1,635
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Microbial biopreservatives for controlling the spoilage of beef and lamb meat: their application and effects on meat quality

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abuladze, T., M. Li, M. Y. Menetrez, T. Dean, A. Senecal, and A. Sulakvelidze. 2008. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Applied and Environmental Microbiology 74 (20):6230–8. doi: 10.1128/AEM.01465-08.
  • Aksoy, A.,. Ç. Sezer, D. B. Aydin, and A. Güven. 2014. The effect of some natural antimicrobial substances on the shelf life of beef. Israel Journal of Veterinary Medicine 69 (3):114–22.
  • Andrés-Bello, A., V. Barreto-Palacios, P. García-Segovia, J. Mir-Bel, and J. Martínez-Monzó. 2013. Effect of pH on color and texture of food products. Food Engineering Reviews 5 (3):158–70. doi: 10.1007/s12393-013-9067-2.
  • Ariyapitipun, T., A. Mustapha, and A. D. Clarke. 1999. Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. Journal of Food Protection 62 (8):913–20. doi: 10.4315/0362-028X-62.8.913.
  • Arvanitoyannis, I. S., and A. C. Stratakos. 2012. Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: A review. Food and Bioprocess Technology 5 (5):1423–46. doi: 10.1007/s11947-012-0803-z.
  • Bali, V., P. S. Panesar, and M. B. Bera. 2016. Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications. Critical Reviews in Biotechnology 36 (2):204–14. doi: 10.3109/07388551.2014.947916.
  • Bali, V., P. S. Panesar, M. B. Bera, and J. F. Kennedy. 2016. Bacteriocins: Recent trends and potential applications. Critical Reviews in Food Science and Nutrition 56 (5):817–34. doi: 10.1080/10408398.2012.729231.
  • Bartkiene, E., V. Bartkevics, V. Starkute, D. Zadeike, and G. Juodeikiene. 2016. The nutritional and safety challenges associated with lupin lacto-fermentation. Frontiers in Plant Science 7:951 doi: 10.3389/fpls.2016.00951.
  • Bautista, D. A. 2014. Spoilage problems | Problems caused by bacteria. In Encyclopedia of food microbiology, ed. C. A. Batt and M. L. Tortorello, vol. 3, 2nd ed., 465–70. London, UK: Academic Press.
  • Ben Said, L., H. Gaudreau, L. Dallaire, M. Tessier, and I. Fliss. 2019. Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology 15 (3):138–47. doi: 10.1089/ind.2019.29175.lbs.
  • Bigwood, T., J. A. Hudson, C. Billington, G. V. Carey-Smith, and J. A. Heinemann. 2008. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiology 25 (2):400–6. doi: 10.1016/j.fm.2007.11.003.
  • Bourdichon, F., S. Casaregola, C. Farrokh, J. C. Frisvad, M. L. Gerds, W. P. Hammes, J. Harnett, G. Huys, S. Laulund, A. Ouwehand, et al. 2012. Food fermentations: Microorganisms with technological beneficial use. Int J Food Microbiol 154 (3):87–97. doi: 10.1016/j.ijfoodmicro.2011.12.030.
  • Bourdichon, F., S. Casaregola, C. Farrokh, J. C. Frisvad, M. L. Gerds, W. P. Hammes, J. Harnett, G. Huys, S. Laulund, A. Ouwehand, et al. 2012. Erratum to “Food fermentations: Microorganisms with technological beneficial use” [International Journal of Food Microbiology 154 (2012) 87–97]. International Journal of Food Microbiology 156 (3):301. doi: 10.1016/j.ijfoodmicro.2012.04.003.
  • Bromberg, R., I. Moreno, R. R. Delboni, H. C. Cintra, and P. T. V. Oliveira. 2005. Characteristics of the bacteriocin produced by Lactococcus lactis subsp. cremoris CTC 204 and the effect of this compound on the mesophilic bacteria associated with raw beef. World Journal of Microbiology and Biotechnology 21 (3):351–8. doi: 10.1007/s11274-004-2610-9.
  • BSA. 2019. Prolong II. Accessed September 22, 2019. http://www.bsa.ca/en/prolong-ii/.
