4,209
Views
38
CrossRef citations to date
0
Altmetric
Reviews

The gut microbiota as a target to control hyperuricemia pathogenesis: Potential mechanisms and therapeutic strategies

ORCID Icon, , , , ORCID Icon, , & show all

References

  • Backhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science (New York, N.Y.) 307 (5717):1915–20. doi: 10.1126/science.1104816.
  • Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (7):1761–72. doi: 10.2337/db06-1491.
  • Cao, T., X. Li, T. Mao, H. Liu, Q. Zhao, X. Ding, C. Li, L. Zhang, and Z. Tian. 2017. Probiotic therapy alleviates hyperuricemia in C57BL/6 mouse model. Biomedical Research – India 28 (5):2244–9.
  • Chen, R. J., M. H. Chen, Y. L. Chen, C. M. Hsiao, H. M. Chen, S. J. Chen, M. D. Wu, Y. J. Yech, G. F. Yuan, and Y. J. Wang. 2017. Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study. Journal of Food and Drug Analysis 25 (3):597–606. doi: 10.1016/j.jfda.2016.07.003.
  • Choi, H. K. 2010. A prescription for lifestyle change in patients with hyperuricemia and gout. Current Opinion in Rheumatology 22 (2):165–72. doi: 10.1097/BOR.0b013e328335ef38.
  • Crane, J. K. 2013. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Gut Microbes 4 (5):388–91. doi: 10.4161/gmic.25584.
  • Crane, J. K., and K. M. Mongiardo. 2014. Pro-inflammatory effects of uric acid in the gastrointestinal tract. Immunological Investigations 43 (3):255–66. doi: 10.3109/08820139.2013.864667.
  • de Oliveira, E. P., and R. C. Burini. 2012. High plasma uric acid concentration: Causes and consequences. Diabetology & Metabolic Syndrome 4:12. doi: 10.1186/1758-5996-4-12.
  • Debosch, B. J., O. Kluth, H. Fujiwara, A. Schürmann, and K. Moley. 2014. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nature Communications 5:4642. doi: 10.1038/ncomms5642.
  • Ekpenyong, C. E., and N. Daniel. 2015. Roles of diets and dietary factors in the pathogenesis, management and prevention of abnormal serum uric acid levels. Pharmanutrition 3 (2):29–45. doi: 10.1016/j.phanu.2014.12.001.
  • Garcia-Arroyo, F. E., G. Gonzaga, I. Munoz-Jimenez, M. G. Blas-Marron, O. Silverio, E. Tapia, V. Soto, N. Ranganathan, P. Ranganathan, U. Vyas, et al. 2018. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. Plos One 13 (8):e0202901. doi: 10.1371/journal.pone.0202901.
  • Gareau, M. G., P. M. Sherman, and W. A. Walker. 2010. Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews. Gastroenterology & Hepatology 7 (9):503–14. doi: 10.1038/nrgastro.2010.117.
  • Guo, L.-F., X. Chen, S.-S. Lei, B. Li, N.-Y. Zhang, H.-Z. Ge, K. Yang, G.-Y. Lv, and S.-H. Chen. 2020. Effects and mechanisms of Dendrobium officinalis six nostrum for treatment of hyperuricemia with hyperlipidemia. Evidence-Based Complementary and Alternative Medicine: eCAM 2020 (4):2914019. doi: 10.1155/2020/2914019.
  • Guo, Z., J. Zhang, Z. Wang, K. Y. Ang, S. Huang, Q. Hou, X. Su, J. Qiao, Y. Zheng, L. Wang, et al. 2016. Intestinal microbiota distinguish gout patients from healthy humans. Scientific Reports 6:20602. doi: 10.1038/srep20602.
  • Han, B., M. Gong, Z. Li, Y. Qiu, and Z. Zou. 2020. NMR-based metabonomic study reveals intervention effects of polydatin on potassium oxonate-induced hyperuricemia in rats. Oxidative Medicine and Cellular Longevity 2020:6943860. doi: 10.1155/2020/6943860.
  • Han, J., X. Wang, S. Tang, C. Lu, H. Wan, J. Zhou, Y. Li, T. Ming, Z. J. Wang, and X. Su. 2020. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34 (4):5061–76. doi: 10.1096/fj.201902597RR.
  • Hao, S. J., C. Zhang, and H. Song. 2016. Natural products improving hyperuricemia with hepatorenal dual effects. Evidence-Based Complementary and Alternative Medicine: eCAM 2016:7390504. doi: 10.1155/2016/7390504.
