1,741
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ah-Hen, K. S., K. Mathias-Rettig, L. S. Gómez-Pérez, G. Riquelme-Asenjo, R. Lemus-Mondaca, and O. Muñoz-Fariña. 2018. Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. Journal of Food Measurement and Characterization 12 (1):602–15. doi: 10.1007/s11694-017-9673-4.
  • Alegría, A., G. Garcia-Llatas, and A. Cilla. 2015. Static digestion models: General introduction. In The impact of food bioactives on health, 3–12. Cham: Springer.
  • Alminger, M., A.-M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena, C. N. Santos, et al. 2014. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety 13 (4):413–36. doi: 10.1111/1541-4337.12081.
  • Altunkaya, A., V. Gökmen, and L. H. Skibsted. 2016. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chemistry 190:25–32. doi: 10.1016/j.foodchem.2015.05.069.
  • Annunziata, G., M. Maisto, C. Schisano, R. Ciampaglia, P. Daliu, V. Narciso, G. Tenore, and E. Novellino. 2018. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients 10 (11):1711. doi: 10.3390/nu10111711.
  • Benzie, I. F. F., and J. J. Strain. 1996. The Ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Analytical Biochemistry 239 (1):70–6. doi: 10.1006/abio.1996.0292.
  • Bermúdez-Soto, M. J., F. A. Tomás-Barberán, and M. T. García-Conesa. 2007. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry 102 (3):865–74. doi: 10.1016/j.foodchem.2006.06.025.
  • Boaventura, B. C. B., R. D. d M. C. Amboni, E. L. da Silva, E. S. Prudencio, P. F. Di Pietro, L. G. Malta, R. M. Polinati, and R. H. Liu. 2015. Effect of in vitro digestion of yerba mate (Ilex paraguariensis A. St. Hil.) extract on the cellular antioxidant activity, antiproliferative activity and cytotoxicity toward HepG2 cells. Food Research International 77:257–63. doi: 10.1016/j.foodres.2015.05.004.
  • Bohn, T., F. Carriere, L. Day, A. Deglaire, L. Egger, D. Freitas, M. Golding, S. Le Feunteun, A. Macierzanka, O. Menard, et al. 2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition 58 (13):2239–61. doi: 10.1080/10408398.2017.1315362.
  • Bonnaire, L., S. Sandra, T. Helgason, E. A. Decker, J. Weiss, and D. J. McClements. 2008. Influence of lipid physical state on the in vitro digestibility of emulsified lipids. Journal of Agricultural and Food Chemistry 56 (10):3791–7. doi: 10.1021/jf800159e.
  • Bouayed, J., L. Hoffmann, and T. Bohn. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (1):14–21. doi: 10.1016/j.foodchem.2011.02.052.
  • Brand-Williams, W.,. M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28 (1):25–30. doi: 10.1016/S0023-6438(95)80008-5.
  • Cai, Y., W. Qin, S. Ketnawa, and Y. Ogawa. 2020. Impact of particle size of pulverized citrus peel tissue on changes in antioxidant properties of digested fluids during simulated in vitro digestion. Food Science and Human Wellness 9 (1):58–63. doi: 10.1016/j.fshw.2019.12.008.
  • Campos-Vega, R., K. Vázquez-Sánchez, D. López-Barrera, G. Loarca-Piña, S. Mendoza-Díaz, and B. D. Oomah. 2015. Simulated gastrointestinal digestion and in vitro colonic fermentation of spent coffee (Coffea arabica L.): Bioaccessibility and intestinal permeability. Food Research International 77:156–61. doi: 10.1016/j.foodres.2015.07.024.
  • Carbonell-Capella, J. M., M. Buniowska, M. J. Esteve, and A. Frígola. 2015. Effect of Stevia rebaudiana addition on bioaccessibility of bioactive compounds and antioxidant activity of beverages based on exotic fruits mixed with oat following simulated human digestion. Food Chemistry 184:122–30. doi: 10.1016/j.foodchem.2015.03.095.
  • Carocho, M., and I. C. F. R. Ferreira. 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology 51:15–25. doi: 10.1016/j.fct.2012.09.021.
  • Castello, F., G. Costabile, L. Bresciani, M. Tassotti, D. Naviglio, D. Luongo, P. Ciciola, M. Vitale, C. Vetrani, G. Galaverna, et al. 2018. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Archives of Biochemistry and Biophysics 646:1–9. doi: 10.1016/j.abb.2018.03.021.
  • Celep, E., M. Charehsaz, S. Akyüz, E. T. Acar, and E. Yesilada. 2015. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Research International 78:209–15. doi: 10.1016/j.foodres.2015.10.009.
