1,464
Views
8
CrossRef citations to date
0
Altmetric
Reviews

A review of bacterial biofilm control by physical strategies

, , &

References

  • Abebe, G. M. 2020. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. International Journal of Microbiology 2020:1705814 doi:10.1155/2020/1705814. PMC: 32908520
  • Adhikari, A.,. R. M. Syamaladevi, K. Killinger, and S. S. Sablani. 2015. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology 210:136–42. doi: 10.1016/j.ijfoodmicro.2015.06.018.
  • Alkawareek, M. Y., Q. T. Algwari, S. P. Gorman, W. G. Graham, D. O’Connell, and B. F. Gilmore. 2012. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunology & Medical Microbiology 65 (2):381–84. doi: 10.1111/j.1574-695X.2012.00942.x.
  • Alvarez-Ordóñez, A., L. M. Coughlan, R. Briandet, and P. D. Cotter. 2019. Biofilms in food processing environments: Challenges and opportunities. Annual Review of Food Science and Technology 10:173–95. doi: 10.1146/annurev-food-032818-121805.
  • Ananta, E., D. Voigt, M. Zenker, V. Heinz, and D. Knorr. 2005. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. Journal of Applied Microbiology 99 (2):271–78. doi: 10.1111/j.1365-2672.2005.02619.x.
  • Bandara, H., D. Nguyen, S. Mogarala, M. Osinski, and H. D. C. Smyth. 2015. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling 31 (5):443–57. doi: 10.1080/08927014.2015.1055326.
  • Bang, H. J., S. Y. Park, S. E. Kim, M. M. F. Rahaman, and S. D. Ha. 2017. Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT 84:91–98. doi: 10.1016/j.lwt.2017.05.037.
  • Barki, K. G., A. Das, S. Dixith, P. Das Ghatak, S. Mathew-Steiner, E. Schwab, S. Khanna, D. J. Wozniak, S. Roy, and C. K. Sen. 2019. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing. Annals of Surgery 269 (4):756–66. doi: 10.1097/SLA.0000000000002504.
  • Baumann, A. R., S. E. Martin, and H. Feng. 2009. Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. Journal of Food Protection 72 (6):1306–9. doi: 10.4315/0362-028X-72.6.1306.
  • Benson, D. E., C. B. Grissom, G. L. Burns, and S. F. Mohammad. 1994. Magnetic field enhancement of antibiotic activity in biofilm forming Pseudomonas aeruginosa. ASAIO Journal (American Society for Artificial Internal Organs: 1992) 40 (3):M371–M376. doi: 10.1097/00002480-199407000-00025.
  • Berthelot, R., and S. Neethirajan. 2017. Harnessing electrical energy for anti-biofilm therapies: Effects of current on cell morphology and motility. Journal of Experimental Nanoscience. 12 (1):197–207. doi: 10.1080/17458080.2017.1296977.
  • Bigelow, T. A., T. Northagen, T. M. Hill, and F. C. Sailer. 2008. Ultrasound histotripsy and the destruction of Escherichia coli biofilms. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 4467–70.
  • Blenkinsopp, S. A., A. E. Khoury, and J. W. Costerton. 1992. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 58 (11):3770–73. doi: 10.1128/AEM.58.11.3770-3773.1992.
  • Breyers, J. D., and J. P. Ratner. 2004. Bioinspired implant materials befuddle bacteria. ASM News 70:232–37.
  • Bridier, A., P. Sanchez-Vizuete, M. Guilbaud, J. C. Piard, M. Naitali, and R. Briandet. 2015. Biofilm-associated persistence of food-borne pathogens. Food Microbiology 45 (Pt B):167–78. doi: 10.1016/j.fm.2014.04.015.
  • Cacciatore, F. A., A. Brandelli, and P. d S Malheiros. 2020. Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Critical Reviews in Food Science and Nutrition :1–12. doi:10.1080/10408398.2020.1806782. PMC: 32811167
  • Cai, Y., J. Wang, X. Liu, R. Wang, and L. Xia. 2017. A review of the combination therapy of low frequency ultrasound with antibiotics. BioMed Research International 2017:2317846. doi: 10.1155/2017/2317846.
  • Caubet, R., F. Pedarros-Caubet, M. Chu, E. Freye, M. de Belem Rodrigues, J. M. Moreau, and W. J. Ellison. 2004. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrobial Agents and Chemotherapy 48 (12):4662–64. doi: 10.1128/AAC.48.12.4662-4664.2004.
  • Chemat, F., N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Cheng, H., X. Liu, X. Lu, and D. Liu. 2016. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple. Physics of Plasmas 23 (7):073517. doi: 10.1063/1.4955323.
  • Chmielewski, R. A. N., and J. F. Frank. 2003. Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety 2 (1):22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x.
  • Code of Federal Regulations (CFR). 2016. Title 21: Food & drugs. Part 179-Irradiation in the production, processing and handling of food. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=179.26.
  • Costerton, J. W., B. Ellis, K. Lam, F. Johnson, and A. E. Khoury. 1994. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrobial Agents and Chemotherapy 38 (12):2803–9. doi: 10.1128/AAC.38.12.2803.
  • Coughlan, L. M., P. D. Cotter, C. Hill, and A. Alvarez-Ordóñez. 2016. New weapons to fight old enemies: Novel strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology 7:1641. doi: 10.3389/fmicb.2016.01641.
