374
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Review of the formation and influencing factors of food-derived glycated lipids

, , , &

References

  • Bacot, S., N. Bernoud-Hubac, B. Chantegrel, C. Deshayes, A. Doutheau, G. Ponsin, M. Lagarde, and M. Guichardant. 2007. Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals. Journal of Lipid Research 48 (4):816–25. doi: 10.1194/jlr.M600340-JLR200.
  • Batool, Z., D. Xu, X. Zhang, X. Li, Y. Li, Z. Chen, B. Li, and L. Li. 2020. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Critical Reviews in Food Science and Nutrition 3:1–12. doi: 10.1080/10408398.2020.1734532.
  • Beisswenger, P. J., S. K. Howell, G. Russell, M. E. Miller, S. S. Rich, and M. Mauer. 2014. Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation. Amino Acids 46 (2):311–9. doi: 10.1007/s00726-013-1533-x.
  • Breitling-Utzmann, C. M., A. Unger, D. A. Friedl, and M. O. Lederer. 2001. Identification and quantification of phosphatidylethanolamine-derived glucosylamines and aminoketoses from human erythrocytes-influence of glycation products on lipid peroxidation. Archives of Biochemistry and Biophysics 391 (2):245–54. doi: 10.1006/abbi.2001.2406.
  • Calvano, C. D., C. De Ceglie, and C. G. Zambonin. 2014. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples. Journal of Mass Spectrometry: JMS 49 (9):831–9. doi: 10.1002/jms.3416.
  • Cohn, J. S., A. Kamili, E. Wat, R. W. Chung, and S. Tandy. 2010. Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2 (2):116–27. doi: 10.3390/nu2020116.
  • Colombo, S., A. Criscuolo, M. Zeller, M. Fedorova, M. R. Domingues, and P. Domingues. 2019. Analysis of oxidised and glycated aminophospholipids: Complete structural characterisation by C30 liquid chromatography-high resolution tandem mass spectrometry. Free Radical Biology & Medicine 144:144–55. doi: 10.1016/j.freeradbiomed.2019.05.025.
  • Colombo, S., P. Domingues, and M. R. Domingues. 2019. Mass spectrometry strategies to unveil modified aminophospholipids of biological interest. Mass Spectrometry Reviews 38 (4–5):323–55. doi: 10.1002/mas.21584.
  • Ehrlich, H., T. Hanke, A. Frolov, T. Langrock, R. Hoffmann, C. Fischer, U. Schwarzenbolz, T. Henle, R. Born, and H. Worch. 2009. Modification of collagen in vitro with respect to formation of Nepsilon-carboxymethyllysine. International Journal of Biological Macromolecules 44 (1):51–6. doi: 10.1016/j.ijbiomac.2008.10.001.
  • Ehrlich, H., T. Hanke, P. Simon, R. Born, C. Fischer, A. Frolov, T. Langrock, R. Hoffmann, U. Schwarzenbolz, T. Henle, et al. 2010. Carboxymethylation of the fibrillar collagen with respect to formation of hydroxyapatite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials 92 (2):542–51. doi: 10.1002/jbm.b.31551.
  • Eitsuka, T., K. Nakagawa, S. Kato, J. Ito, Y. Otoki, S. Takasu, N. Shimizu, T. Takahashi, and T. Miyazawa. 2018. Modulation of telomerase activity in cancer cells by dietary compounds: A review. International Journal of Molecular Sciences 19 (2):478–18. doi: 10.3390/ijms19020478.
  • Eitsuka, T., K. Nakagawa, Y. Ono, N. Tatewaki, H. Nishida, T. Kurata, N. Shoji, and T. Miyazawa. 2012. Amadori-glycated phosphatidylethanolamine up-regulates telomerase activity in PANC-1 human pancreatic carcinoma cells. FEBS Letters 586 (16):2542–7. doi: 10.1016/j.febslet.2012.06.027.
  • Estevez, M. 2011. Protein carbonyls in meat systems: A review. Meat Science 89 (3):259–79. doi: 10.1016/j.meatsci.2011.04.025.
  • Guo, L., Z. Chen, V. Amarnath, and S. S. Davies. 2012. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radical Biology & Medicine 53 (6):1226–38. doi: 10.1016/j.freeradbiomed.2012.07.077.