  • Celep, E., Y. İnan, S. Akyüz, and E. Yesilada. 2017. The bioaccessible phenolic profile and antioxidant potential of Hypericum perfoliatum L. after simulated human digestion. Industrial Crops and Products 109:717–23. doi: 10.1016/j.indcrop.2017.09.032.
  • Chait, Y. A., A. Gunenc, F. Bendali, and F. Hosseinian. 2020. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. LWT - Food Science and Technology 117:108623. doi: 10.1016/j.lwt.2019.108623.
  • Chen, C. Y. O., P. E. Milbury, and J. B. Blumberg. 2019. Polyphenols in almond skins after blanching modulate plasma biomarkers of oxidative stress in healthy humans. Antioxidants 8 (4):95. doi: 10.3390/antiox8040095.
  • Chen, G. L., S. G. Chen, Y. Y. Zhao, C. X. Luo, J. Li, and Y. Q. Gao. 2014. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products 57:150–7. doi: 10.1016/j.indcrop.2014.03.018.
  • Chen, G.-L., K. Hu, N.-J. Zhong, J. Guo, Y.-S. Gong, X.-T. Deng, Y.-S. Huang, D.-K. Chu, and Y.-Q. Gao. 2013. Antioxidant capacities and total polyphenol content of nine commercially available tea juices measured by an in vitro digestion model. European Food Research and Technology 236 (2):303–10. doi: 10.1007/s00217-012-1897-2.
  • Chiang, C.-J., H. Kadouh, and K. Zhou. 2013. Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT - Food Science and Technology 51 (2):417–22. doi: 10.1016/j.lwt.2012.11.014.
  • Coe, S., A. Fraser, and L. Ryan. 2013. Polyphenol bioaccessibility and sugar reducing capacity of black, green, and white teas. International Journal of Food Science 2013:1–10. doi: 10.1155/2013/238216.
  • Correa, V. G., G. A. Gonçalves, A. B. de Sá-Nakanishi, I. C. F. R. Ferreira, L. Barros, M. I. Dias, E. A. Koehnlein, C. G. M. de Souza, A. Bracht, and R. M. Peralta. 2017. Effects of in vitro digestion and in vitro colonic fermentation on stability and functional properties of yerba mate (Ilex paraguariensis A. St. Hil.) beverages. Food Chemistry 237:453–60. doi: 10.1016/j.foodchem.2017.05.125.
  • Correa-Betanzo, J., E. Allen-Vercoe, J. McDonald, K. Schroeter, M. Corredig, and G. Paliyath. 2014. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry 165:522–31. doi: 10.1016/j.foodchem.2014.05.135.
  • Crozier, A., D. Del Rio, and M. N. Clifford. 2010. Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine 31 (6):446–67. doi: 10.1016/j.mam.2010.09.007.
  • Dall’Asta, M., L. Bresciani, L. Calani, M. Cossu, D. Martini, C. Melegari, D. Del Rio, N. Pellegrini, F. Brighenti, and F. Scazzina. 2016. In Vitro bioaccessibility of phenolic acids from a commercial aleurone-enriched bread compared to a whole grain bread. Nutrients 8 (1):42. doi: 10.3390/nu8010042.
  • Donlao, N., and Y. Ogawa. 2018. Impacts of processing conditions on digestive recovery of polyphenolic compounds and stability of the antioxidant activity of green tea infusion during in vitro gastrointestinal digestion. LWT - Food Science and Technology 89:648–56. doi: 10.1016/j.lwt.2017.11.051.
  • Dou, Z., C. Chen, and X. Fu. 2019. Bioaccessibility, antioxidant activity and modulation effect on gut microbiota of bioactive compounds from Moringa oleifera Lam. leaves during digestion and fermentation in vitro. Food and Function 10 (8):5070–9. doi: 10.1039/c9fo00793h.
  • Dupont, D.,. M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, et al. 2019. Can dynamic in vitro digestion systems mimic the physiological reality? Critical Reviews in Food Science and Nutrition 59 (10):1546–62. doi: 10.1080/10408398.2017.1421900.
  • Dutra, R. L. T., A. M. Dantas, D. d A. Marques, J. D. F. Batista, B. R. L. D. A. Meireles, Â. M. T. de Magalhães Cordeiro, M. Magnani, and G. D S. C. Borges. 2017. Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International 100 (Pt 1):650–7. doi: 10.1016/j.foodres.2017.07.047.
