346
Views
1
CrossRef citations to date
0
Altmetric
Reviews

4-hydroxy-2-alkenals in foods: a review on risk assessment, analytical methods, formation, occurrence, mitigation and future challenges

, &

References

  • Aladedunye, F. A., B. Matthäus, and R. Przybylski. 2011. Carbon dioxide blanketing impedes the formation of 4-hydroxynonenal and acrylamide during frying. A novel procedure for HNE quantification. European Journal of Lipid Science and Technology 113 (7):916–23. doi: 10.1002/ejlt.201100021.
  • Aladedunye, F. A., and R. Przybylski. 2011. Antioxidative properties of phenolic acids and interaction with endogenous minor components during frying. European Journal of Lipid Science and Technology 113 (12):1465–73. doi: 10.1002/ejlt.201100142.
  • Aladedunye, F. A., and R. Przybylski. 2012. Frying performance of canola oil triacylglycerides as affected by vegetable oils minor components. Journal of the American Oil Chemists' Society 89 (1):41–53. doi: 10.1007/s11746-011-1887-8.
  • Albuquerque, T. G., M. B. P. P. Oliveira, and H. S. Costa. 2018. 4-hydroxy-2-alkenals : A potential toxicological concern of vegetable oils ? In Reference module in food science, ed. G. W. Smithers, 1–8. Netherlands: Academic Press.
  • Albuquerque, T. G., A. Sanches-Silva, L. Santos, and H. S. Costa. 2012. An update on potato crisps contents of moisture, fat, salt and fatty acids (including trans -fatty acids) with special emphasis on new oils/fats used for frying. International Journal of Food Sciences and Nutrition 63 (6):713–7. doi: 10.3109/09637486.2011.644768.
  • Alexander, J., D. Benford, A. Boobis, M. Eskola, J. Fink-Gremmels, P. Fürst, C. Heppner, J. Schlatter, and R. Van Leeuwen. 2012. Risk assessment of contaminants in food and feed. EFSA Journal 10 (10):S1004–S12. doi: 10.2903/j.efsa.2012.s1004.
  • Alghazeer, R., and N. K. Howell. 2008. Formation of 4-hydroxynonenal (4-HNE) in frozen mackerel (Scomber scombrus) in the presence and absence of green tea. Journal of the Science of Food and Agriculture 88 (7):1128–34. doi: 10.1002/jsfa.3117.
  • Ayala, A., M. F. Muñoz, and S. Argüelles. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014:1–31. doi: 10.1155/2014/360438.
  • Brewer, M. S. 2011. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety 10 (4):221–47. doi: 10.1111/j.1541-4337.2011.00156.x.
  • Choe, E., and D. B. Min. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety 5 (4):169–86. doi: 10.1111/j.1541-4337.2006.00009.x.
  • Costa, D. C., H. S. Costa, T. G. Albuquerque, F. Ramos, M. C. Castilho, and A. Sanches-Silva. 2015. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science & Technology 45 (2):336–54. doi: 10.1016/j.tifs.2015.06.009.
  • Csala, M., T. Kardon, B. Legeza, B. Lizák, J. Mandl, É. Margittai, F. Puskás, P. Száraz, P. Szelényi, and G. Bánhegyi. 2015. On the role of 4-hydroxynonenal in health and disease. Biochimica et Biophysica Acta 1852 (5):826–38. doi: 10.1016/j.bbadis.2015.01.015.
  • Csallany, A. S., I. Han, D. W. Shoeman, C. Chen, and J. Yuan. 2015. 4-hydroxynonenal (HNE), a toxic aldehyde in french fries from fast food restaurants. Journal of the American Oil Chemists' Society 92 (10):1413–9. doi: 10.1007/s11746-015-2699-z.