  • Del Pozo, J. L., M. S. Rouse, J. N. Mandrekar, M. F. Sampedro, J. M. Steckelberg, and R. Patel. 2009. Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy 53 (1):35–40. doi: 10.1128/AAC.00237-08.
  • Del Pozo, J. L., M. S. Rouse, J. N. Mandrekar, J. M. Steckelberg, and R. Patel. 2009. The electricidal effect: Reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrobial Agents and Chemotherapy 53 (1):41–45. doi: 10.1128/AAC.00680-08.
  • Del Pozo, J., M. Rouse, and R. Patel. 2008. Bioelectric effect and bacterial biofilms. A systematic review. The International Journal of Artificial Organs 31 (9):786–95. doi: 10.1177/039139880803100906.
  • Dezest, M., A.-L. Bulteau, D. Quinton, L. Chavatte, M. Le Bechec, J. P. Cambus, S. Arbault, A. Nègre-Salvayre, F. Clément, and S. Cousty. 2017. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLos One 12 (3):e0173618. doi: 10.1371/journal.pone.0173618.
  • Diehl, J. 2002. Food irradiation-past, present and future. Radiation Physics and Chemistry 63 (3-6):211–15. doi: 10.1016/S0969-806X(01)00622-3.
  • do Rosário, D. K. A., Y. da Silva Mutz, J. M. C. Peixoto, S. B. S. Oliveira, R. V. de Carvalho, J. C. S. Carneiro, J. F. B. de São José, and P. C. Bernardes. 2017. Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries. International Journal of Food Microbiology 241:23–29. doi: 10.1016/j.ijfoodmicro.2016.10.009.
  • Dreeszen, P. 2003. The key to understanding and controlling bacterial growth in automated drinking water systems. Waterford, WI: Edstrom Industries.
  • Duan, J., X. Lu, and G. He. 2017. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas 24 (7):073506. doi: 10.1063/1.4990554.
  • Duckhouse, H., T. J. Mason, S. S. Phull, and J. P. Lorimer. 2004. The effect of sonication on microbial disinfection using hypochlorite. Ultrasonics Sonochemistry 11 (3-4):173–76. doi: 10.1016/j.ultsonch.2004.01.031.
  • Ermolaeva, S. A., A. F. Varfolomeev, M. Y. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, I. I. Selezneva, et al. 2011. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Journal of Medical Microbiology 60 (Pt 1):75–83. doi: 10.1099/jmm.0.020263-0.
  • Erriu, M., C. Blus, S. Szmukler-Moncler, S. Buogo, R. Levi, G. Barbato, D. Madonnaripa, G. Denotti, V. Piras, and G. Orrù. 2014. Microbial biofilm modulation by ultrasound: Current concepts and controversies. Ultrasonics Sonochemistry 21 (1):15–22. doi: 10.1016/j.ultsonch.2013.05.011.
  • Fink, R., M. Oder, E. Stražar, and S. Filip. 2017. Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control 80:267–72. doi: 10.1016/j.foodcont.2017.05.009.
  • Flemming, H. C. 2016. EPS-then and now. Microorganisms 4 (4):41. doi: 10.3390/microorganisms4040041.
  • Flemming, H. C., J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, and S. Kjelleberg. 2016. Biofilms: An emergent form of bacterial life. Nature Reviews. Microbiology 14 (9):563–75. doi: 10.1038/nrmicro.2016.94.
  • Flynn, P. B., A. Busetti, E. Wielogorska, O. P. Chevallier, C. T. Elliott, G. Laverty, S. P. Gorman, W. G. Graham, and B. F. Gilmore. 2016. Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Scientific Reports 6:26320. doi: 10.1038/srep26320.
  • Froughreyhani, M., A. Salemmilani, A. Mozafari, and M. Hosein-Soroush. 2018. Effect of electric currents on antibacterial effect of chlorhexidine against Enterococcus faecalis biofilm: An in vitro study. Journal of Clinical and Experimental Dentistry 10 (12):e1223–e1229. doi: 10.4317/jced.55369.
  • Fuchs, F. 2015. Ultrasonic cleaning and washing of surfaces. In Sensing for power ultrasonics: Applications of high-intensity ultrasound, eds. J. A. Gallego-Juarez and K. F. Graff, 577–609. UK: Proceeding of Elsevier Ltd.
  • Gabriel, A. A., M. L. P. Ballesteros, L. M. D. Rosario, R. B. Tumlos, and H. J. Ramos. 2018. Elimination of Salmonella enterica on common stainless steel food contact surfaces using UV-C and atmospheric pressure plasma jet. Food Control 86:90–100. doi: 10.1016/j.foodcont.2017.11.011.
  • Galié, S., C. García-Gutiérrez, E. M. Miguélez, C. J. Villar, and F. Lombó. 2018. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology 9:898. doi: 10.3389/fmicb.2018.00898.
  • Gilmore, B. F., P. B. Flynn, S. O’Brien, N. Hickok, T. Freeman, and P. Bourke. 2018. Cold plasmas for biofilm control: Opportunities and challenges. Trends in Biotechnology 36 (6):627–38. doi: 10.1016/j.tibtech.2018.03.007.
  • Govaert, M., C. Smet, M. Baka, B. Ecimovic, J. L. Walsh, and J. Van Lmpe. 2018. Resistance of L. monocytogenes and S. typhimurium towards cold atmospheric plasma as function of biofilm age. Applied Science-Basel 8 (12):2702.