  • Fang, J. 2014. Bioavailability of anthocyanins. Drug Metabolism Reviews 46 (4):508–20. doi: 10.3109/03602532.2014.978080.
  • Ferruzzi, M. G. 2010. The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiology and Behavior 100 (1):33–41. doi: 10.1016/j.physbeh.2010.01.035.
  • Foti, M. C., C. Daquino, and C. Geraci. 2004. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions. The Journal of Organic Chemistry 69 (7):2309–14. doi: 10.1021/jo035758q.
  • Fraga, C. G., M. Galleano, S. V. Verstraeten, and P. I. Oteiza. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine 31 (6):435–45. doi: 10.1016/j.mam.2010.09.006.
  • Fraga, C. G., P. I. Oteiza, and M. Galleano. 2014. In vitro measurements and interpretation of total antioxidant capacity. Biochimica et Biophysica Acta 1840 (2):931–4. doi: 10.1016/j.bbagen.2013.06.030.
  • Gayoso, L., M. Roxo, R. Y. Cavero, M. I. Calvo, D. Ansorena, I. Astiasarán, and M. Wink. 2018. Bioaccessibility and biological activity of Melissa officinalis, Lavandula latifolia and Origanum vulgare extracts: Influence of an in vitro gastrointestinal digestion. Journal of Functional Foods 44:146–54. doi:10.1016/j.jff.2018.03.003.
  • Ghosh, S., R. Chakraborty, and U. Raychaudhuri. 2015. Determination of pH-dependent antioxidant activity of palm (Borassus flabellifer) polyphenol compounds by photoluminol and DPPH methods: A comparison of redox reaction sensitivity. 3 Biotech 5 (5):633–40. doi: 10.1007/s13205-014-0260-7.
  • Giusti, F., E. Capuano, G. Sagratini, and N. Pellegrini. 2019. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chemistry 285:458–67. doi: 10.1016/j.foodchem.2019.01.148.
  • Gonçalves, G. A., R. C. G. Corrêa, L. Barros, M. I. Dias, R. C. Calhelha, V. G. Correa, A. Bracht, R. M. Peralta, and I. C. F. R. Ferreira. 2019. Effects of in vitro gastrointestinal digestion and colonic fermentation on a rosemary (Rosmarinus officinalis L) extract rich in rosmarinic acid. Food Chemistry 271:393–400. doi: 10.1016/j.foodchem.2018.07.132.
  • Goulas, V., and A. Hadjisolomou. 2019. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT - Food Science and Technology 101:269–75. doi: 10.1016/j.lwt.2018.11.003.
  • Gullon, B., M. E. Pintado, J. Fernández-López, J. A. Pérez-Álvarez, and M. Viuda-Martos. 2015. In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. Journal of Functional Foods 19:617–28. doi: 10.1016/j.jff.2015.09.056.
  • Gutiérrez-Grijalva, E. P., M. A. Angulo-Escalante, J. León-Félix, and J. B. Heredia. 2017. Effect of In Vitro Digestion on the Total Antioxidant Capacity and Phenolic Content of 3 Species of Oregano ( Hedeoma patens, Lippia graveolens, Lippia palmeri ). Journal of Food Science 82 (12):2832–9. doi:10.1111/1750-3841.13954.
  • Huang, D., B. Ou, M. Hampsch-Woodill, J. A. Flanagan, and E. K. Deemer. 2002. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. Journal of Agricultural and Food Chemistry 50 (7):1815–21. doi: 10.1021/jf0113732.
  • Huang, D., B. Ou, and R. L. Prior. 2005. The Chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry 53 (6):1841–56. doi: 10.1021/jf030723c.
  • Inada, K. O. P., T. B. R. Silva, L. A. Lobo, R. M. C. P. Domingues, D. Perrone, and M. Monteiro. 2020. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. Journal of Functional Foods 67:103851. doi: 10.1016/j.jff.2020.103851.
  • Jamali, B., I. Bjørnsdottir, O. Nordfang, and S. H. Hansen. 2008. Investigation of racemisation of the enantiomers of glitazone drug compounds at different pH using chiral HPLC and chiral CE. Journal of Pharmaceutical and Biomedical Analysis 46 (1):82–7. doi: 10.1016/j.jpba.2007.09.004.
  • Johansen, J. S., A. K. Harris, D. J. Rychly, and A. Ergul. 2005. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology 4 (1):5. doi: 10.1186/1475-2840-4-5.
  • Kamonpatana, K.,. M. L. Failla, P. S. Kumar, and M. M. Giusti. 2014. Anthocyanin structure determines susceptibility to microbial degradation and bioavailability to the buccal mucosa. Journal of Agricultural and Food Chemistry 62 (29):6903–10. doi: 10.1021/jf405180k.
