C.-J. Liang, S.-C. Chen, and J.-L. Lee. 2015. Diverse targets of beta-catenin during the epithelial-mesenchymal transition define cancer stem cells and predict disease relapse. Cancer Research 75 (16):3398–3410. doi: 10.1158/0008-5472.CAN-14-3265.
  • Lin, K., R. Yang, Z. Zheng, Y. Zhou, Y. Geng, Y. Hu, S. Wu, and W. Wu. 2017. Sulforaphane-cysteine-induced apoptosis via phosphorylated ERK1/2-mediated maspin pathway in human non-small cell lung cancer cells. Cell Death Discovery 3:17025. doi: 10.1038/cddiscovery.2017.25.
  • Lin, L. C., C. T. Yeh, C. C. Kuo, C. M. Lee, G. C. Yen, L. S. Wang, C. H. Wu, W. C. Yang, and A. T. Wu. 2012. Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/β-catenin function. Journal of Agricultural and Food Chemistry 60 (28):7031–7039. doi: 10.1021/jf301981n.
  • Liu, C. M., C.-Y. Peng, Y.-W. Liao, M.-Y. Lu, M.-L. Tsai, J.-C. Yeh, C.-H. Yu, and C.-C. Yu. 2017. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. Journal of the Formosan Medical Association 116 (1):41–48. doi: 10.1016/j.jfma.2016.01.004.
  • Liu, Q., Q. Luo, A. Halim, and G. Song. 2017. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Letters 401:39–45. doi: 10.1016/j.canlet05.002.
  • Lo, W.-L., C.-C. Yu, G.-Y. Chiou, Y.-W. Chen, P.-I. Huang, C.-S. Chien, L.-M. Tseng, P.-Y. Chu, K.-H. Lu, K.-W. Chang, et al. 2011. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. The Journal of Pathology 223 (4):482–495. doi: 10.1002/path.2826.
  • Martin, S. L., R. Kala, and T. O. Tollefsbol. 2018. Mechanisms for the inhibition of colon cancer cells by sulforaphane through epigenetic modulation of microRNA-21 and human telomerase reverse transcriptase (hTERT) down-regulation. Current Cancer Drug Targets 18 (1):97–106. doi: 10.2174/1568009617666170206104032.
  • Mi, L., A. J. Di Pasqua, and F.-L. Chung. 2011. Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 32 (10):1405–1413. doi: 10.1093/carcin/bgr111.
  • Milczarek, M., K. Wiktorska, L. Mielczarek, M. Koronkiewicz, A. Dąbrowska, K. Lubelska, D. Matosiuk, and Z. Chilmonczyk. 2018. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line. Food and Chemical Toxicology 111:1–8. doi: 10.1016/j.fct.2017.10.056.
  • Moura, M. B., E.-R. Hahm, S. V. Singh, K. B. Singh, and A. R. Vyas. 2016. Sulforaphane inhibits c-Myc-mediated prostate cancer stem-like traits. Journal of Cellular Biochemistry 117 (11):2482–2495. doi: 10.1002/jcb.25541.
  • Najafi, M., B. Farhood, and K. Mortezaee. 2019. Cancer stem cells (CSCs) in cancer progression and therapy. Journal of Cellular Physiology 234 (6):8381–8395. doi: 10.1002/jcp.27740.
  • Okonkwo, A., J. Mitra, G. S. Johnson, L. Li, W. M. Dashwood, M. L. Hegde, C. Yue, R. H. Dashwood, and P. Rajendran. 2018. Heterocyclic analogs of sulforaphane trigger DNA damage and impede DNA repair in colon cancer cells: Interplay of HATs and HDACs. Molecular Nutrition & Food Research 62 (18):e1800228. doi: 10.1002/mnfr.201800228.
  • Patrick, W. d S. D. S., Rita, A. T. M. Rone, A. D. G. Diego, L. R. Katiuska, T. Marco, M. Alexandre. and F. A. 2020. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food & Chemical Toxicology 136:111047. doi: 10.1016/j.fct.2019.111047.
  • Platz, S., A. Piberger, J. Budnowski, C. Herz, M. Schreiner, M. Blaut, A. Hartwig, E. Lamy, L. Hanske, and S. Rohn. 2015. Bioavailability and biotransformation of sulforaphane and erucin metabolites in different biological matrices determined by LC-MS-MS. Analytical & Bioanalytical Chemistry 407 (7):1819–1829. doi: 10.1007/s00216-015-8482-z.