  • Douny, C., A. Tihon, P. Bayonnet, F. Brose, G. Degand, E. Rozet, J. Milet, L. Ribonnet, L. Lambin, Y. Larondelle, et al. 2015. Validation of the analytical procedure for the determination of malondialdehyde and three other aldehydes in vegetable oil using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and application to linseed oil. Food Analytical Methods 8 (6):1425–35. doi: 10.1007/s12161-014-0028-z.
  • Dubois, V., S. Breton, M. Linder, J. Fanni, and M. Parmentier. 2007. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology 109 (7):710–32. doi: 10.1002/ejlt.200700040.
  • Eckl, P. M., and N. Bresgen. 2017. Genotoxicity of lipid oxidation compounds. Free Radical Biology & Medicine 111 (December 2016):244–52. doi: 10.1016/j.freeradbiomed.2017.02.002.
  • Esterbauer, H., R. J. Schaur, and H. Zollner. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology & Medicine 11 (1):81–128. doi: 10.1016/0891-5849(91)90192-6.
  • European Food Safety Authority. 2012. Scientific opinion on exploring options for providing advice about possible human health risks based on the concept of threshold of toxicological concern (TTC). EFSA Journal 10: 1–103. http://doi.wiley.com/10.2903/j.efsa.2012.2750.
  • Food and Agriculture Organization of the United Nations/World Health Organization. 2010. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. FAO Fisheries and Acquaculture Report No. 978. http://www.fao.org/docrep/014/ba0136e/ba0136e00.pdf.
  • Foster, R., C. S. Williamson, and J. Lunn. 2009. Culinary oils and their health effects. Nutrition Bulletin 34 (1):4–47. doi: 10.1111/j.1467-3010.2008.01738.x.
  • Fujisaki, M., Y. Endo, and K. Fujimoto. 2002. Retardation of volatile aldehyde formation in the exhaust of frying oil by heating under low oxygen atmospheres. Journal of the American Oil Chemists' Society 79 (9):909–14. doi: 10.1007/s11746-002-0578-3.
  • Gabbanini, S., R. Matera, A. Valvassori, and L. Valgimigli. 2015. Rapid liquid chromatography-tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils. Analytica Chimica Acta 869:50–8. doi: 10.1016/j.aca.2015.02.046.
  • Gasc, N., S. Taché, E. Rathahao, J. Bertrand-Michel, V. Roques, and F. Guéraud. 2007. 4-hydroxynonenal in foodstuffs: Heme concentration, fatty acid composition and freeze-drying are determining factors. Redox Report : Communications in Free Radical Research 12 (1):40–4. doi: 10.1179/135100007X162257.
  • Globisch, M., D. Kaden, and T. Henle. 2015. 4-Hydroxy-2-nonenal (4-HNE) and its lipation product 2-pentylpyrrole lysine (2-PPL) in peanuts. Journal of Agricultural and Food Chemistry 63 (21):5273–81. doi: 10.1021/acs.jafc.5b01502
  • Goicoechea, E., E. F. A. Brandon, M. H. Blokland, and M. D. Guillen. 2011. Fate in digestion in vitro of several food components, including some toxic compounds coming from omega-3 and omega-6 lipids. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 49 (1):115–24. doi: 10.1016/j.fct.2010.10.005.
  • Goicoechea, E., K. Van Twillert, M. Duits, E. D. F. A. Brandon, P. R. Kootstra, M. H. Blokland, and M. D. Guillén. 2008. Use of an in vitro digestion model to study the bioaccessibility of 4-hydroxy-2-nonenal and related aldehydes present in oxidized oils rich in omega-6 acyl groups. Journal of Agricultural and Food Chemistry 56 (18):8475–83. doi: 10.1021/jf801212k.
  • Goldring, C., A. F. Casini, E. Maellaro, B. del Bello, and M. Comporti. 1993. Determination of 4-Hydroxynonenal by high-performance liquid chromatography with electrochemical detection . Lipids 28 (2):141–5. doi: 10.1007/BF02535778.