  • Calderón-Oliver, M., H. B. Escalona-Buendía, and E. Ponce-Alquicira. 2020. Effect of the addition of microcapsules with avocado peel extract and nisin on the quality of ground beef. Food Science & Nutrition 8 (3):1325 34. doi: 10.1002/fsn3.59.
  • Carter, C. D., A. Parks, T. Abuladze, M. Li, J. Woolston, J. Magnone, A. Senecal, A. M. Kropinski, and A. Sulakvelidze. 2012. Bacteriophage cocktail significantly reduces Escherichia coli O157:H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2 (3):178–85. doi: 10.4161/bact.22825.
  • Casaburi, A., P. Piombino, G.-J. Nychas, F. Villani, and D. Ercolini. 2015. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology 45 (Pt A):83–102. doi: 10.1016/j.fm.2014.02.002.
  • Castellano, P., C. Gonzalez, F. Carduza, and G. Vignolo. 2010. Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Science 85 (3):394–401. doi: 10.1016/j.meatsci.2010.02.007.
  • Castellano, P., M. P. Ibarreche, M. B. Massani, C. Fontana, and G. M. Vignolo. 2017. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 5 (3):38. doi: 10.3390/microorganisms5030038.
  • Castellano, P., and G. Vignolo. 2006. Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology 43 (2):194–9. doi: 10.1111/j.1472-765X.2006.01933.x.
  • Chaillou, S., S. Christieans, M. Rivollier, I. Lucquin, M. C. Champomier-Vergès, and M. Zagorec. 2014. Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Science 97 (3):332–8. doi: 10.1016/j.meatsci.2013.08.009.
  • Chakchouk Mtibaa, A., S. Smaoui, H. Ben Hlima, I. Sellem, K. Ennouri, and L. Mellouli. 2019. Enterocin BacFL31 from a safety Enterococcus faecium FL31: Natural preservative agent used alone and in combination with aqueous peel onion (Allium cepa) extract in ground beef meat storage. Biomed Research International 2019:1–13. Article ID doi: 10.1155/2019/4094890.
  • Chattopadhyay, P., and S. Adhikari. 2014. Freezing of foods | Growth and survival of microorganisms. In Encyclopedia of food microbiology, ed. C. A. Batt and M. L. Tortorello, vol. 1, 2nd ed., 968–71. London, UK: Academic Press.
  • Chen, J. H., Y. Ren, J. Seow, T. Liu, W. S. Bang, and H. G. Yuk. 2012. Intervention technologies for ensuring microbiological safety of meat: Current and future trends. Comprehensive Reviews in Food Science and Food Safety 11 (2):119–32. doi: 10.1111/j.1541-4337.2011.00177.x.
  • Comi, G. 2017. Spoilage of meat and fish. In The microbiological quality of food: Foodborne spoilers, ed. A. Bevilacqua, M. R. Corbo and M. Sinigaglia. 179–210. Cambridge, UK: Woodhead.
  • Comi, G., E. Tirloni, D. Andyanto, M. Manzano, and L. Iacumin. 2015. Use of bio-protective cultures to improve the shelf-life and the sensorial characteristics of commercial hamburgers. LWT - Food Science and Technology 62 (2):1198–202. doi: 10.1016/j.lwt.2015.02.022.
  • Cutter, C. N., and G. R. Siragusa. 1996. Reduction of Brochothrix thermosphacta on beef surfaces following immobilization of nisin in calcium alginate gels. Letters in Applied Microbiology 23 (1):9–12. doi: 10.1111/j.1472-765X.1996.tb00018.x.
  • Cutter, C. N., and G. R. Siragusa. 1997. Growth of Brochothrix thermosphacta in ground beef following treatments with nisin in calcium alginate gels. Food Microbiology 14 (5):425–30. doi: 10.1006/fmic.1997.0114.
  • Cutter, C. N., and G. R. Siragusa. 1998. Incorporation of nisin into a meat binding system to inhibit bacteria on beef surfaces. Letters in Applied Microbiology 27 (1):19–23. doi: 10.1046/j.1472-765X.1998.00381.x.
  • Cutter, C. N., J. L. Willett, and G. R. Siragusa. 2001. Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Letters in Applied Microbiology 33 (4):325–8. doi: 10.1046/j.1472-765X.2001.01005.x.