  • Hartwich, K., A. Poehlein, and R. Daniel. 2012. The purine-utilizing bacterium Clostridium acidurici 9a: A genome-guided metabolic reconsideration. Plos One 7 (12):e51662. doi: 10.1371/journal.pone.0051662.
  • Husseini, N. E., O. Kaskar, and L. B. Goldstein. 2014. Chronic kidney disease and stroke. Advances in Chronic Kidney Disease 21 (6):500–8. doi: 10.1053/j.ackd.2014.09.001.
  • Hoon, L. S., P. Gunhyuk, K. S. Bae, and O. Dal-Seok. 2018. Uric acid-lowering effect and intestinal permeability of Kampo medicine, Hachimijiogan, Yokuininto and Goshakusan. European Journal of Integrative Medicine 20:193–9. doi: 10.1016/j.eujim.2018.05.011.
  • Hosomi, A., T. Nakanishi, T. Fujita, and I. Tamai. 2012. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. Plos One 7 (2):e30456. doi: 10.1371/journal.pone.0030456.
  • Hsieh, C. Y., H. J. Lin, C. H. Chen, C. C. Lai, and Y. H. K. Yang. 2014. Chronic kidney disease and stroke. Lancet Neurology 13 (11):107. doi: 10.1016/S1474-4422(14)70199-1.
  • Ichida, K., H. Matsuo, T. Takada, A. Nakayama, K. Murakami, T. Shimizu, Y. Yamanashi, H. Kasuga, H. Nakashima, T. Nakamura, et al. 2012. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nature Communications 3:764. doi: 10.1038/ncomms1756.
  • Jakse, B., B. Jakse, M. Pajek, and J. Pajek. 2019. Uric acid and plant-based nutrition. Nutrients 11 (8):1736. doi: 10.3390/nu11081736.
  • Johnson, R. J., G. L. Bakris, C. Borghi, M. B. Chonchol, D. Feldman, M. A. Lanaspa, T. R. Merriman, O. W. Moe, D. B. Mount, L. G. Sanchez Lozada, et al. 2018. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the National Kidney Foundation. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 71 (6):851–65. doi: 10.1053/j.ajkd.2017.12.009.
  • Jung, S. W., S. M. Kim, Y. G. Kim, S. H. Lee, and J. Y. Moon. 2020. Uric acid and inflammation in kidney disease. American Journal of Physiology. Renal Physiology 318 (6):F1327–40. doi: 10.1152/ajprenal.00272.2019.
  • Kanbay, M., T. Jensen, Y. Solak, M. Le, C. Roncal-Jimenez, C. Rivard, M. A. Lanaspa, T. Nakagawa, and R. J. Johnson. 2016. Uric acid in metabolic syndrome: From an innocent bystander to a central player. European Journal of Internal Medicine 29:3–8. doi: 10.1016/j.ejim.2015.11.026.
  • Kang, D. H., and W. Chen. 2011. Uric acid and chronic kidney disease: New understanding of an old problem. Seminars in Nephrology 31 (5):447–52. doi: 10.1016/j.semnephrol.2011.08.009.
  • Karlsson, J. L., and H. A. Barker. 1949. Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium-acidi-urici. Journal of Biological Chemistry 178 (2):891–902. doi: 10.1016/S0021-9258(18)56908-8.
  • Kayagaki, N., M. T. Wong, I. B. Stowe, S. R. Ramani, L. C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W. P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science (New York, N.Y.) 341 (6151):1246–9. doi: 10.1126/science.1240248.
  • Kunitskaia, N. A., L. S. Kozina, A. K. Utkin, and A. A. Utkina. 2013. The peculiarities of chronic inflammation in elderly patients with gout and metabolic syndrome. Advances in Gerontology = Uspekhi Gerontologii 26 (1):161–5.
  • Li, D., P. Wang, P. Wang, X. Hu, and F. Chen. 2016. The gut microbiota: A treasure for human health. Biotechnology Advances 34 (7):1210–24. doi: 10.1016/j.biotechadv.2016.08.003.
  • Li, J., F. Zhao, Y. Wang, J. Chen, J. Tao, G. Tian, S. Wu, W. Liu, Q. Cui, B. Geng, et al. 2017. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5 (1):14. doi: 10.1186/s40168-016-0222-x.
  • Li, M., D. Yang, L. Mei, L. Yuan, A. Xie, and J. Yuan. 2014. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. Plos One. 9 (9):e105577. doi: 10.1371/journal.pone.0105577.
  • Lima, W. G., M. E. S. Martins-Santos, and V. E. Chaves. 2015. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 116:17–23. doi: 10.1016/j.biochi.2015.06.025.