  • Grune, T., K. Krämer, P. P. Hoppe, and W. Siems. 2001. Enrichment of eggs with N-3 polyunsaturated fatty acids: Effects of vitamin E supplementation. Lipids 36 (8):833–8. http://www.ncbi.nlm.nih.gov/pubmed/11592735. doi: 10.1007/s11745-001-0792-7.
  • Guéraud, F. 2017. 4-hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radical Biology & Medicine 111 (January):196–208. doi: 10.1016/j.freeradbiomed.2016.12.025.
  • Guéraud, F., M. Atalay, N. Bresgen, A. Cipak, P. M. Eckl, L. Huc, I. Jouanin, W. Siems, and K. Uchida. 2010. Chemistry and biochemistry of lipid peroxidation products. Free Radical Research 44 (10):1098–124. doi: 10.3109/10715762.2010.498477.
  • Guillén, M. D., and E. Goicoechea. 2008a. Toxic oxygenated alpha,beta-unsaturated aldehydes and their study in foods: A review. Critical Reviews in Food Science and Nutrition 48 (2):119–36. doi: 10.1080/10408390601177613.
  • Guillén, M. D., and E. Goicoechea. 2008b. Formation of oxygenated α,β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles. Food Chemistry 111 (1):157–64. doi: 10.1016/j.foodchem.2008.03.052.
  • Guillén, M. D., and E. Goicoechea. 2009. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data. Food Chemistry 116 (1):183–92. doi: 10.1016/j.foodchem.2009.02.029.
  • Guillén, M. D., and A. Ruiz. 2008. Monitoring of heat-induced degradation of edible oils by proton NMR. European Journal of Lipid Science and Technology 110 (1):52–60. doi: 10.1002/ejlt.200600299.
  • Guillén, M. D., and P. S. Uriarte. 2012. Aldehydes contained in edible oils of a very different nature after prolonged heating at frying temperature: Presence of toxic oxygenated α,β unsaturated aldehydes. Food Chemistry 131 (3):915–26. doi: 10.1016/j.foodchem.2011.09.079.
  • Han, I. H., and A. S. Csallany. 2008. Temperature dependence of HNE formation in vegetable oils and butter oil. Journal of the American Oil Chemists' Society 85 (8):777–82. doi: 10.1007/s11746-008-1250-x.
  • Han, I. H., and A. S. Csallany. 2009. Formation of toxic α,β-unsaturated 4-hydroxy-aldehydes in thermally oxidized fatty acid methyl esters. Journal of the American Oil Chemists' Society 86 (3):253–60. doi: 10.1007/s11746-008-1343-6.
  • Han, I. H., and A. S. Csallany. 2012. The toxic aldehyde, 4-hydroxy-2-trans-nonenal (HNE) formation in natural and imitation Mozzarella Cheeses: Heat treatment effects. Journal of the American Oil Chemists' Society 89 (10):1801–5. doi: 10.1007/s11746-012-2084-0.
  • Hernández, P., D. Park, and K. S. Rhee. 2002. Chloride salt type/ionic strength, muscle site and refrigeration effects on antioxidant enzymes and lipid oxidation in pork. Meat Science 61 (4):405–10. doi: 10.1016/S0309-1740(01)00212-1.
  • Hotchkiss, J. H., B. G. Werner, and E. Y. C. Lee. 2006. Addition of carbon dioxide to dairy products to improve quality: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 5 (4):158–68. doi: 10.1111/j.1541-4337.2006.00008.x.
  • Hua, H., X. Zhao, S. Wu, and G. Li. 2016. Impact of refining on the levels of 4-hydroxy-trans-alkenals, parent and oxygenated polycyclic aromatic hydrocarbons in soybean and rapeseed oils. Food Control. 67:82–9. doi: 10.1016/j.foodcont.2016.02.028.