  • Pore, S. K., E.-R. Hahm, S.-H. Kim, K. B. Singh, L. Nyiranshuti, J. D. Latoche, C. J. Anderson, J. Adamik, D. L. Galson, K. R. Weiss, et al. 2020. A novel sulforaphane-regulated gene network in suppression of breast cancer-induced osteolytic bone resorption. Molecular Cancer Therapeutics 19 (2):420–431. doi: 10.1158/1535-7163.MCT-19-0611.
  • Rausch, V., L. Liu, G. Kallifatidis, B. Baumann, J. Mattern, J. Gladkich, T. Wirth, P. Schemmer, M. W. Büchler, M. Zöller, et al. 2010. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Research 70 (12):5004–5013. doi: 10.1158/0008-5472.CAN-10-0066.
  • Rodova, M., J. Fu, D. N. Watkins, R. K. Srivastava, and S. Shankar. 2012. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One 7 (9):e46083. doi: 10.1371/journal.pone.0046083.
  • Royston, K. J., B. Paul, S. Nozell, R. Rajbhandari, and T. O. Tollefsbol. 2018. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Experimental Cell Research 368 (1):67–74. doi: 10.1016/j.yexcr.2018.04.015.
  • Russo, M., C. Spagnuolo, G. L. Russo, K. Skalicka-Woźniak, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and S. M. Nabavi. 2018. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition 58 (8):1391–1405. doi: 10.1080/10408398.2016.1259983.
  • Singh, K., S. L. Connors, E. A. Macklin, K. D. Smith, J. W. Fahey, P. Talalay, and A. W. Zimmerman. 2014. Sulforaphane treatment of autism spectrum disorder (ASD). Proceedings of the National Academy of Sciences of Sciences 111 (43):15550–15555. doi: 10.1073/pnas.1416940111.
  • Singh, K. B., E.-R. Hahm, J. J. Alumkal, L. M. Foley, T. K. Hitchens, S. S. Shiva, R. A. Parikh, B. L. Jacobs, and S. V. Singh. 2019. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. Carcinogenesis 40 (12):1545–1556. doi: 10.1093/carcin/bgz155.
  • Singh, K. B., S.-H. Kim, E.-R. Hahm, S. K. Pore, B. L. Jacobs, and S. V. Singh. 2018. Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism. Carcinogenesis 39 (6):826–837. doi: 10.1093/carcin/bgy051.
  • Tafakh, M. S., M. Saidijam, T. Ranjbarnejad, S. Malih, S. Mirzamohammadi, and R. Najafi. 2019. Sulforaphane, a chemopreventive compound, inhibits cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression in human HT-29 colon cancer cells. Cells, Tissues, Organs 206 (1-2):46–53. doi: 10.1159/000490394.
  • Thomas-Ahner, J. M., S. J. Schwartz, S. K. Clinton, A. Mortazavi, B. Abbaoui, K. M. Riedl, and R. A. Ralston. 2012. Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: Characterization, metabolism, and interconversion. Molecular Nutrition & Food Research 56 (11):1675–1687. doi: 10.1002/mnfr.201200276.
  • Tsai, J.-Y., S.-H. Tsai, and C.-C. Wu. 2019. The chemopreventive isothiocyanate sulforaphane reduces anoikis resistance and anchorage-independent growth in non-small cell human lung cancer cells. Toxicology and Applied Pharmacology 362:116–124. doi: 10.1016/j.taap.2018.10.020.
  • Wang, D-x, Y-j Zou, X-b Zhuang, S-x Chen, Y. Lin, W-l Li, J-j Lin, and Z-q Lin. 2017. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacologica Sinica 38 (2):241–251. doi: 10.1038/aps.2016.122.
  • Wang, F., W. Wang, J. Li, J. Zhang, X. Wang, and M. Wang. 2018. Sulforaphane reverses gefitinib tolerance in human lung cancer cells via modulation of sonic hedgehog signaling. Oncology Letters 15 (1):109–114. doi: 10.3892/ol.2017.7293.