  • da Costa, R. J., F. L. S. Voloski, R. G. Mondadori, E. H. Duval, and Â. M. Fiorentini. 2019. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality 2019:1–12. Article ID doi: 10.1155/2019/4726510.
  • da Silva, N., M. H. Taniwaki, V. C. A. Junqueira, N. F. A. Silveira, M. M. Okazaki, and R. A. R. Gomes. 2018. Microbiological examination methods of food and water: A laboratory manual. 2nd ed. Leiden, The Netherlands: CRC Press.
  • David, J. R. D., L. R. Steenson, and P. M. Davidson. 2013. Expectations and applications of natural antimicrobials to foods: A guidance document for users, suppliers, research and development, and regulatory agencies. Food Protection Trends 33 (4):241–50.
  • Davidson, P. M., H. Bozkurt Cekmer, E. A. Monu, and C. Techathuvanan. 2015. The use of natural antimicrobials in food: An overview. In Handbook of natural antimicrobials for food safety and quality, ed. T. M. Taylor. 1–27. Cambridge, UK: Woodhead.
  • Davidson, P. M., F. J. Critzer, and T. M. Taylor. 2013. Naturally occurring antimicrobials for minimally processed foods. Annual Review of Food Science and Technology 4 (1):163–90. doi: 10.1146/annurev-food-030212-182535.
  • Delves-Broughton, J. 2012. Natural antimicrobials as additives and ingredients for the preservation of foods and beverages. In Natural food additives, ingredients and flavourings, ed. D. Baines and R. Seal. 127–61. Cambridge, UK: Woodhead.
  • Dhifi, W., S. Jazi, M. E. Beyrouthy, C. Sadaka, and W. Mnif. 2020. Assessing the potential and safety of Myrtus communis flower essential oils as efficient natural preservatives against Listeria monocytogenes growth in minced beef under refrigeration. Food Science & Nutrition 8 (4):2076–87. doi: 10.1002/fsn3.1497.
  • Djenane, D., L. Martínez, D. Blanco, J. Yangüela, J. A. Beltrán, and P. Roncalés. 2005. Effect of lactic acid bacteria on extention of shelf life and growth of Listeria monocytogenes in beef steaks stored in CO2-rich atmosphere. Brazilian Journal of Microbiology 36 (4):405–12. doi: 10.1590/S1517-83822005000400018.
  • Djenane, D., and P. Roncalés. 2018. Carbon monoxide in meat and fish packaging: Advantages and limits. Foods 7 (2):12. doi: 10.3390/foods7020012.
  • Dodd, C. E. R. 2014. Pseudomonas | Introduction. In Encyclopedia of food microbiology, ed. C. A. Batt and M. L. Tortorello, vol. 3, 2nd ed., 244–7. London, UK: Academic Press.
  • Donaghy, J. A., B. Jagadeesan, K. Goodburn, L. Grunwald, O. N. Jensen, A. Jespers, K. Kanagachandran, H. Lafforgue, W. Seefelder, and M.-C. Quentin. 2019. Relationship of sanitizers, disinfectants, and cleaning agents with antimicrobial resistance. Journal of Food Protection 82 (5):889–902. doi: 10.4315/0362-028X.JFP-18-373.
  • Doulgeraki, A. I., D. Ercolini, F. Villani, and G.-J E. Nychas. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology 157 (2):130–41. doi: 10.1016/j.ijfoodmicro.2012.05.020.
  • Dykes, G. A., and S. M. Moorhead. 2002. Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. International Journal of Food Microbiology 73 (1):71–81. doi: 10.1016/S0168-1605(01)00710-3.
  • El-Ziney, M. G., T. van Den Tempel, J. Debevere, and M. Jakobsen. 1999. Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. Journal of Food Protection 62 (3):257–61. doi: 10.4315/0362-028X-62.3.257.
  • Elsser-Gravesen, D., and A. Elsser-Gravesen. 2014. Biopreservatives. In Biotechnology of food and feed additives, ed. H. Zorn and P. Czermak. 29–49. Berlin, Germany: Springer.