  • Han, L., L. Li, B. Li, D. Zhao, Y. Li, Z. Xu, and G. Liu. 2013. Review of the characteristics of food-derived and endogenous ne-carboxymethyllysine. Journal of Food Protection 76 (5):912–8. doi: 10.4315/0362-028X.JFP-12-472.
  • Han, L., Q. Lin, G. Liu, D. Han, L. Niu, and D. Su. 2019a. Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone. Food & Function 10 (5):2491–503. doi: 10.1039/c9fo00155g.
  • Han, L., Q. Lin, G. Liu, D. Han, L. Niu, and D. Su. 2019b. Inhibition mechanism of catechin, resveratrol, butylated hydroxylanisole, and tert-butylhydroquinone on carboxymethyl 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine formation. Journal of Food Science 84 (8):2042–9. doi: 10.1111/1750-3841.14668.
  • Han, L., Q. Lin, G. Liu, D. Han, L. Niu, and D. Su. 2019c. Lipids promote glycated phospholipid formation by inducing hydroxyl radicals in a Maillard reaction model system. Journal of Agricultural and Food Chemistry 67 (28):7961–7. doi: 10.1021/acs.jafc.9b02771.
  • He, X., G. Y. Chen, and Q. Zhang. 2019. Comprehensive identification of Amadori compound-modified phosphatidylethanolamines in human plasma. Chemical Research in Toxicology 32 (7):1449–57. doi: 10.1021/acs.chemrestox.9b00158.
  • He, X., and Q. Zhang. 2018. Synthesis, purification, and mass spectrometric characterization of stable isotope-labeled Amadori-glycated phospholipids. ACS Omega 3 (11):15725–33. doi: 10.1021/acsomega.8b01893.
  • Hernandez, P., J. L. Navarro, and F. Toldra. 1999. Lipids of pork meat as affected by various cooking techniques. Food Science and Technology International 5 (6):501–8. doi: 10.1177/108201329900500608.
  • Hidalgo, F. J., F. Nogales, and R. Zamora. 2008. The role of amino phospholipids in the removal of the cito- and geno-toxic aldehydes produced during lipid oxidation. Food and Chemical Toxicology 46 (1):43–8. doi: 10.1016/j.fct.2007.05.035.
  • Higuchi, O., K. Nakagawa, T. Tsuzuki, T. Suzuki, S. Oikawa, and T. Miyazawa. 2006. Aminophospholipid glycation and its inhibitor screening system: A new role of pyridoxal 5'-phosphate as the inhibitor. Journal of Lipid Research 47 (5):964–74. doi: 10.1194/jlr.M500348-JLR200.
  • Hu, B., L. Li, Y. Hu, D. Zhao, Y. Li, M. Yang, A. Jia, S. Chen, B. Li, and X. Zhang. 2020. Development of a novel Maillard reaction-based time-temperature indicator for monitoring the fluorescent AGE content in reheated foods. RSC Advances 10 (18):10402–10. doi: 10.1039/D0RA01440K.
  • Kodate, A., Y. Otoki, N. Shimizu, J. Ito, S. Kato, N. Umetsu, T. Miyazawa, and K. Nakagawa. 2018. Development of quantitation method for glycated aminophospholipids at the molecular species level in powdered milk and powdered buttermilk. Scientific Reports 8 (1):8729. doi: 10.1038/s41598-018-27010-2.
  • Lederer, M. O., C. M. Dreisbusch, and R. M. Bundschuh. 1997. Amadori products from model reactions of D-glucose with phosphatidyl ethanolamine-independent synthesis and identification of 1-deoxy-1-(2-hydroxyethylamino)-D-fructose derivatives. Carbohydrate Research 301 (3–4):111–21. doi: 10.1016/S0008-6215(97)00090-6.
  • Lertsiri, S., M. Shiraishi, and T. Miyazawa. 1998. Identification of deoxy-D-fructosyl phosphatidylethanolamine as a non-enzymic glycation product of phosphatidylethanolamine and its occurrence in human blood plasma and red blood cells. Bioscience, biotechnology, and biochemistry 62 (5):893–901. doi: 10.1271/bbb.62.893.