  • Kanazawa, K., and H. Ashida. 1998. Dietary hydroperoxides of linoleic acid decompose to aldehydes in stomach before being absorbed into the body. Biochimica et Biophysica Acta 1393 (2–3):349–361. nodoi: 10.1016/s0005-2760(98)00089-7.
  • LaFond, S. I., J. P. Jerrell, K. R. Cadwallader, and W. E. Artz. 2011. Formation of 4-hydroxy-2-(E)-nonenal in a corn-soy oil blend: A controlled heating study using a French Fried Potato Model. Journal of the American Oil Chemists' Society 88 (6):763–72. doi: 10.1007/s11746-010-1738-z.
  • Larsson, K., H. Harrysson, R. Havenaar, M. Alminger, and I. Undeland. 2016. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion. Food Funct 7 (2):1176–87. doi: 10.1039/c5fo01401h.
  • Lee, S. K., L. Mei, and E. a Decker. 1997. Influence of sodium chloride on antioxidant enzyme activity and lipid oxidation in frozen ground pork. Meat Science 46 (4):349–55. http://linkinghub.elsevier.com/retrieve/pii/S0309174097000296%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/22062318. doi: 10.1016/s0309-1740(97)00029-6.
  • Liu, Y.-M., J.-R. Miao, and T. Toyo'oka. 1996. Determination of 4-hydroxy-2-nonenal by precolumn derivatization and liquid chromatography with laser fluorescence detection. Journal of Chromatography A 719 (2):450–6. doi: 10.1016/0021-9673(95)00733-4.
  • Long, E. K., and M. J. Picklo. 2010. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: Make some room HNE…. Free Radical Biology & Medicine 49 (1):1–8. doi: 10.1016/j.freeradbiomed.2010.03.015.
  • Lucarini, M., A. Durazzo, J. Sánchez del Pulgar, P. Gabrielli, and G. Lombardi-Boccia. 2018. Determination of fatty acid content in meat and meat products: The FTIR-ATR approach. Food Chemistry 267:223–30. doi: 10.1016/j.foodchem.2017.11.042.
  • Lynch, M. P., C. Faustman, L. K. Silbart, D. Rood, and H. C. Furr. 2008. Detection of lipid-derived aldehydes and aldehyde: Protein adducts in vitro and in beef. Journal of Food Science 66 (8):1093–9. doi: 10.1111/j.1365-2621.2001.tb16087.x.
  • Ma, L., and G. Liu. 2017. Simultaneous analysis of malondialdehyde, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in vegetable oil by reversed-phase high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 65 (51):11320–8. doi: 10.1021/acs.jafc.7b04566.
  • Maqsood, S., S. Benjakul, A. Abushelaibi, and A. Alam. 2014. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Comprehensive Reviews in Food Science and Food Safety 13 (6):1125–40. doi: 10.1111/1541-4337.12106.
  • Mariutti, L. R. B., and N. Bragagnolo. 2017. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International (Ottawa, Ont.) 94:90–100. doi: 10.1016/j.foodres.2017.02.003.
  • Matera, R., S. Gabbanini, A. Valvassori, M. Triquigneaux, and L. Valgimigli. 2012. Reactivity of (E)-4-hydroxy-2-nonenal with fluorinated phenylhydrazines: Towards the efficient derivatization of an elusive key biomarker of lipid peroxidation. European Journal of Organic Chemistry 2012 (20):3841–51. doi: 10.1002/ejoc.201200346.
  • Meynier, A., C. Leborgne, M. Viau, P. Schuck, M. Guichardant, C. Rannou, and M. Anton. 2014. N-3 fatty acid enriched eggs and production of egg yolk powders: An increased risk of lipid oxidation? Food Chemistry 153:94–100. doi: 10.1016/j.foodchem.2013.12.028.