  • Graves, D. B. 2012. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics 45 (26):263001. doi: 10.1088/0022-3727/45/26/263001.
  • Gu, H., S. W. Lee, J. Carnicelli, T. Zhang, and D. C. Ren. 2020. Magnetically driven active topography for long-term biofilm control. Nature Communications. 11 (1):1–11.
  • Gupta, T. T., and H. Ayan. 2019. Application of non-thermal plasma on biofilm: A review. Applied Science-Basel 9 (17):3548.
  • Gupta, T. T., S. B. Karki, R. Fournier, and H. Ayan. 2018. Mathematical modelling of the effects of plasma treatment on the diffusivity of biofilm. Applied Sciences 8 (10):1729. doi: 10.3390/app8101729.
  • Gupta, T. T., Karki, S. B., Matson, J. S., Gehling, D. J. and Ayan, H. 2017. Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. BioMed Research International, 2017:6085741. doi: 10.1155/2017/6085741.
  • Halford, A., C. D. Ohl, A. Azarpazhooh, B. Basrani, S. Friedman, and A. Kishen. 2012. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro. Journal of Endodontics 38 (11):1530–34. doi: 10.1016/j.joen.2012.07.007.
  • Han, Z. L., K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi. 2015. Terahertz devices with reconfigurable metamaterials by surface micromachining technique. IEEJ Transactions on Sensors and Micromachines 135 (11):450–53. doi: 10.1541/ieejsmas.135.450.
  • Helgadóttir, S., S. Pandit, V. R. S. S. Mokkapati, F. Westerlund, P. Apell, and I. Mijakovic. 2017. Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma. Frontiers in Cellular and Infection Microbiology 7:43. doi: 10.3389/fcimb.2017.00043.
  • Hilgren, J., K. M. J. Swanson, F. Diez-Gonzalez, and B. Cords. 2007. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Applied and Environmental Microbiology 73 (20):6370–77. doi: 10.1128/AEM.00974-07.
  • Hunt, S. M., E. M. Werner, B. Huang, M. A. Hamilton, and P. S. Stewart. 2004. Hypothesis for the role of nutrient starvation in biofilm detachment. Applied and Environmental Microbiology 70 (12):7418–25. doi: 10.1128/AEM.70.12.7418-7425.2004.
  • Iniguez-Moreno, M., M. Gutiérrez-Lomelí, P. J. Guerrero-Medina, and M. G. Avila-Novoa. 2018. Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. Brazilian Journal of Microbiology 49 (2):310–19. doi: 10.1016/j.bjm.2017.08.002.
  • Izadifar, Z., P. Babyn, and D. Chapman. 2019. Ultrasound cavitation/microbubble detection and medical applications. Journal of Medical and Biological Engineering 39 (3):259–76. doi: 10.1007/s40846-018-0391-0.
  • Jahid, I. K., N. R. Han, S. Srey, and S.-D. Ha. 2014. Competitive interactions inside mixed-culture biofilms of Salmonella typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation. Food Research International 55:445–54. doi: 10.1016/j.foodres.2013.11.042.
  • José, J. F. B. S., and M. C. D. Vanetti. 2012. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica typhimurium on cherry tomatoes. Food Control 24:95–99.
  • Jucker, B. A., H. Harms, and A. Zehnder. 1996. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. Journal of Bacteriology 178 (18):5472–79. doi: 10.1128/jb.178.18.5472-5479.1996.
  • Jung, S. J., S. Y. Park, and S. D. Ha. 2018. Synergistic effect of X-ray irradiation and sodium hypochlorite against Salmonella enterica serovar typhimurium biofilms on quail eggshells. Food Research International (Ottawa, Ont.) 107:496–502. doi: 10.1016/j.foodres.2018.02.063.
  • Junka, A. F., R. Rakoczy, P. Szymczyk, M. Bartoszewicz, P. P. Sedghizadeh, and K. Fijalkowski. 2018. Application of rotating magnetic fields increase the activity of antimicrobials against wound biofilm pathogens. Scientific Reports 8 (167):1–12.
  • Karygianni, L., Z. Ren, H. Koo, and T. Thurnheer. 2020. Biofilm matrixome: Extracellular components in structured microbial communities. Trends in Microbiology 28 (8):668–81. doi: 10.1016/j.tim.2020.03.016.
  • Khan, S. I., G. Blumrosen, D. Vecchio, A. Golberg, M. C. McCormack, M. L. Yarmush, M. R. Hamblin, and W. G. Austen. 2016. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields. Biotechnology and Bioengineering 113 (3):643–50. doi: 10.1002/bit.25818.
  • Khan, M. S. I., E. J. Lee, and Y. J. Kim. 2016. A submerged dielectric barrier discharge plasma inactivation mechanism of biofilms produced by Escherichia coli O157: H7, Cronobacter sakazakii, and Staphylococcus aureus. Scientific Reports 6 (37072):1–11.
  • Khoury, A. E., K. Lam, B. Ellis, and J. W. Costerton. 1992. Prevention and control of bacterial infections associated with medical devices. ASAIO Journal (American Society for Artificial Internal Organs : 1992) 38 (3):M174–M178. doi: 10.1097/00002480-199207000-00013.