  • Erkmen, O., and T. F. Bozoglu. 2016. Food microbiology: Principles into practice. Vol. 2. Chichester, UK: John Wiley & Sons.
  • Espitia, P. J. P., C. G. Otoni, and N. F. F. Soares. 2016. Pediocin applications in antimicrobial food packaging systems. In Antimicrobial food packaging, ed. J. Barros-Velázquez. 445–54. London, UK: Academic Press.
  • Fangio, M. F., and R. Fritz. 2014. Potential use of a bacteriocin-like substance in meat and vegetable food biopreservation. International Food Research Journal 21 (2):677–83.
  • Favaro, L., and S. D. Todorov. 2017. Bacteriocinogenic LAB strains for fermented meat preservation: Perspectives, challenges, and limitations. Probiotics and Antimicrobial Proteins 9 (4):444–58. doi: 10.1007/s12602-017-9330-6.
  • Fieseler, L., M. J. Loessner, and S. Hagens. 2011. Bacteriophages and food safety. In Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation, ed. C. Lacroix. 161–78. Cambridge, UK: Woodhead.
  • Fiorentini, Â. M., E. S. Sant'Anna, A. C. S. Porto, J. Z. Mazo, and B. D. G. M. Franco. 2001. Influence of bacteriocins produced by Lactobacillus plantarum BN in the shelf-life of refrigerated bovine meat. Brazilian Journal of Microbiology 32 (1):42–6. doi: 10.1590/S1517-83822001000100010.
  • Fusco, V., G. M. Quero, G.-S. Cho, J. Kabisch, D. Meske, H. Neve, W. Bockelmann, and C. M. A. P. Franz. 2015. The genus Weissella: Taxonomy, ecology and biotechnological potential. Frontiers in Microbiology 6:155 doi: 10.3389/fmicb.2015.00155.
  • Garde, S., N. Gómez-Torres, M. Hernández, and M. Ávila. 2014. Susceptibility of Clostridium perfringens to antimicrobials produced by lactic acid bacteria: Reuterin and nisin. Food Control. 44:22–5. doi: 10.1016/j.foodcont.2014.03.034.
  • Garsa, A. K., R. Kumariya, A. Kumar, P. Lather, S. Kapila, and S. K. Sood. 2014. Industrial cheese whey utilization for enhanced production of purified pediocin PA-1. LWT - Food Science and Technology 59 (2):656–65. doi: 10.1016/j.lwt.2014.07.008.
  • Gharsallaoui, A., N. Oulahal, C. Joly, and P. Degraeve. 2016. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56 (8):1262–74. doi: 10.1080/10408398.2013.763765.
  • Gómez Cárdenas, L., E. Ponce-Alquicira, R. E. F. Macedo, and M. S. Rubio Lozano. 2013. Effects of natural antimicrobials on microbiological stability, pH, aspect and sensory properties of ground beef patties stored under refrigeration. Revista Mexicana de Ciencias Pecuarias 4 (3):255–70.
  • Greer, G. G. 1986. Homologous bacteriophage control of Pseudomonas growth and beef Spoilage 1,2. Journal of Food Protection 49 (2):104–9. doi: 10.4315/0362-028X-49.2.104.
  • Greer, G. G. 1988. Effects of phage concentration, bacterial density, and temperature on phage control of beef spoilage. Journal of Food Science 53 (4):1226–7. doi: 10.1111/j.1365-2621.1988.tb13570.x.
  • Greer, G. G., and B. D. Dilts. 1990. Inability of a bacteriophage pool to control beef spoilage. International Journal of Food Microbiology 10 (3-4):331–42. doi: 10.1016/0168-1605(90)90080-O.
  • Halkman, H. B. D., and A. K. Halkman. 2014. Indicator organisms. In Encyclopedia of food microbiology, ed. C. A. Batt and M. L. Tortorello, vol. 2, 2nd ed., 358–63. London, UK: Academic Press.
  • Hernández-Macedo, M. L., G. V. Barancelli, and C. J. Contreras-Castillo. 2011. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: A review. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 42 (1):1–11. doi: 10.1590/S1517-83822011000100001.