  • Kamonpatana, K.,. M. M. Giusti, C. Chitchumroonchokchai, M. MorenoCruz, K. M. Riedl, P. Kumar, and M. L. Failla. 2012. Susceptibility of anthocyanins to ex vivo degradation in human saliva. Food Chemistry 135 (2):738–47. doi: 10.1016/j.foodchem.2012.04.110.
  • Karaś, M., A. Jakubczyk, U. Szymanowska, U. Złotek, and E. Zielińska. 2017. Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science and Technology 52 (2):291–305. doi: 10.1111/ijfs.13323.
  • Kasprzak, M. M., A. Erxleben, and J. Ochocki. 2015. Properties and applications of flavonoid metal complexes. RSC Advances 5 (57):45853–77. doi: 10.1039/C5RA05069C.
  • Ketnawa, S., and Y. Ogawa. 2019. Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. Journal of Functional Foods 52:640–7. doi: 10.1016/j.jff.2018.11.046.
  • Ketnawa, S., J. Suwannachot, and Y. Ogawa. 2020. In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chemistry 311:125885. doi: 10.1016/j.foodchem.2019.125885.
  • Koehnlein, E. A., É. M. Koehnlein, R. C. G. Corrêa, V. S. Nishida, V. G. Correa, A. Bracht, and R. M. Peralta. 2016. Analysis of a whole diet in terms of phenolic content and antioxidant capacity: Effects of a simulated gastrointestinal digestion. International Journal of Food Sciences and Nutrition 67 (6):614–23. doi: 10.1080/09637486.2016.1186156.
  • Kottra, G., and H. Daniel. 2007. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. Journal of Pharmacology and Experimental Therapeutics 322 (2):829–35. doi: 10.1124/jpet.107.124040.
  • Kroll, J., H. M. Rawel, and S. Rohn. 2003. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Science and Technology Research 9 (3):205–18. doi: 10.3136/fstr.9.205.
  • Kurutas, E. B. 2016. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal 15 (1):71 doi: 10.1186/s12937-016-0186-5.
  • Lafay, S., and A. Gil-Izquierdo. 2008. Bioavailability of phenolic acids. Phytochemistry Reviews 7 (2):301–11. doi: 10.1007/s11101-007-9077-x.
  • Li, C., W. Yu, P. Wu, and X. D. Chen. 2020. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends in Food Science and Technology 96:114–26. doi: 10.3390/nu12051401.
  • Liu, Y., D. Zhang, Y. Wu, D. Wang, Y. Wei, J. Wu, and B. Ji. 2014. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. International Journal of Food Sciences and Nutrition 65 (4):440–48. doi: 10.3109/09637486.2013.869798.
  • Liyana-Pathirana, C. M., and F. Shahidi. 2006. Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. Journal of the Science of Food and Agriculture 86 (3):477–85. doi: 10.1002/jsfa.2374.
  • Lucas-Gonzalez, R., S. Navarro-Coves, J. A. Pérez-Álvarez, J. Fernández-López, L. A. Muñoz, and M. Viuda-Martos. 2016. Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Industrial Crops and Products 94:774–82. doi: 10.1016/j.indcrop.2016.09.057.
  • Lucas-González, R., M. Viuda-Martos, J. A. Pérez Álvarez, and J. Fernández-López. 2018a. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chemistry 256:252–58. doi: 10.1016/j.foodchem.2018.02.128.
  • Lucas-González, R., M. Viuda-Martos, J. A. Pérez-Alvarez, and J. Fernández-López. 2018b. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Research International 107:423–36. doi: 10.1016/j.foodres.2018.02.055.
  • Lucini Mas, A., F. I. Brigante, E. Salvucci, N. B. Pigni, M. L. Martinez, P. Ribotta, D. A. Wunderlin, and M. V. Baroni. 2020. Defatted chia flour as functional ingredient in sweet cookies. How do processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chemistry 316:126279. doi: 10.1016/j.foodchem.2020.126279.
  • Luzardo-Ocampo, I., R. Campos-Vega, M. Gaytán-Martínez, R. Preciado-Ortiz, S. Mendoza, and G. Loarca-Piña. 2017. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Research International 100 (Pt 1):304–11. doi: 10.1016/j.foodres.2017.07.018.
  • Ma, Y., Y. Yang, J. Gao, J. Feng, Y. Shang, and Z. Wei. 2020. Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food and Chemical Toxicology 135:110941. doi: 10.1016/j.fct.2019.110941.