  • Kim, M., S. Y. Park, and S. D. Ha. 2016. Synergistic effect of a combination of ultraviolet–C irradiation and sodium hypochlorite to reduce Listeria monocytogenes biofilms on stainless steel and eggshell surfaces. Food Control 70:103–9. doi: 10.1016/j.foodcont.2016.05.003.
  • Kim, Y. W., S. Subramanian, K. Gerasopoulos, H. Ben-Yoav, H. C. Wu, D. Quan, K. Carter, M. T. Meyer, W. E. Bentley, and R. Ghodssi. 2015. Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. NPJ Biofilms and Microbiomes 1 (15016):1–8.
  • Kirzhner, F., Y. Zimmels, A. Malkovskaja, and J. Starosvetsky. 2009. Removal of microbial biofilm on water hyacinth plants roots by ultrasonic treatment. Ultrasonics 49 (2):153–58. doi: 10.1016/j.ultras.2008.09.004.
  • Kocot, A. M., and M. A. Olszewska. 2017. Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT 84:47–57. doi: 10.1016/j.lwt.2017.05.042.
  • Koibuchi, H., Y. Fujii, Y. Hirai, T. Mochizuki, K. Masuda, K. Kotani, T. Yamada, and N. Taniguchi. 2018. Effect of Ultrasonic Irradiation on Bacterial Biofilms. Journal of Medical Ultrasonics 45 (1):25–29. doi: 10.1007/s10396-017-0801-x.
  • Korber, D., and J. R. Lawrence. 2004. Biofilm formation. In Sensing for encyclopedia of meat sciences, ed. W. K. Jensen, 59–68. London: Proceedings of the Elsevier.
  • Krolasik, J., Z. Zakowska, M. Krepska, and L. Klimek. 2010. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent. Polish Journal of Microbiology 59 (4):281–87.
  • Lee, M. H., B. J. Park, S. C. Jin, D. Kim, I. Han, J. Kim, S. O. Hyun, K. H. Chung, and J. C. Park. 2009. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure. New Journal of Physics 11 (11):115022.
  • Liao, X. Y., D. H. Liu, Q. S. Xiang, J. Ahn, S. G. Chen, X. Q. Ye, and T. Ding. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 75:83–91. doi: 10.1016/j.foodcont.2016.12.021.
  • Limoli, D. H., C. J. Jones, and D. J. Wozniak. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbial Spectrum 3 (3):MB-0011-2014.
  • Ling, N., S. Forsythe, Q. P. Wu, Y. Ding, J. M. Zhang, and H. Y. Zeng. 2020. Insights into Cronobacter sakazakii biofilm formation and control strategies in the food industry. Engineering 6 (4):393–405. doi: 10.1016/j.eng.2020.02.007.
  • Li, J., R. Nickel, J. Wu, F. Lin, J. van Lierop, and S. Liu. 2019. A new tool to attack biofilms: Driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale 11 (14):6905–15. doi: 10.1039/c8nr09802f.
  • Li, Y. L., J. Pan, D. Wu, Y. Tian, J. Zhang, and J. Fang. 2019. Regulation of Enterococcus faecalis biofilm formation and quorum sensing related virulence factors with ultra-low dose reactive species produced by plasma activated water. Plasma Chemistry and Plasma Processing 39 (1):35–49. doi: 10.1007/s11090-018-9930-2.
  • Liu, D. X., Z. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, and M. G. Kong. 2016. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Scientific Reports 6:23737. doi: 10.1038/srep23737.
  • Liu, N., T. Skauge, D. Landa-Marbán, B. Hovland, B. Thorbjørnsen, F. A. Radu, B. F. Vik, T. Baumann, and G. Bødtker. 2019. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels. Journal of Industrial Microbiology and Biotechnology 46 (6):855–68. doi: 10.1007/s10295-019-02161-x.
  • Liu, X., J. Wang, C.-X. Weng, R. Wang, and Y. Cai. 2020. Low-Frequency Ultrasound Enhances Bactericidal Activity of Antimicrobial Agents against Klebsiella pneumoniae Biofilm. BioMed Research International 2020:5916260 doi:10.1155/2020/5916260. PMC: 31998794
  • Liu, X., H. Yin, C.-X. Weng, and Y. Cai. 2016. Low-frequency ultrasound enhances antimicrobial activity of colistin-vancomycin combination against pan-resistant biofilm of Acinetobacter baumannii. Ultrasound in Medicine & Biology 42 (8):1968–75. doi: 10.1016/j.ultrasmedbio.2016.03.016.
  • Lopez-Malo, A., and E. Palou. 2005. Ultraviolet light and food preservation. In Sensing for novel food processing technologies, eds. G. V. Barbosa-Canovas, M. S. Tapia, and M. P. Cano, 405–22. USA: Proceeding of CRC Press.
  • Ma, D., A. M. Green, G. G. Willsey, J. S. Marshall, M. J. Wargo, and J. R. Wu. 2015. Effects of acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm mitigation effectiveness of drug-loaded liposomes. The Journal of the Acoustical Society of America 138 (2):1043–51. doi: 10.1121/1.4927413.
  • Mahmoud, B. S. M., S. Chang, Y. Wu, R. Nannapaneni, C. S. Sharma, and R. Coker. 2015. Effect of X-ray treatments on Salmonella enterica and spoilage bacteria on skin-on chicken breast fillets and shell eggs. Food Control 57:110–14. doi: 10.1016/j.foodcont.2015.03.040.