  • Michalski, M.-C., C. Calzada, A. Makino, S. Michaud, and M. Guichardant. 2008. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk-a preliminary study. Molecular Nutrition & Food Research 52 (12):1478–85. http://doi.wiley.com/10.1002/mnfr.200700451. doi: 10.1002/mnfr.200700451.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 5 (6):1113–24. doi: 10.1039/C3FO60702J.
  • Minihane, A. M., and J. I. Harland. 2007. Impact of oil used by the frying industry on population fat intake. Critical Reviews in Food Science and Nutrition 47 (3):287–97. doi: 10.1080/10408390600737821.
  • Munasinghe, D. M. S., K. Ichimaru, T. Matsui, K. Sugamoto, and T. Sakai. 2003. Lipid peroxidation-derived cytotoxic aldehyde, 4-hydroxy-2-nonenal in smoked pork. Meat Science 63 (3):377–80. doi: 10.1016/s0309-1740(02)00096-7.
  • Oarada, M., T. Miyazawa, and T. Kaneda. 1986. Distribution of 14C after oral administration of [U-14C]labeled methyl linoleate hydroperoxides and their secondary oxidation products in rats. Lipids 21 (2):150–4. doi: 10.1007/BF02534437.
  • Papastergiadis, A., A. Fatouh, L. Jacxsens, C. Lachat, K. Shrestha, J. Daelman, P. Kolsteren, H. Van Langenhove, and B. De Meulenaer. 2014a. Exposure assessment of malondialdehyde, 4-hydroxy-2-(E)-nonenal and 4-hydroxy-2-(E)-hexenal through specific foods available in Belgium. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 73:51–8. doi: 10.1016/j.fct.2014.06.030.
  • Papastergiadis, A., E. Mubiru, H. Van Langenhove, and B. De Meulenaer. 2014b. Development of a sensitive and accurate stable isotope dilution assay for the simultaneous determination of free 4-hydroxy-2-(E)-nonenal and 4-hydroxy-2-(E)-hexenal in various food matrices by gas chromatography-mass spectrometry. Food Analytical Methods 7 (4):836–43. doi: 10.1007/s12161-013-9689-2.
  • Petersen, K. D., G. Jahreis, M. Busch-Stockfisch, and J. Fritsche. 2013. Chemical and sensory assessment of deep-frying oil alternatives for the processing of French fries. European Journal of Lipid Science and Technology 115 (8):935–45. doi: 10.1002/ejlt.201200375.
  • Pillon, N. J., M. L. Croze, R. E. Vella, L. Soulère, M. Lagarde, and C. O. Soulage. 2012. The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology 153 (5):2099–111. doi: 10.1210/en.2011-1957.
  • Sakai, T., S. Kazuhiro, and N. Eto. 2000. Cytotoxicity of 4-hydroxy-2E-hexenal, a lipid peroxidation-derived aldehyde, and changes of its content in frozen yellowtail meat. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi) 41 (6):368–70. http://joi.jlc.jst.go.jp/JST.JSTAGE/shokueishi/41.368?from=CrossRef. doi: 10.3358/shokueishi.41.368.
  • Sakai, T., and S. Kuwazuru. 1995. A lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal, contents in several fish meats. Fisheries Science 61 (3):527–8. doi: 10.2331/fishsci.61.527.
  • Sakai, T., S. Kuwazuru, K. Yamauchi, and K. Uchida. 1995. A lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal and omega 6 fatty acids contents in meats. Bioscience, Biotechnology, and Biochemistry 59 (7):1379–80. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7670203. doi: 10.1271/bbb.59.1379.
  • Sakai, T., Y. Matsushita, K. Sugamoto, and K. Uchida. 1997. Lipid peroxidation-derived hepatotoxic aldehyde, 4-hydroxy-2-hexenal, in fish. Bioscience, Biotechnology, and Biochemistry 61 (8):1399–400. http://www.tandfonline.com/doi/full/10.1271/bbb.61.1399. doi: 10.1271/bbb.61.1399.