  • Li, Y., Q. Huang, X. Yu, Y. Liu, L. Li, B. Li, X. Zhang, S. Chen, Z. Liu, X. Zhao, et al. 2020. Study of reactions of N-epsilon-(carboxymethyl) lysine with o-benzoquinones by cyclic voltammetry. Food Chemistry 307:125554–9. doi: 10.1016/j.foodchem.2019.125554.
  • Liang, Z., X. Chen, L. Li, B. Li, and Z. Yang. 2020. The fate of dietary advanced glycation end products in the body: From oral intake to excretion. Critical Reviews in Food Science and Nutrition 60 (20):3475–91. doi: 10.1080/10408398.2019.1693958.
  • Lin, Q., L. Han, G. Liu, W. Cheng, and L. Wang. 2018. A preliminary study on the formation pathways of glycated phosphatidylethanolamine of food rich in phospholipid during the heat-processing. RSC Advances 8 (21):11280–8. doi: 10.1039/C8RA01072B.
  • Nakagawa, K., J. H. Oak, O. Higuchi, T. Tsuzuki, S. Oikawa, H. Otani, M. Mune, H. Cai, and T. Miyazawa. 2005. Ion-trap tandem mass spectrometric analysis of Amadori-glycated phosphatidylethanolamine in human plasma with or without diabetes. Journal of Lipid Research 46 (11):2514–24. doi: 10.1194/jlr.D500025-JLR200.
  • Nakagawa, K., J. H. Oak, and T. Miyazawa. 2005. Angiogenic potency of Amadori-glycated phosphatidylethanolamine. Annals of the New York Academy of Sciences 1043:413–6. doi: 10.1196/annals.1333.048.
  • Numanoglu, E., S. Yener, V. Gokmen, U. Uygun, and H. Koksel. 2013. Modelling thermal degradation of zearalenone in maize bread during baking. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 30 (3):528–33. doi: 10.1080/19440049.2012.751629.
  • Oak, J. H., K. Nakagawa, and T. Miyazawa. 2000. Synthetically prepared Amadori-glycated phosphatidylethanolamine call trigger lipid peroxidation via free radical reactions. FEBS Letters 481 (1):26–30. doi: 10.1016/S0014-5793(00)01966-9.
  • Oak, J. H., K. Nakagawa, and T. Miyazawa. 2002. UV analysis of Amadori-glycated phosphatidylethanolamine in foods and biological samples. Journal of Lipid Research 43 (3):523–9.
  • Pamplona, R., M. J. Bellmunt, M. Portero, D. Riba, and J. Prat. 1995. Chromatographic evidence for Amadori product formation in rat liver aminophospholipids. Life Sciences 57 (9):873–9. doi: 10.1016/0024-3205(95)02020-J.
  • Pamplona, R., M. Portero-Otin, J. R. Requena, S. R. Thorpe, A. Herrero, and G. Barja. 1999. A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mechanisms of Ageing and Development 106 (3):283–96. doi: 10.1016/S0047-6374(98)00121-3.
  • Penndorf, I., C. Li, U. Schwarzenbolz, and T. Henle. 2008. N-terminal glycation of proteins and peptides in foods and in vivo: evaluation of N-(2-furoylmethyl)valine in acid hydrolyzates of human hemoglobin. Annals of the New York Academy of Sciences 1126:118–23. doi: 10.1196/annals.1433.024.
  • Ravandi, A., A. Kuksis, L. Marai, J. J. Myher, G. Steiner, G. Lewisa, and H. Kamido. 1996. Isolation and identification of glycated aminophospholipids from red cells and plasma of diabetic blood. FEBS Letters 381 (1-2):77–81. doi: 10.1016/0014-5793(96)00064-6.
  • Requena, J. R., M. U. Ahmed, C. W. Fountain, T. P. Degenhardt, S. Reddy, C. Perez, T. J. Lyons, A. J. Jenkins, J. W. Baynes, and S. R. Thorpe. 1997. Carboxymethylethanolamine, a biomarker of phospholipid modification during the maillard reaction in vivo. The Journal of Biological Chemistry 272 (28):17473–9. doi: 10.1074/jbc.272.28.17473.
  • Shoji, N., K. Nakagawa, A. Asai, I. Fujita, A. Hashiura, Y. Nakajima, S. Oikawa, and T. Miyazawa. 2010. LC-MS/MS analysis of carboxymethylated and carboxyethylated phosphatidylethanolamines in human erythrocytes and blood plasma. Journal of Lipid Research 51 (8):2445–53. doi: 10.1194/jlr.D004564.