  • Mahmoud, B. S. M., R. Nannapaneni, S. Chang, and R. Coker. 2016. Effect of X-ray treatments on Escherichia coli O157: H7, Listeria monocytogenes, Shigella flexneri, Salmonella enterica and inherent microbiota on whole mangoes. Letters in Applied Microbiology 62 (2):138–44. doi: 10.1111/lam.12518.
  • Marques, S. C., J. D. G. O. S. Rezende, L. A. D. F. Alves, B. C. Silva, E. Alves, L. R. D. Abreu, and R. H. Piccoli. 2007. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Brazilian Journal of Microbiology 38 (3):538–43. doi: 10.1590/S1517-83822007000300029.
  • Masák, J., A. Čejková, O. Schreiberová, and T. Rezanka. 2014. Pseudomonas biofilms: Possibilities of their control. FEMS Microbiology Ecology 89 (1):1–14. doi: 10.1111/1574-6941.12344.
  • Ma, D., and J. R. Wu. 2016. Biofilm mitigation by drug (gentamicin)-loaded liposomes promoted by pulsed ultrasound. The Journal of the Acoustical Society of America 140 (6):EL534–EL538. doi: 10.1121/1.4972336.
  • Mazza, M. G. 2016. The physics of biofilms-an introduction. Journal of Physics D: Applied Physics 49 (20):203001. doi: 10.1088/0022-3727/49/20/203001.
  • McLeod, B. R., and E. L. Sandvik. 2010. A biofilm growth protocol and the design of a magnetic field exposure setup to be used in the study of magnetic fields as a means of controlling bacterial biofilms. Bioelectromagnetics 31 (1):56–63. doi: 10.1002/bem.20529.
  • Múgica-Vidal, R., E. Sainz-García, A. Álvarez-Ordóñez, M. Prieto, M. González-Raurich, M. López, M. López, B. Rojo-Bezares, Y. Sáenz, and F. Alba-Elías. 2019. Production of antibacterial coatings through atmospheric pressure plasma: A promising alternative for combatting biofilms in the food industry. Food and Bioprocess Technology 12 (8):1251–63. doi: 10.1007/s11947-019-02293-z.
  • Muhammad, M. H., A. L. Idris, X. Fan, Y. C. Guo, Y. Y. Yu, X. Jin, J. Z. Qiu, X. Guan, and T. P. Huang. 2020. Beyond risk: Bacterial biofilms and their regulating approaches. Frontiers in Microbiology 11:928. doi: 10.3389/fmicb.2020.00928.
  • Na-Young, L., K. Seok-Won, and H. Sang-Do. 2014. Synergistic effects of ultrasound and sodium hypochlorite (NaOCl) on reducing Listeria monocytogenes ATCC19118 in broth, stainless steel, and iceberg lettuce. Foodborne Pathogens and Disease 11:581–87.
  • Niemira, B. A. 2007. Irradiation sensitivity of planktonic and biofilm-associated Escherichia coli O157: H7 isolates is influenced by culture conditions. Applied and Environmental Microbiology 73 (10):3239–44. doi: 10.1128/AEM.02764-06.
  • Niemira, B. A., G. Boyd, and J. Sites. 2014. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. Journal of Food Science 79 (5):M917–M922. doi: 10.1111/1750-3841.12379.
  • Niemira, B. A. 2003. Irradiation of fresh and minimally processed fruits, vegetables and juices. In Sensing for microbial safety of minimally processed foods, ed. J. S. Novak, G. M. Sapers, and V. K. Juneja, 279. Florida, USA: Proceedings of CRC Press LLC.
  • Niemira, B. A., and E. B. Solomon. 2005. Sensitivity of planktonic and biofilm-associated Salmonella spp. to ionizing radiation. Applied and Environmental Microbiology 71 (5):2732–36. doi: 10.1128/AEM.71.5.2732-2736.2005.
  • Nowak, T., C. Cairós, E. Batyrshin, and R. Mettin. 2015. Acoustic streaming and bubble translation at a cavitating ultrasonic horn. In 20th International Symposium on Nonlinear Acoustics Including the 2nd International Sonic Boom Forum, Écully, France, 1685 (1), 020002.
  • Oehmigen, K., J. Winter, M. Hahnel, C. Wilke, R. Brandenburg, K. D. Weltmann, and T. von-Woedtke. 2011. Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Processes and Polymers 8 (10):904–13. doi: 10.1002/ppap.201000099.
  • Oulahal-Lagsir, N., A. Martial-Gros, E. Boistier, L. J. Blum, and M. Bonneau. 2000. The development of an ultrasonic apparatus for the non-invasive and repeatable removal of fouling in food processing equipment. Letters in Applied Microbiology 30 (1):47–52. doi: 10.1046/j.1472-765x.2000.00653.x.
  • Oulahal, N., A. Martial-Gros, M. Bonneau, and L. Blum. 2003. “Escherichia coli-milk” biofilm removal from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofueling 19 (3):159–68.
  • Oulahal, N., A. Martial-Gros, M. Bonneau, and L. Blum. 2004. Combined effect of chelating agents and ultrasound on biofilm removal from stainless steel surfaces. Application to “Escherichia coli milk” and “Staphylococcus aureus milk” biofilms. Biofilms 1 (1):65–73. doi: 10.1017/S1479050504001140.