  • Wang, T.-H., C.-C. Chen, K.-Y. Huang, Y.-M. Shih, and C.-Y. Chen. 2019. High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells. Phytomedicine 64:152926. doi: 10.1016/j.phymed.2019.152926.
  • Wang, X., Y. Li, Y. Dai, Q. Liu, S. Ning, J. Liu, Z. Shen, D. Zhu, F. Jiang, J. Zhang, et al. 2016. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Scientific Reports 6:36796. doi: 10.1038/srep36796.
  • Xia, Y., T. Kang, Y. Jung, C. Zhang, and S. Lian. 2019. Sulforaphane inhibits nonmuscle invasive bladder cancer cells proliferation through suppression of HIF-1α-mediated glycolysis in hypoxia. Journal of Agricultural and Food Chemistry 67 (28):7844–7854. doi: 10.1021/acs.jafc.9b03027.
  • Xie, C., J. Zhu, Y. Jiang, J. Chen, X. Wang, S. Geng, J. Wu, C. Zhong, X. Li, and Z. Meng. 2019. Sulforaphane inhibits the acquisition of tobacco smoke-induced lung cancer stem cell-like properties via the IL-6/ΔNp63α/Notch Axis. Theranostics 9 (16):4827–4840. doi: 10.7150/thno.33812.
  • Yagishita, Y.,. J. W. Fahey, A. T. Dinkova-Kostova, and T. W. Kensler. 2019. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 24 (19):3593. doi: 10.3390/molecules24193593.
  • Yanaka, A., J. W. Fahey, A. Fukumoto, M. Nakayama, S. Inoue, S. H. Zhang, M. Tauchi, H. Suzuki, I. Hyodo, and M. Yamamoto. 2009. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in helicobacter pylori-infected mice and humans. Cancer Prevention Research 2 (4):353–360. doi: 10.1158/1940-6207.CAPR-08-0192.
  • Yang, F., F. Wang, Y. Liu, S. Wang, X. Li, Y. Huang, Y. Xia, and C. Cao. 2018. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sciences 213:149–157. doi: 10.1016/j.lfs.2018.10.034.
  • Yasuda, S., M. Horinaka, and T. Sakai. 2019. Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFα pathway in human colon cancer cells. Oncology Letters 18 (4):4253–4261. doi: 10.3892/ol.2019.10739.
  • Yin, L., X. Xiao, C. Georgikou, Y. Luo, L. Liu, J. Gladkich, W. Gross, and I. Herr. 2019. Sulforaphane induces miR135b-5p and its target gene, RASAL2, thereby inhibiting the progression of pancreatic cancer. Molecular Therapy Oncolytics 14:74–81. doi: 10.1016/j.omto.2019.03.011.
  • Zhang, Y. 2001. Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates. Carcinogenesis 22 (3):425–431. doi: 10.1093/carcin/22.3.425.
  • Zhang, Y. S., R. H. Kolm, B. Mannervik, and P. Talalay. 1995. Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochemical and Biophysical Research Communications 206 (2):748–755. doi: 10.1006/bbrc.1995.1106.
  • Zhang, Y. S., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proceedings of the National Academy of Sciences of the United States of America 89 (6):2399–2403. doi: 10.1073/pnas.89.6.2399.
  • Zhang, Z., M. Garzotto, E. W. Davis, M. Mori, W. A. Stoller, P. E. Farris, C. P. Wong, L. M. Beaver, G. V. Thomas, D. E. Williams, et al. 2020. Sulforaphane bioavailability and chemopreventive activity in men presenting for biopsy of the prostate gland: A randomized controlled trial. Nutrition and Cancer 72 (1):74–87. doi: 10.1080/01635581.2019.1619783.
  • Zheng, Z., K. Lin, Y. Hu, Y. Zhou, X. Ding, Y. Wang, and W. Wu. 2019. Sulforaphane metabolites inhibit migration and invasion via microtubule-mediated Claudins dysfunction or inhibition of autolysosome formation in human non-small cell lung cancer cells. Cell Death & Disease 10 (4):259. doi: 10.1038/s41419-019-1489-1.
  • Zhu, J., S. Wang, Y. Chen, X. Li, Y. Jiang, X. Yang, Y. Li, X. Wang, Y. Meng, M. Zhu, et al. 2017. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. Journal of Nutritional Biochemistry 44:80–91. doi: 10.1016/j.jnutbio.2017.02.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.