  • Hilgarth, M., M. Nani, and R. F. Vogel. 2018. Assertiveness of meat-borne Lactococcus piscium strains and their potential for competitive exclusion of spoilage bacteria in situ and in vitro. Journal of Applied Microbiology 124 (5):1243–53. doi: 10.1111/jam.13710.
  • Iulietto, M. F., P. Sechi, E. Borgogni, and B. T. Cenci-Goga. 2015. Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Italian Journal of Animal Science 14 (3):4011. doi: 10.4081/ijas.2015.4011.
  • Jones, R. J., M. Zagorec, G. Brightwell, and J. R. Tagg. 2009. Inhibition by Lactobacillus sakei of other species in the flora of vacuum packaged raw meats during prolonged storage. Food Microbiology 26 (8):876–81. doi: 10.1016/j.fm.2009.06.003.
  • Juneja, V. K., H. P. Dwivedi, and X. Yan. 2012. Novel natural food antimicrobials. Annual Review of Food Science and Technology 3:381–403. doi: 10.1146/annurev-food-022811-101241.
  • Karabagias, I., A. Badeka, and M. G. Kontominas. 2011. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Science 88 (1):109–16. doi: 10.1016/j.meatsci.2010.12.010.
  • Katikou, P., I. Ambrosiadis, D. Georgantelis, P. Koidis, and S. A. Georgakis. 2005. Effect of Lactobacillus-protective cultures with bacteriocin-like inhibitory substances’ producing ability on microbiological, chemical and sensory changes during storage of refrigerated vacuum-packaged sliced beef. Journal of Applied Microbiology 99 (6):1303–13. doi: 10.1111/j.1365-2672.2005.02739.x.
  • Khalili Sadaghiani, S.,. J. Aliakbarlu, H. Tajik, and A. Mahmoudian. 2019. Anti‐listeria activity and shelf life extension effects of Lactobacillus along with garlic extract in ground beef. Journal of Food Safety 39 (6):e12709. doi: 10.1111/jfs.12709.
  • Kim, Y.-M., H.-D. Paik, and D.-S. Lee. 2002. Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. Journal of the Science of Food and Agriculture 82 (9):998–1002. doi: 10.1002/jsfa.1125.
  • Kontominas, M. G. 2014. Packaging | Modified atmosphere packaging of foods. In Encyclopedia of food microbiology, ed. C. A. Batt and M. L. Tortorello, vol. 2, 2nd ed., 1012–6. London, UK: Academic Press.
  • Kuleas¸ A. H., and M. L. Çakmakçı. 2002. Effect of reuterin produced by Lactobacillus reuteri on the surface of sausages to inhibit the growth of Listeria monocytogenes and Salmonella spp. Nahrung/Food 46 (6):408–10. doi: 10.1002/1521-3803(20021101)46:6 < 408::AID-FOOD408 > 3.0.CO;2-T.
  • Kumariya, R., A. K. Garsa, Y. S. Rajput, S. K. Sood, N. Akhtar, and S. Patel. 2019. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis 128:171–7. doi: 10.1016/j.micpath.2019.01.002.
  • Lücke, F.-K. 2014. Food technologies: Biopreservation. In Encyclopedia of food safety, ed. Y. Motarjemi, G. G. Moy and E. C. D. Todd, vol. 3. 135–9. San Diego, CA: Academic Press.
  • Mahmud, J., and R. A. Khan. 2018. Characterization of natural antimicrobials in food system. Advances in Microbiology 08 (11):894–916. doi: 10.4236/aim.2018.811060.
  • Meade, E., M. A. Slattery, and M. Garvey. 2020. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics (Basel) 9 (1):32. doi: 10.3390/antibiotics9010032.
  • Melero, B., R. Vinuesa, A. M. Diez, I. Jaime, and J. Rovira. 2013. Application of protective cultures against Listeria monocytogenes and Campylobacter jejuni in chicken products packaged under modified atmosphere. Poultry Science 92 (4):1108–16. doi: 10.3382/ps.2012-02539.
  • Michalczyk, M.,. R. Macura, I. Tesarowicz, and J. Banaś. 2012. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef. Meat Science 90 (3):842–50. doi: 10.1016/j.meatsci.2011.11.026.