  • Sakai, T., D. M. S. Munasinghe, M. Kashimura, K. Sugamoto, and S. Kawahara. 2004. Effect of NaCl on lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal formation in minced pork and beef. Meat Science 66 (4):789–92. doi: 10.1016/S0309-1740(03)00138-4.
  • Sakai, T., Y. Shimizu, and S. Kawahara. 2006. Effect of NaCl on the lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal, formation in boiled pork. Bioscience, Biotechnology, and Biochemistry 70 (4):815–20. doi: 10.1271/bbb.70.815.
  • Sakai, T., K. Yamauchi, S. Kuwazuru, and N. Gotoh. 1998. Relationships between 4-hydroxy-2-nonenal, 2-thiobarbituric acid reactive substances and n-6 polyunsaturated fatty acids in refrigerated and frozen pork. Bioscience Biotechnology and Biochemistry 62 (10):2028–9. doi: 10.1271/bbb.62.2028.
  • Santaniello, E., A. Repetto, L. M. Chiesa, and P. A. Biondi. 2007. Synthesis and characterization of 4-hydroxy-2-nonenal derivatives for gas chromatographic analysis with electron capture detection (GC-ECD). Redox Report : Communications in Free Radical Research 12 (1):55–8. nodoi: 10.1179/135100007X162293.
  • Seppanen, C. M., and A. S. Csallany. 2001. Simultaneous determination of lipophilic aldehydes by high-performance liquid chromatography in vegetable oil. Journal of the American Oil Chemists' Society 78 (12):1253–60. doi: 10.1007/s11745-001-0422-9.
  • Seppanen, C. M., and A. S. Csallany. 2002. Formation of 4-hydroxynonenal, a toxic aldehyde, in soybean oil at frying temperature. Journal of the American Oil Chemists' Society 79 (10):1033–8. doi: 10.1007/s11746-002-0598-z.
  • Seppanen, C. M., and A. S. Csallany. 2004. Incorporation of the toxic aldehyde 4-hydroxy-2-trans-nonenal into food fried in thermally oxidized soybean oil. Journal of the American Oil Chemists' Society 81 (12):1137–41. doi: 10.1007/s11746-004-1031-3.
  • Seppanen, C. M., and A. S. Csallany. 2006. The effect of intermittent and continuous heating of soybean oil at frying temperature on the formation of 4-hydroxy-2-trans-nonenal and other α-, β-unsaturated hydroxyaldehydes. Journal of the American Oil Chemists' Society 83 (2):121–7. doi: 10.1007/s11746-006-1184-0.
  • Silva, M. A., T. G. Albuquerque, M. B. P. P. Oliveira, and H. S. Costa. 2018. Vitamin C evaluation in foods for infants and young children by a rapid and accurate analytical method. Food Chemistry 267 (January 2017):83–90. doi: 10.1016/j.foodchem.2017.11.046.
  • Sousa, B. C., A. R. Pitt, and C. M. Spickett. 2017. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radical Biology & Medicine 111 (February):294–308. doi: 10.1016/j.freeradbiomed.2017.02.003.
  • Spickett, C. M. 2013. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biology 1 (1):145–52. doi: 10.1016/j.redox.2013.01.007.
  • Steppeler, C., J. E. Haugen, R. Rødbotten, and B. Kirkhus. 2016. Formation of malondialdehyde, 4-hydroxynonenal, and 4-hydroxyhexenal during in vitro digestion of cooked beef, pork, chicken, and salmon. Journal of Agricultural and Food Chemistry 64 (2):487–96. doi: 10.1021/acs.jafc.5b04201.
  • Surh, J., and H. Kwon. 2003. Simultaneous determination of 4-hydroxy-2-alkenals, lipid peroxidation toxic products. Food Additives and Contaminants 20 (4):325–30. doi: 10.1080/0265203031000122012.