  • Oulahal, N., A. Martial-Gros, M. Bonneau, and L. Blum. 2007. Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innovative Food Science & Emerging Technologies 8 (2):192–96. doi: 10.1016/j.ifset.2006.10.001.
  • Patange, A., D. Boehm, D. Ziuzina, P. J. Cullen, B. Gilmore, and P. Bourke. 2019. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology. 293:137–45. doi: 10.1016/j.ijfoodmicro.2019.01.005.
  • Perez-Roa, R. E., D. T. Tompkins, M. Paulose, C. A. Grimes, M. A. Anderson, and D. R. Noguera. 2006. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling 22 (5-6):383–90. doi: 10.1080/08927010601053541.
  • Peterson, R. V., and W. G. Pitt. 2000. The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids and Surfaces B: Biointerfaces 17 (4):219–27. doi: 10.1016/S0927-7765(99)00117-4.
  • Pickering, S. A., R. Bayston, and B. Scammell. 2003. Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. The Journal of Bone Joint Surgery. British 85 (4):588–93.
  • Poor, A. E., U. K. Ercan, A. Yost, A. D. Brooks, and S. G. Joshi. 2014. Control of multi-drug-resistant pathogens with non-thermal-plasma-treated alginate wound dressing. Surgical Infections 15 (3):233–43. doi: 10.1089/sur.2013.050.
  • Poortinga, A. T., R. Bos, and H. J. Busscher. 2000. Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms. Biotechnology and Bioengineering 67 (1):117–20. doi: 10.1002/(SICI)1097-0290(20000105)67:1<117::AID-BIT14>3.0.CO;2-6.
  • Quan, K. C., Z. X. Zhang, H. Chen, X. X. Ren, Y. J. Ren, B. W. Peterson, H. C. van der Mei, and H. J. Busscher. 2019. Artificial channels in an infectious biofilm created by magnetic nanoparticles enhanced bacterial killing by antibiotics. Small 15 (39):1902313–19. doi: 10.1002/smll.201902313.
  • Rabin, N., Y. Zheng, C. Opoku-Temeng, Y. X. Du, E. Bonsu, and H. O. Sintim. 2015. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry 7 (4):493–512. doi: 10.4155/fmc.15.6.
  • Raouia, H., B. Hamida, A. Khadidja, L. Ahmed, and C. Abdelwaheb. 2020. Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa. Archives of Microbiology 202 (1):77–83. doi: 10.1007/s00203-019-01719-8.
  • Ravikumar, K., B. Basu, and A. K. Dubey. 2019. Analysis of electrical analogue of a biological cell and its response to external electric field. Regenerative Engineering and Translational Medicine 5 (1):10–21. doi: 10.1007/s40883-018-0073-z.
  • Ravindran, R., and A. K. Jaiswal. 2019. Wholesomeness and safety aspects of irradiated foods. Food Chemistry 285:363–68. doi: 10.1016/j.foodchem.2019.02.002.
  • Rediske, A. M., B. L. Roeder, J. L. Nelson, R. L. Robison, G. B. Schaalje, R. A. Robison, and W. G. Pitt. 2000. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrobial Agents and Chemotherapy 44 (3):771–72. doi: 10.1128/aac.44.3.771-772.2000.
  • Reuter, F., S. Lauterborn, R. Mettin, and W. Lauterborn. 2017. Membrane cleaning with ultrasonically driven bubbles. Ultrasonics Sonochemistry 37:542–60. doi: 10.1016/j.ultsonch.2016.12.012.
  • Rijnaarts, H. H., W. Norde, E. J. Bouwer, J. Lyklema, and A. J. B. Zehnder. 1993. Bacterial adhesion under static and dynamic conditions. Applied and Environmental Microbiology 59 (10):3255–65. doi: 10.1128/AEM.59.10.3255-3265.1993.
  • Ruiz-Ruigomez, M., J. Badiola, S. M. Schmidt-Malan, K. Greenwood-Quaintance, M. J. Karau, C. L. Brinkman, J. N. Mandrekar, and R. Patel. 2016. Direct electrical current reduces bacterial and yeast biofilm formation. International Journal of Bacteriology 2016:1–6. doi: 10.1155/2016/9727810.
  • Sabelnikov, A. G., E. S. Cymbalyuk, G. Gongadze, and V. L. Borovyagin. 1991. Escherichia coli membranes during electrotransformation: An electron microscopy study. Biochimica et Biophysica Acta (BBA) - Biomembranes 1066 (1):21–28. doi: 10.1016/0005-2736(91)90245-4.
  • Sadekuzzaman, M., S. Yang, M. F. R. Mizan, and S. D. Ha. 2015. Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety 14 (4):491–509. doi: 10.1111/1541-4337.12144.
  • Sandvik, E. L., B. R. McLeod, A. E. Parker, and P. S. Stewart. 2013. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS One 8 (2):e55118. doi: 10.1371/journal.pone.0055118.
  • Satpathy, S.,. S. K. Sen, S. Pattanaik, and S. Raut. 2016. Review on bacterial biofilm: An universal cause of contamination. Biocatalysis and Agricultural Biotechnology 7:56–66. doi: 10.1016/j.bcab.2016.05.002.
  • Schmidt-Malan, S. M., M. J. Karau, J. Cede, K. E. Greenwood-Quaintance, C. L. Brinkman, J. N. Mandrekar, and R. Patela. 2015. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrobial Agents and Chemotherapy 59 (8):4610–15. doi: 10.1128/AAC.00483-15.