  • Mills, J., A. Donnison, and G. Brightwell. 2014. Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: A review. Meat Science 98 (1):71–80. doi: 10.1016/j.meatsci.2014.05.002.
  • Mishra, S. K., R. K. Malik, G. Manju, N. Pandey, G. Singroha, P. Behare, and J. K. Kaushik. 2012. Characterization of a reuterin-producing Lactobacillus reuteri BPL-36 strain isolated from human infant fecal sample. Probiotics and Antimicrobial Proteins 4 (3):154–61. doi: 10.1007/s12602-012-9103-1.
  • Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine 6 (7):e1000097 doi: 10.1371/journal.pmed.1000097.
  • Montiel, R., I. Martín-Cabrejas, Á. Peirotén, and M. Medina. 2016. Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure treatments on the characteristics of cooked ham. Innovative Food Science & Emerging Technologies 35:111–8. doi: 10.1016/j.ifset.2016.04.013.
  • Moradi, M., H. Tajik, K. Mardani, and P. Ezati. 2019. Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef . Vet Res Forum 10 (3):193–8. doi: 10.30466/vrf.2019.101419.2417.
  • Moye, Z. D., J. Woolston, and A. Sulakvelidze. 2018. Bacteriophage applications for food production and processing. Viruses 10 (4):205. Article doi: 10.3390/v10040205.
  • Müller-Auffermann, K., F. Grijalva, F. Jacob, and M. Hutzler. 2015. Nisin and its usage in breweries: A review and discussion. Journal of the Institute of Brewing 121 (3):309–19. doi: 10.1002/jib.233.
  • Muthukumarasamy, P., J. H. Han, and R. A. Holley. 2003. Bactericidal effects of Lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. Journal of Food Protection 66 (11):2038–44. doi: 10.4315/0362-028x-66.11.2038.
  • Negash, A. W., and B. A. Tsehai. 2020. Current applications of bacteriocin. International Journal of Microbiology 2020:1–7. doi: 10.1155/2020/4374891.
  • O’Bryan, C. A., P. G. Crandall, S. C. Ricke, and J. B. Ndahetuye. 2015. Lactic acid bacteria (LAB) as antimicrobials in food products: Types and mechanisms of action. In Handbook of natural antimicrobials for food safety and quality, ed. T. M. Taylor, 117–36. Cambridge, UK: Woodhead.
  • O'Connor, P. M., E. F. O'Shea, C. M. Guinane, O. O'Sullivan, P. D. Cotter, R. P. Ross, and C. Hill. 2015. Nisin H Is a new nisin variant produced by the gut-derived strain Streptococcus hyointestinalis DPC6484. Applied and Environmental Microbiology 81 (12):3953–60. doi: 10.1128/AEM.00212-15.
  • O'Flynn, G., R. P. Ross, G. F. Fitzgerald, and A. Coffey. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Applied and Environmental Microbiology 70 (6):3417 doi: 10.1128/AEM.70.6.3417:–3424.2004.
  • O'Sullivan, L., D. Bolton, O. McAuliffe, and A. Coffey. 2019. Bacteriophages in food applications: From foe to friend. Annual Review of Food Science and Technology 10:151–72. doi: 10.1146/annurev-food-032818-121747.
  • Ockerman, H. W., and L. Basu. 2014. Preservation methods of animal products. In Encyclopedia of meat sciences, ed. M. Dikeman and C. Devine, vol. 3, 2nd ed., 78–83. London, UK: Academic Press.
  • Odeyemi, O. A., O. O. Alegbeleye, M. Strateva, and D. Stratev. 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety 19 (2):311–31. doi: 10.1111/1541-4337.12526.
  • Olaoye, O. A., and A. A. Onilude. 2010. Investigation on the potential application of biological agents in the extension of shelf life of fresh beef in Nigeria. World Journal of Microbiology and Biotechnology 26 (8):1445–54. doi: 10.1007/s11274-010-0319-5.
  • Palleroni, N. J. 2015. Pseudomonas. In Bergey’s manual of systematics of archaea and bacteria, ed. W. B. Whitman. John Wiley & Sons.
  • Pennacchia, C., D. Ercolini, and F. Villani. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology 28 (1):84–93. doi: 10.1016/j.fm.2010.08.010.