  • Lin, X., T. Shao, L. Huang, X. Wen, M. Wang, C. Wen, and Z. He. 2020. Simiao decoction alleviates gouty arthritis by modulating proinflammatory cytokines and the gut ecosystem. Frontiers in Pharmacology 11:955. doi: 10.3389/fphar.2020.00955.
  • Liu, G., X. F. Chen, X. Lu, J. Y. Zhao, and X. L. Li. 2020. Sunflower head enzymatic hydrolysate relives hyperuricemia by inhibiting crucial proteins (xanthine oxidase, adenosine deaminase, uric acid transporter1) and restoring gut microbiota in mice. Journal of Functional Foods 72:104055. doi: 10.1016/j.jff.2020.104055.
  • Liu, X., Q. Lv, H. Ren, L. Gao, P. Zhao, X. Yang, G. Yang, D. Xu, G. Wang, W. Yang, et al. 2020. The altered gut microbiota of high-purine-induced hyperuricemia rats and its correlation with hyperuricemia. PeerJ 8:e8664. doi: 10.7717/peerj.8664.
  • Lohsoonthorn, V., B. Dhanamun, and M. A. Williams. 2006. Prevalence of hyperuricemia and its relationship with metabolic syndromein Thai adults receiving annual health exams. Archives of Medical Research 37 (7):883–9. doi: 10.7717/peerj.8664.
  • Lou, X.-J., Y.-Z. Wang, S.-S. Lei, X. He, T.-T. Lu, L.-H. Zhan, X. Chen, Y.-H. Chen, B. Li, X. Zheng, et al. 2020. Beneficial effects of macroporous resin extract of Dendrobium candidum leaves in rats with hyperuricemia induced by a high-purine diet. Evidence-Based Complementary and Alternative Medicine: eCAM 2020 (10):3086106–10. doi: 10.1155/2020/3086106.
  • Luissint, A. C., C. A. Parkos, and A. Nusrat. 2016. Inflammation and the intestinal barrier: Leukocyte–epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 151 (4):616–32. doi: 10.1053/j.gastro.2016.07.008.
  • Masayuki, H. 2008. Epidemiology of hyperuricemia and gout in Japan. Nihon Rinsho Japanese Journal of Clinical Medicine 66 (4):647–52.
  • Maiuolo, J., F. Oppedisano, S. Gratteri, C. Muscoli, and V. Mollace. 2016. Regulation of uric acid metabolism and excretion. International Journal of Cardiology 213:8–14. doi: 10.1016/j.ijcard.2015.08.109.
  • Marinello, E., G. Pompucci, and G. Riario-Sforza. 1978. Interrelationship between purine, carbohydrate, lipid and amino acid metabolism, in hyperuricaemia and gout. Quaderni Sclavo di diagnostica clinica e di laboratorio 14 (1):1–25.
  • Matsuo, H., T. Takada, K. Ichida, T. Nakamura, A. Nakayama, Y. Ikebuchi, K. Ito, Y. Kusanagi, T. Chiba, S. Tadokoro, et al. 2009. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Science Translational Medicine 1 (5):5ra11. doi: 10.1126/scitranslmed.3000237.
  • Mehmood, A., L. Zhao, C. Wang, I. Hossen, R. N. Raka, and H. Zhang. 2020. Correction: Stevia residue extract increases intestinal uric acid excretion via interactions with intestinal urate transporters in hyperuricemic mice. Food & Function 11 (3):2764. doi: 10.1039/d0fo90011g.
  • Mehmood, A., L. Zhao, C. Wang, M. Nadeem, A. Raza, N. Ali, and A. A. Shah. 2019. Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1433–55. doi: 10.1080/10408398.2017.1412939.
  • Michael, C. X., C. Yokose, S. K. Rai, M. H. Pillinger, and H. K. Choi. 2019. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The national health and nutrition examination survey, 2007–2016. Arthritis & Rheumatology (Hoboken, N.J.) 71 (6):991–9. doi: 10.1002/art.40807.
  • Nakayama, A., H. Matsuo, T. Shimizu, H. Ogata, Y. Takada, H. Nakashima, T. Nakamura, S. Shimizu, T. Chiba, M. Sakiyama, et al. 2013. A common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Human Cell 26 (4):133–6. doi: 10.1007/s13577-013-0073-8.
  • Nieuwdorp, M., P. W. Gilijamse, N. Pai, and L. M. Kaplan. 2014. Role of the microbiome in energy regulation and metabolism. Gastroenterology 146 (6):1525–33. doi: 10.1053/j.gastro.2014.02.008.