  • Surh, J., and H. Kwon. 2005. Estimation of daily exposure to 4-hydroxy-2-alkenals in Korean foods containing n-3 and n-6 polyunsaturated fatty acids. Food Additives and Contaminants 22 (8):701–8. doi: 10.1080/02652030500164359.
  • Surh, J., B. Y. Lee, and H. Kwon. 2010. Influence of fatty acids compositions and manufacturing type on the formation of 4-hydroxy-2-alkenals in food lipids. Food Science and Biotechnology 19 (2):297–303. doi: 10.1007/s10068-010-0043-9.
  • Surh, J., S. Lee, and H. Kwon. 2007. 4-hydroxy-2-alkenals in polyunsaturated fatty acids-fortified infant formulas and other commercial food products. Food Additives & Contaminants 24 (11):1209–18. doi: 10.1080/02652030701422465.
  • Takamura, H., and H. W. Gardner. 1996. Oxygenation of (3Z)-alkenal to (2E)-4-hydroxy-2-alkenal in soybean seed (Glycine Max L.). Biochimica et Biophysica Acta (Bba) - Lipids and Lipid Metabolism 1303 (2):83–91. doi: 10.1016/0005-2760(96)00076-8.
  • Tanaka, R., M. Ishimaru, H. Hatate, Y. Sugiura, and T. Matsushita. 2016. Relationship between 4-hydroxy-2-hexenal contents and commercial grade by organoleptic judgement in Japanese dried laver Porphyra spp. Food Chemistry 212:104–9. doi: 10.1016/j.foodchem.2016.05.166.
  • Uchida, T., N. Gotoh, and S. Wada. 2002. Method for analysis of 4-hydroxy-2-(E)-nonenal with solid-phase microextraction. Lipids 37 (6):621–6. doi: 10.1007/s11745-002-0941-z.
  • Viau, M., C. Genot, L. Ribourg, and A. Meynier. 2016. Amounts of the reactive aldehydes, malonaldehyde, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in fresh and oxidized edible oils do not necessary reflect their peroxide and anisidine values. European Journal of Lipid Science and Technology 118 (3):435–44. doi: 10.1002/ejlt.201500103.
  • Vieira, S. A., G. Zhang, and E. A. Decker. 2017. Biological implications of lipid oxidation products. Journal of the American Oil Chemists' Society 94 (3):339–51. http://link.springer.com/10.1007/s11746-017-2958-2. doi: 10.1007/s11746-017-2958-2.
  • Wells, M. L., P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, and S. H. Brawley. 2017. Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology 29 (2):949–82. doi: 10.1007/s10811-016-0974-5.
  • Zamora, R., I. Aguilar, M. Granvogl, and F. J. Hidalgo. 2016. toxicologically relevant aldehydes produced during the frying process are trapped by food phenolics. Journal of Agricultural and Food Chemistry 64 (27):5583–9. doi: 10.1021/acs.jafc.6b02165.
  • Zanardi, E., C. G. Jagersma, S. Ghidini, and R. Chizzolini. 2002. Solid phase extraction and liquid chromatography − tandem mass spectrometry for the evaluation of 4-hydroxy-2-nonenal in pork products. Journal of Agricultural and Food Chemistry 50 (19):5268–72. nodoi: 10.1021/jf020201h.
  • Zarkovic, N. 2003. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Molecular Aspects of Medicine 24 (4-5):281–91. nodoi: 10.1016/s0098-2997(03)00023-2.
  • Zhong, H., and H. Yin. 2015. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biology 4:193–9. doi: 10.1016/j.redox.2014.12.011.
  • Zhu, Q., Z. P. Zheng, K. W. Cheng, J. J. Wu, S. Zhang, S. T. Yun, K. H. Sze, J. Chen, F. Chen, and M. Wang. 2009. Natural polyphenols as direct trapping agents of lipid peroxidation-derived acrolein and 4-hydroxy-trans-2-nonenal. Chemical Research in Toxicology 22 (10):1721–7. doi: 10.1021/tx900221s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.