  • Simoes, C., A. C. Silva, P. Domingues, P. Laranjeira, A. Paiva, and M. R. Domingues. 2013. Phosphatidylethanolamines glycation, oxidation, and glycoxidation: Effects on monocyte and dendritic cell stimulation. Cell Biochemistry and Biophysics 66 (3):477–87. doi: 10.1007/s12013-012-9495-2.
  • Soboleva, A., M. Vikhnina, T. Grishina, and A. Frolov. 2017. Probing protein glycation by chromatography and mass spectrometry: Analysis of glycation adducts. International Journal of Molecular Sciences 18 (12):2557. doi: 10.3390/ijms18122557.
  • Teng, J., X. Hu, N. Tao, and M. Wang. 2018. Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food. Frontiers of Agricultural Science and Engineering 5 (3):321–9. doi: 10.15302/J-FASE-2017182.
  • Tengilimoglu-Metin, M. M., A. Hamzalioglu, V. Gokmen, and M. Kizil. 2017. Inhibitory effect of hawthorn extract on heterocyclic aromatic amine formation in beef and chicken breast meat. Food Research International (Ottawa, Ont.) 99 (Pt 1):586–95. doi: 10.1016/j.foodres.2017.06.044.
  • Utzmann, C. M., and M. O. Lederer. 2000a. Identification and quantification of aminophospholipid-linked Maillard compounds in model systems and egg yolk products. Journal of Agricultural and Food Chemistry 48 (4):1000–8. doi: 10.1021/jf9911489.
  • Utzmann, C. M., and M. O. Lederer. 2000b. Independent synthesis of aminophospholipid-linked Maillard products. Carbohydrate Research 325 (3):157–68. doi: 10.1016/S0008-6215(99)00330-4.
  • van de Merbel, N. C., C. Mentink, G. Hendriks, and B. H. R. Wolffenbuttel. 2004. Liquid chromatographic method for the quantitative determination of Nepsilon-carboxymethyllysine in human plasma proteins. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 808 (2):163–8. doi: 10.1016/j.jchromb.2004.05.004.
  • Xu, D., L. Li, Y. Wu, X. Zhang, M. Wu, Y. Li, Z. Gai, B. Li, D. Zhao, and C. Li. 2020. Influence of ultrasound pretreatment on the subsequent glycation of dietary proteins. Ultrasonics Sonochemistry 63:104910–37. doi: 10.1016/j.ultsonch.2019.104910.
  • Xu, D., L. Li, X. Zhang, H. Yao, M. Yang, Z. Gai, B. Li, and D. Zhao. 2019. Degradation of peptide-bound Maillard reaction products in gastrointestinal digests of glyoxal-glycated casein by human colonic microbiota. Journal of Agricultural and Food Chemistry 67 (43):12094–104. doi: 10.1021/acs.jafc.9b03520.
  • Zamora, R., F. Nogales, and F. J. Hidalgo. 2005. Phospholipid oxidation and nonenzymatic browning development in phosphatidylethanolamine/ribose/lysine model systems. European Food Research and Technology 220 (5-6):459–65. doi: 10.1007/s00217-004-1114-z.
  • Zhao, D., L. Li, T. T. Le, L. B. Larsen, D. Xu, W. Jiao, B. Sheng, B. Li, and X. Zhang. 2019. Digestibility of glycated milk proteins and the peptidomics of their in vitro digests. Journal of the Science of Food and Agriculture 99 (6):3069–77. doi: 10.1002/jsfa.9520.
  • Zhao, D., X. Zhang, D. Xu, G. Su, B. Li, and C. Li. 2020. Heat-induced amyloid-like aggregation of beta-lactoglobulin affected by glycation by alpha-dicarbonyl compounds in a model study. Journal of the Science of Food and Agriculture 100 (2):607–28. doi: 10.1002/jsfa.10054.
  • Zhu, Z., R. Fang, D. Zhao, M. Huang, and Y. Wei. 2021. N-epsilon-carboxymethyllysine and N-epsilon-carboxyethyllysine kinetics and water loss analysis during chicken braising. Journal of the Science of Food and Agriculture 101 (2):388–97. doi: 10.1002/jsfa.10528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.