  • Pan, L. B., P. Han, S. R. Ma, R. Peng, C. Wang, W. J. Kong, L. Cong, J. Fu, Z. W. Zhang, H. Yu, et al. 2020. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharmaceutica Sinica B 10 (2):249–61. doi: 10.1016/j.apsb.2019.10.007.
  • Pascart, T., and F. Liote. 2019. Gout: State of the art after a decade of developments. Rheumatology (Oxford, England) 58 (1):27–44. doi: 10.1093/rheumatology/key002.
  • Pascart, T., and P. Richette. 2018. Investigational drugs for hyperuricemia, an update on recent developments. Expert Opinion on Investigational Drugs 27 (5):437–44. doi: 10.1080/13543784.2018.1471133.
  • Patel, D., D. Menon, E. Bernfeld, V. Mroz, S. Kalan, D. Loayza, and D. A. Foster. 2016. Aspartate rescues S-phase arrest caused by suppression of glutamine utilization in KRas-driven cancer cells. The Journal of Biological Chemistry 291 (17):9322–9. doi: 10.1074/jbc.M115.710145.
  • Peng, T.-C., C.-C. Wang, T.-W. Kao, J. Y.-H. Chan, Y.-H. Yang, Y.-W. Chang, and W.-L. Chen. 2015. Relationship between hyperuricemia and lipid profiles in US adults. Biomed Research International 2015:1–7. doi: 10.1155/2015/127596.
  • Pilemann-Lyberg, S., T. W. Hansen, N. Tofte, S. A. Winther, S. Theilade, T. S. Ahluwalia, and P. Rossing. 2019. Uric acid is an independent risk factor for decline in kidney function, cardiovascular events, and mortality in patients with type 1 diabetes. Diabetes Care 42 (6):1088–94. doi: 10.2337/dc18-2173.
  • Ridi, R. E., and H. Tallima. 2017. Physiological functions and pathogenic potential of uric acid: A review. Journal of Advanced Research 8 (5):487–93. doi: 10.1016/j.jare.2017.03.003.
  • Ronco, C. 2014. Lipopolysaccharide (LPS) from the cellular wall of Gram-negative bacteria, also known as endotoxin, is a key molecule in the pathogenesis of sepsis and septic shock. Blood Purification 37 (s1):1. doi: 10.1159/000357412.
  • Roxon, J. J., A. J. Ryan, and S. E. Wright. 1966. Reduction of tartrazine by a proteus species isolated from rats. Food and Cosmetics Toxicology 4 (4):419–26. doi: 10.1016/S0015-6264(66)80583-7.
  • Sakurai, H. 2013. Urate transporters in the genomic era. Current Opinion in Nephrology and Hypertension 22 (5):545–50. doi: 10.1097/MNH.0b013e328363ffc8.
  • Satoru, K., S. Kazumi, Y. Yoko, A. Mihoko, S. Ayumi, T. Kumiko, S. Aki, and S. Hirohito. 2009. Association between serum uric acid and development of type 2 diabetes. Diabetes Care 32 (9):1737–42. doi: 10.2337/dc09-0288.
  • Shao, T. J., L. Shao, H. C. Li, Z. J. Xie, Z. X. He, and C. P. Wen. 2017. Combined signature of the fecal microbiome and metabolome in patients with gout. Frontiers in Microbiology 8:268. doi: 10.3389/fmicb.2017.00268.
  • Smith, P. M., M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-Y, J. N. Glickman, and W. S. Garrett. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (New York, N.Y.) 341 (6145):569–73. doi: 10.1126/science.1241165.
  • Sorensen, L. B. 1965. Role of the intestinal tract in the elimination of uric acid. Arthritis and Rheumatism 8 (5):694–706. doi: 10.1002/art.1780080429.
  • Tannahill, G. M., A. M. Curtis, J. Adamik, E. M. Palsson-McDermott, A. F. McGettrick, G. Goel, C. Frezza, N. J. Bernard, B. Kelly, N. H. Foley, et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496 (7444):238–42. doi: 10.1038/nature11986.
  • Togawa, N., T. Miyaji, S. Izawa, H. Omote, and Y. Moriyama. 2012. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. American Journal of Physiology. Cell Physiology 302 (11):C1652–60. doi: 10.1152/ajpcell.00015.2012.
  • Vibha, B., E. L. Richard, W. Wei, C. M. Nievergelt, M. S. Lipkowitz, J. Janina, A. X. Maihofer, and S. K. Nigam. 2016. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: Potential role of remote sensing and signaling. Clinical Kidney Journal 9 (3):444–53. doi: 10.1093/ckj/sfw010.