  • Seifert, T., S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, et al. 2016. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics 10 (7):483–88. doi: 10.1038/nphoton.2016.91.
  • Shao, L., Y. Dong, X. Chen, X. Xu, and H. Wang. 2020. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. Using combined ultrasound and disinfectants. Ultrasonics Sonochemistry 69:105269–76. doi: 10.1016/j.ultsonch.2020.105269.
  • Sharahi, J. Y., T. Azimi, A. Shariati, H. Safari, M. K. Tehrani, and A. Hashemi. 2019. Advanced strategies for combating bacterial biofilms. Journal of Cellular Physiology 234 (9):14689–708. doi: 10.1002/jcp.28225.
  • Sharma, D., L. Misba, and A. U. Khan. 2019. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control 8 (1):1–10.
  • Sommers, C. H. 2003. Irradiation of minimally processed meats. Microbial Safety of Minimally Processed Foods 301–18.
  • Srey, S., I. K. Jahid, and S. D. Ha. 2013. Biofilm formation in food industries: A food safety concern. Food Control 31 (2):572–85. doi: 10.1016/j.foodcont.2012.12.001.
  • Srey, S., S. Y. Park, I. K. Jahid, and S. D. Ha. 2014. Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage. Food Research International 62:484–91. doi: 10.1016/j.foodres.2014.03.067.
  • Stanley, K. D., D. A. Golden, R. C. Williams, and J. Weiss. 2004. Inactivation of Escherichia coli O157: H7 by high-intensity ultrasonication in the presence of salts. Foodborne Pathogens and Disease 1 (4):267–80. doi: 10.1089/fpd.2004.1.267.
  • Stewart, P. S., W. Wattanakaroon, L. Goodrum, S. M. Fortun, and B. R. McLeod. 1999. Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm. Antimicrobial Agents and Chemotherapy 43 (2):292–96. doi: 10.1128/AAC.43.2.292.
  • Taghizadeh, L., G. Brackman, A. Nikiforov, J. Van der Mullen, C. Leys, and T. Coenye. 2015. Inactivation of biofilms using a low power atmospheric pressure argon plasma jet; the role of entrained nitrogen. Plasma Processes and Polymers 12 (1):75–81. doi: 10.1002/ppap.201400074.
  • Tallawi, M., M. Opitz, and O. Lieleg. 2017. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomaterials Science 5 (5):887–900. doi: 10.1039/c6bm00832a.
  • Torlak, E., and D. Sert. 2013. Combined effect of benzalkonium chloride and ultrasound against Listeria monocytogenes biofilm on plastic surface. Letters in Applied Microbiology 57 (3):220–26. doi: 10.1111/lam.12100.
  • Tote, K., T. Horemans, D. V. Berghe, L. Maes, and P. Cos. 2010. Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology. 76 (10):3135–42.
  • Toyofuku, M., T. Inaba, T. Kiyokawa, N. Obana, Y. Yawata, and N. Nomura. 2015. Environmental factors that shape biofilm formation. Bioscience, Biotechnology and Biochemistry 80 (1):7–12. doi: 10.1080/09168451.2015.1058701.
  • Traba, C., and J. F. Liang. 2011. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases. Biofouling 27 (7):763–72. doi: 10.1080/08927014.2011.602188.
  • Van der Borden, A. J., H. C. Van der Mei, and H. J. Busscher. 2005. Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis. Biomaterials 26 (33):6731–35. doi: 10.1016/j.biomaterials.2004.04.052.
  • Van der Borden, A. J., H. C. Van der Mei, and H. J. Busscher. 2004. Electric-current-induced detachment of Staphylococcus epidermidis strains from surgical stainless steel. Journal of Biomedical Materials Research Part B 68 (2):160–64.
  • Van Der Borden, A. J., H. Van Der Werf, H. C. Van Der Mei, and H. J. Busscher. 2004. Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel. Applied and Environmental Microbiology 70 (11):6871–74. doi: 10.1128/AEM.70.11.6871-6874.2004.
  • Van Wijngaarden, L. 2016. Mechanics of collapsing cavitation bubbles. Ultrasonics Sonochemistry 29:524–27. doi: 10.1016/j.ultsonch.2015.04.006.
  • Vandervoort, K. G., and G. Brelles-Marino. 2014. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. PLoS One 9 (10):e108512. doi: 10.1371/journal.pone.0108512.
  • Verhaagen, B., and D. F. Rivas. 2016. Measuring cavitation and its cleaning effect. Ultrasonics Sonochemistry 29:619–28. doi: 10.1016/j.ultsonch.2015.03.009.
  • Voegele, P., J. Badiola, S. M. Schmidt-Malan, M. J. Karau, K. E. Greenwood-Quaintance, J. N. Mandrekar, and R. Patel. 2016. Antibiofilm activity of electrical current in a catheter model. Antimicrobial Agents and Chemotherapy 60 (3):1476–80. doi: 10.1128/AAC.01628-15.
  • Vyas, N., K. Manmi, Q. Wang, A. J. Jadhav, M. Barigou, R. L. Sammons, S. A. Kuehne, and A. D. Walmsley. 2019. Which parameters affect biofilm removal with acoustic cavitation? A review. Ultrasound in Medicine & Biology 45 (5):1044–55. doi: 10.1016/j.ultrasmedbio.2019.01.002.