  • Petruzzi, L., M. R. Corbo, M. Sinigaglia, and A. Bevilacqua. 2017. Microbial spoilage of foods: Fundamentals. In The microbiological quality of food: Foodborne spoilers, ed. A. Bevilacqua, M. R. Corbo and M. Sinigaglia, 1–21. Cambridge, UK: Woodhead.
  • Pisoschi, A. M., A. Pop, C. Georgescu, V. Turcuş, N. K. Olah, and E. Mathe. 2018. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry 143:922–35. doi: 10.1016/j.ejmech.2017.11.095.
  • Pothakos, V., F. Devlieghere, F. Villani, J. Björkroth, and D. Ercolini. 2015. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Science 109:66–74. doi: 10.1016/j.meatsci.2015.04.014.
  • Prudêncio, C. V., M. T. Santos, and M. C. D. Vanetti. 2015. Strategies for the use of bacteriocins in Gram-negative bacteria: Relevance in food microbiology. Journal of Food Science and Technology 52 (9):5408–17. doi: 10.1007/s13197-014-1666-2.
  • Ray, B., and A. Bhunia. 2013. Fundamental food microbiology. 5th ed. Boca Raton, FL: CRC Press.
  • Robertson, G. L. 2013. Food packaging: Principles and practice. 3rd ed. Boca Raton, FL: CRC Press.
  • Rosario, D. K. A., B. L. Rodrigues, P. C. Bernardes, and C. A. Conte-Junior. 2020. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2020.1754755.
  • Schaefer, L., T. A. Auchtung, K. E. Hermans, D. Whitehead, B. Borhan, and R. A. Britton. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology (Reading, England) 156 (Pt 6):1589–99. doi: 10.1099/mic.0.035642-0.
  • Senne, M. M., and S. E. Gilliland. 2003. Antagonistic action of cells of Lactobacillus delbrueckii subsp. lactis against pathogenic and spoilage microorganisms in fresh meat systems. Journal of Food Protection 66 (3):418–25. doi: 10.4315/0362-028X-66.3.418.
  • Shahbazi, Y., N. Shavisi, and E. Mohebi. 2016. Effects of Ziziphora clinopodioides essential oil and nisin, both separately and in combination, to extend shelf life and control Escherichia coli O157:H7 and Staphylococcus aureus in raw beef patty during refrigerated storage. Journal of Food Safety 36 (2):227–36. doi: 10.1111/jfs.12235.
  • Shebs, E. L., M. J. Lukov, F. M. Giotto, E. S. Torres, and A. S. de Mello. 2020. Efficacy of bacteriophage and organic acids in decreasing STEC O157:H7 populations in beef kept under vacuum and aerobic conditions: A simulated High Event Period scenario. Meat Science 162:108023. doi: 10.1016/j.meatsci.2019.108023.
  • Shin, J. M., J. W. Gwak, P. Kamarajan, J. C. Fenno, A. H. Rickard, and Y. L. Kapila. 2016. Biomedical applications of nisin. Journal of Applied Microbiology 120 (6):1449–65. doi: 10.1111/jam.13033.
  • Siragusa, G. R., C. N. Cutter, and J. L. Willett. 1999. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology 16 (3):229–35. doi: 10.1006/fmic.1998.0239.
  • Smaoui, S., L. Elleuch, R. Ben Salah, S. Najah, A. Chakchouk-Mtibaa, I. Sellem, S. Besbes, and L. Mellouli. 2014. Efficient role of BacTN635 on the safety properties, sensory attributes, and texture profile of raw minced meat beef and chicken breast. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (2):218–25. doi: 10.1080/19440049.2013.873144.
  • Sofos, J. N., G. Flick, G.-J. Nychas, C. A. Bryan, S. C. Ricke, and P. G. Crandall. 2013. Meat, poultry, and seafood. In Food microbiology: Fundamentals and frontiers, ed. M. P. Doyle and R. L. Buchanan, 4th ed., 111–67. Washington, DC: ASM Press.