  • Vieira, A. T., L. Macia, I. Galvão, F. S. Martins, M. C. C. Canesso, F. A. Amaral, C. C. Garcia, K. M. Maslowski, E. De Leon, D. Shim, et al. 2015. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis & Rheumatology (Hoboken, N.J.) 67 (6):1646–56. doi: 10.1002/art.39107.
  • Wan, H., J. Han, S. Tang, W. Bao, C. Lu, J. Zhou, T. Ming, Y. Li, and X. Su. 2020. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food & Function 11 (1):1074–86. doi: 10.1039/c9fo02425e.
  • Wang, H., L. Mei, Y. Deng, Y. Liu, X. Wei, M. Liu, J. Zhou, H. Ma, P. Zheng, J. Yuan, et al. 2019. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition (Burbank, Los Angeles County, Calif.) 62:63–73. doi: 10.1016/j.nut.2018.11.018.
  • Wang, Y., Z. Lin, B. Zhang, A. Nie, and M. Bian. 2017. Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia. Nutrition & Metabolism 14:38. doi: 10.1186/s12986-017-0190-6.
  • Wu, J., L. Qiu, X.-Q. Cheng, T. Xu, W. Wu, X.-J. Zeng, Y.-C. Ye, X.-Z. Guo, Q. Cheng, Q. Liu, et al. 2017. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Scientific Reports 7 (1):5456. doi: 10.1038/s41598-017-05751-w.
  • Xi, Y., J. Yan, M. Li, S. Ying, and Z. Shi. 2019. Gut microbiota dysbiosis increases the risk of visceral gout in goslings through translocation of gut-derived lipopolysaccharide. Poultry Science 98 (11):5361–73. doi: 10.3382/ps/pez357.
  • Xu, D., Q. Lv, X. Wang, X. Cui, P. Zhao, X. Yang, X. Liu, W. Yang, G. Yang, G. Wang, et al. 2019. Hyperuricemia is associated with impaired intestinal permeability in mice. American Journal of Physiology. Gastrointestinal and Liver Physiology 317 (4):G484–92. doi: 10.1152/ajpgi.00151.2019.
  • Xu, X. W., Y. F. Niu, L. H. Gao, L. Li, and H. Lin. 2018. Analysis of hypouricemic mechanism of mangiferin based on intestinal urate transporter ABCG2. Chinese Journal of Experimental Traditional Medical Formulae 24:145–149. doi: 10.13422/j.cnki.syfjx.20181733.
  • Xu, X., C. Li, P. Zhou, and T. Jiang. 2016. Uric acid transporters hiding in the intestine. Pharmaceutical Biology 54 (12):3151–55. doi: 10.1080/13880209.2016.1195847.
  • Yamada, N., C. Iwamoto, H. Kano, N. Yamaoka, T. Fukuuchi, K. Kaneko, and Y. Asami. 2016. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides, Nucleotides & Nucleic Acids 35 (10–12):670–6. doi: 10.1080/15257770.2015.1125000.
  • Yano, H., Y. Tamura, K. Kobayashi, M. Tanemoto, and S. Uchida. 2014. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clinical and Experimental Nephrology 18 (1):50–5. doi: 10.1007/s10157-013-0806-8.
  • Yu, Y., Q. Liu, H. Li, C. Wen, and Z. He. 2018. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats. Frontiers in Microbiology 9:2233. doi: 10.3389/fmicb.2018.02233.
  • Yun, Y., H. Yin, Z. Gao, Y. Li, T. Gao, J. Duan, R. Yang, X. Dong, L. Zhang, and W. Duan. 2017. Intestinal tract is an important organ for lowering serum uric acid in rats. Plos One 12 (12):e0190194. doi: 10.1371/journal.pone.0190194.
  • Zhang, W., M. Doherty, E. Pascual, T. Bardin, V. Barskova, P. Conaghan, J. Gerster, J. Jacobs, B. Leeb, F. Liote, et al. 2006. EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the standing committee for international clinical studies including therapeutics (ESCISIT). Annals of the Rheumatic Diseases 65 (10):1301–11. doi: 10.1136/ard.2006.055251.
  • Zhang, Y., L. Jin, J. Li, W. Wang, H. Yu, J. Li, Q. Chen, and T. Wang. 2018. Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia. Journal of Ethnopharmacology 214:29–36. doi: 10.1016/j.jep.2017.12.004.
  • Zhou, Y., M. Zhao, Z. Pu, G. Xu, and X. Li. 2018. Relationship between oxidative stress and inflammation in hyperuricemia analysis based on asymptomatic young patients with primary hyperuricemia. Medicine 97 (49):e13108. doi: 10.1097/MD.0000000000013108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.