  • Vyas, N., R. Sammons, O. Addison, H. Dehghani, and A. D. Walmsley. 2016. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Scientific Reports 6 (32694):1–10.
  • Wang, X., A. P. Deng, W. W. Cao, Q. Li, L. N. Wang, J. Zhou, B. C. Hu, and X. D. Xing. 2018. Synthesis of chitosan/poly (ethylene glycol)-modified magnetic nanoparticles for antibiotic delivery and their enhanced anti-biofilm activity in the presence of magnetic field. Journal of Materials Science 53 (9):6433–49. doi: 10.1007/s10853-018-1998-9.
  • Wang, H., and D. Ren. 2017. Controlling Streptococcus mutans and Staphylococcus aureus biofilms with direct current and chlorhexidine. AMB Express 7 (1):1–9. doi: 10.1186/s13568-017-0505-z.
  • Wang, J., K. Wen, X. Liu, C.-X. Weng, R. Wang, and Y. Cai. 2018. Multiple Low Frequency Ultrasound Enhances Bactericidal Activity of Vancomycin against Methicillin-Resistant Staphylococcus aureus Biofilms. BioMed Research International 2018:6023101 doi:10.1155/2018/6023101. PMC: 30364019
  • Wattanakaroon, W., and P. S. Stewart. 2000. Electrical enhancement of Streptococcus gordonii biofilm killing by gentamicin. Archives of Oral Biology 45 (2):167–71. doi: 10.1016/S0003-9969(99)00132-6.
  • Weaver, J. C., K. C. Smith, A. T. Esser, R. S. Son, and T. Gowrishankar. 2012. A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected. Bioelectrochemistry (Amsterdam, Netherlands) 87:236–43. doi: 10.1016/j.bioelechem.2012.02.007.
  • Xiong, Z., T. Du, X. Lu, Y. Cao, and Y. Pan. 2011. How deep can plasma penetrate into a biofilm? Applied Physics Letters 98 (22):221503. doi: 10.1063/1.3597622.
  • Xu, Z., J. Shen, C. Cheng, S. Hu, Y. Lan, and P. K. Chu. 2017. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O2 plasma jet on Staphylococcus aureus biofilm. Journal of Physics D: Applied Physics 50 (10):105201. doi: 10.1088/1361-6463/aa593f.
  • Yin, W., Y. Wang, L. Liu, and J. He. 2019. Biofilms: The microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences 20 (14):3423. doi: 10.3390/ijms20143423.
  • Yuan, L., M. F. Hansen, H. L. Røder, N. Wang, M. Burmølle, and G. Q. He. 2020. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Critical Reviews in Food Science and Nutrition 60 (13):2277–93. doi: 10.1080/10408398.2019.1632790.
  • Yuan, L., F. A. Sadiq, N. Wang, Z. Q. Yang, and G. Q. He. 2020. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Critical Reviews in Food Science and Nutrition 1–16. doi: 10.1080/10408398.2020.1809345.
  • Yu, H., S. Chen, and P. Cao. 2012. Synergistic bactericidal effects and mechanisms of low intensity ultrasound and antibiotics against bacteria: A review. Ultrasonics Sonochemistry 19 (3):377–82. doi: 10.1016/j.ultsonch.2011.11.010.
  • Yu, H., Y. Liu, L. Li, Y. Guo, Y. Xie, Y. Cheng, and W. Yao. 2020. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends in Food Science and Technology. 96:91–101. doi: 10.1016/j.tifs.2019.12.010.
  • Zehi, Z. B., A. Afshari, S. M. A. Noori, B. Jannat, and M. Hashemi. 2020. The effects of X-ray irradiation on safety and nutritional value of food: A systematic review article. Current Pharmaceutical Biotechnology 21 (10):919–26. doi: 10.2174/1389201021666200219093834.
  • Zelaya, A., Vandervoort, K. and Brelles-Mariño, G. (2012). Battling bacterial biofilms with gas discharge plasma. In Sensing for plasma for bio-decontamination, medicine and food security, eds. Z. Machala, K. Hensel, and Y. Akishev, 135–148. Netherlands: Proceeding of the Springer.
  • Zhang, J. Y., K. G. Neoh, X. F. Hu, and E. T. Kang. 2014. Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film. Biomaterials 35 (27):7690–98. doi: 10.1016/j.biomaterials.2014.05.069.
  • Zhao, L., Y. Zhang, and H. Yang. 2017. Efficacy of low concentration neutralised electrolysed water and ultrasound combination for inactivating Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012 on stainless steel coupons. Food Control 73:889–99. doi: 10.1016/j.foodcont.2016.09.041.
  • Zhao, X. H., F. H. Zhao, J. Wang, and N. J. Zhong. 2017. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances 7 (58):36670–83. doi: 10.1039/C7RA02497E.
  • Zhu, Y. L., C. Z. Li, H. Y. Cui, and L. Lin. 2020. Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science and Technology 99:142–51. doi: 10.1016/j.tifs.2020.03.001.
  • Ziuzina, D., L. Han, P. J. Cullen, and P. Bourke. 2015. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology 210:53–61. doi: 10.1016/j.ijfoodmicro.2015.05.019.
  • Ziuzina, D., S. Patil, P. Cullen, D. Boehm, and P. Bourke. 2014. Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Medicine 4 (1-4):137–52. doi: 10.1615/PlasmaMed.2014011996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.