  • Sohaib, M., F. M. Anjum, M. S. Arshad, and U. U. Rahman. 2016. Postharvest intervention technologies for safety enhancement of meat and meat based products; A critical review. Journal of Food Science and Technology 53 (1):19–30. doi: 10.1007/s13197-015-1985-y.
  • Soltani, S., R. Hammami, P. D. Cotter, S. Rebuffat, L. Ben Said, H. Gaudreau, F. Bédard, E. Biron, D. Drider, and I. Fliss. 2021. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews 45 (1). doi: 10.1093/femsre/fuaa039.
  • Stella, S.,. C. Bernardi, P. Cattaneo, F. M. Colombo, and E. Tirloni. 2016. Evaluation of the in vitro antimicrobial activity of mixtures of Lactobacillus sakei and Lactobacillus curvatus isolated from argentine meat and their effect on vacuum-packaged beef. Italian Journal of Food Science 28 (4):612–24.
  • Sun, X. D., and R. A. Holley. 2012. Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Comprehensive Reviews in Food Science and Food Safety 11 (4):340–54. doi: 10.1111/j.1541-4337.2012.00188.x.
  • Taskila, S. 2017. Industrial production of starter cultures. In Starter cultures in food production, ed. B. Speranza, A. Bevilacqua, M. R. Corbo and M. Sinigaglia, 79–100. Chichester, UK: John Wiley & Sons.
  • Tenea, G. N., and J. M. Guaña. 2019. Inhibitory substances produced by native Lactobacillus plantarum UTNCys5-4 control microbial population growth in meat. Journal of Food Quality 2019:1–8. Article ID doi: 10.1155/2019/9516981.
  • Trabelsi, I., S. Ben Slima, N. Ktari, M. Triki, R. Abdehedi, W. Abaza, H. Moussa, A. Abdeslam, and R. Ben Salah. 2019. Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science 154:29–36. doi: 10.1016/j.meatsci.2019.04.005.
  • Tu, L., and A. Mustapha. 2002. Reduction of Brochothrix thermosphacta and Salmonella serotype Typhimurium on vacuum-packaged fresh beef treated with nisin and nisin combined with EDTA. Journal of Food Science 67 (1):302–6. doi: 10.1111/j.1365-2621.2002.tb11401.x.
  • Verma, A. K., R. Banerjee, H. P. Dwivedi, and V. K. Juneja. 2014. Bacteriocins | Potential in food preservation. In Encyclopedia of food microbiology, ed. C. A. Batt and M. L. Tortorello, vol. 1, 2nd ed., 180–6. London, UK: Academic Press.
  • Yang, S.-C., C.-H. Lin, C. T. Sung, and J.-Y. Fang. 2014. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology 5:241 doi: 10.3389/fmicb.2014.00241.
  • Yeh, Y., F. H. de Moura, K. Van Den Broek, and A. S. de Mello. 2018. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Science 139:44–8. doi: 10.1016/j.meatsci.2018.01.007.
  • Yıldırım, Z., S. Yerlikaya, N. Öncül, and T. Sakin. 2016. Inhibitory effect of lactococcin BZ against Listeria innocua and indigenous microbiota of fresh beef. Food Technol Biotechnol 54 (3):317–23. doi: 10.17113/ftb.54.03.16.4373.
  • Yost, C. K. 2014. Biopreservation. In Encyclopedia of meat sciences, ed. M. Dikeman and C. Devine, vol. 1, 2nd ed., 76–82. London, UK: Academic Press.
  • Zagorec, M., and M.-C. Champomier-Vergès. 2017. Meat microbiology and spoilage. In Lawrie’s meat science, ed. F. Toldrá, 8th ed., 187–203. Cambridge, UK: Woodhead.
  • Zhang, Y., L. Zhu, P. Dong, R. Liang, Y. Mao, S. Qiu, and X. Luo. 2018. Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef. Asian-Australasian Journal of Animal Sciences 31 (4):585–94. doi: 10.5713/ajas.17.0540.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O'Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–858. doi: 10.1099/ijsem.0.004107.
  • Zimina, M., O. Babich, A. Prosekov, S. Sukhikh, S. Ivanova, M. Shevchenko, and S. Noskova. 2020. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 9 (9):553. doi: 10.3390/antibiotics9090553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.