  • Mackie, A., A.-I. Mulet-Cabero, and A. Torcello-Gómez. 2020. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food and Function 11 (11):9397–431. doi: 10.1039/D0FO01981J.
  • Martínez-Las Heras, R., A. Pinazo, A. Heredia, and A. Andrés. 2017. Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry 214:478–85. doi: 10.1016/j.foodchem.2016.07.104.
  • Masisi, K., T. Beta, and M. H. Moghadasian. 2016. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chemistry 196:90–7. doi: 10.1016/j.foodchem.2015.09.021.
  • Miliauskas, G., P. R. Venskutonis, and T. A. van Beek. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry 85 (2):231–7. doi: 10.1016/j.foodchem.2003.05.007.
  • Minatel, I. O., C. V. Borges, M. I. Ferreira, H. A. G. Gomez, C.-Y O. Chen, and G. P. P. Lima. 2017. Phenolic compounds: Functional properties, impact of processing and bioavailability. In Phenolic compounds biological activity, 1–24. Rijeka, Croatia: InTech. doi: 10.5772/66368.
  • Mosele, J. I., A. Macià, M.-P. Romero, and M. J. Motilva. 2016. Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chemistry 201:120–30. doi: 10.1016/j.foodchem.2016.01.076.
  • Mosele, J. I., A. Macià, M.-P. Romero, M.-J. Motilva, and L. Rubió. 2015. Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds. Journal of Functional Foods 14:529–40. doi: 10.1016/j.jff.2015.02.026.
  • Mrduljaš, N., G. Krešić, and T. Bilušić. 2017. Polyphenols: Food sources and health benefits. In Functional food-improve health through adequate food, 23–41. Rijeka, Croatia: IntechOpen. doi: 10.5772/intechopen.68862.
  • Mulet-Cabero, A.-I., L. Egger, R. Portmann, O. Ménard, S. Marze, M. Minekus, S. Le Feunteun, A. Sarkar, M. M.-L. Grundy, F. Carrière, et al. 2020. A standardised semi-dynamic in vitro digestion method suitable for food - An international consensus. Food and Function 11 (2):1702–20. doi: 10.1039/c9fo01293a.
  • Naczk, M., and F. Shahidi. 2004. Extraction and analysis of phenolics in food. Journal of Chromatography. A 1054 (1–2):95–111. doi: 10.1016/j.chroma.2004.08.059.
  • Nasri, M. 2017. Chapter 4 - Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. A review. In Advances in food and nutrition research, ed. F. Toldrá, Vol. 81, 109–59. Cambridge, MA: Academic Press.
  • Okello, E. J., R. Leylabi, and G. J. McDougall. 2012. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food and Function 3 (6):651–61. doi: 10.1039/c2fo10174b.
  • Olennikov, D. N., N. I. Kashchenko, and N. K. Chirikova. 2015. In vitro bioaccessibility, human gut microbiota metabolites and hepatoprotective potential of chebulic ellagitannins: A case of Padma Hepaten® formulation. Nutrients 7 (10):8456–77. doi: 10.3390/nu7105406.
  • Olivero-David, R., M. B. Ruiz-Roso, N. Caporaso, L. Perez-Olleros, N. De las Heras, V. Lahera, and B. Ruiz-Roso. 2018. In vivo bioavailability of polyphenols from grape by-product extracts, and effect on lipemia of normocholesterolemic Wistar rats. Journal of the Science of Food and Agriculture 98 (15):5581–90. doi: 10.1002/jsfa.9100.
  • Ortega, N., A. Macià, M.-P. Romero, J. Reguant, and M. J. Motilva. 2011. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry 124 (1):65–71. doi: 10.1016/j.foodchem.2010.05.105.
  • Ortega-Vidal, J., A. Ruiz-Riaguas, M. L. Fernández-de Córdova, P. Ortega-Barrales, and E. J. Llorent-Martínez. 2019. Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea. Influence of simulated gastrointestinal in vitro digestion. Food Chemistry 287:258–264. doi: 10.1016/j.foodchem.2019.02.101.
  • Ou, B., D. Huang, M. Hampsch-Woodill, J. A. Flanagan, and E. K. Deemer. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. Journal of Agricultural and Food Chemistry 50 (11):3122–28. doi: 10.1021/jf0116606.
  • Ozgen, M., R. N. Reese, A. Z. Tulio, J. C. Scheerens, and A. R. Miller. 2006. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry 54 (4):1151–7. doi: 10.1021/jf051960d.
  • Pavan, V., R. A. S. Sancho, and G. M. Pastore. 2014. The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii. ). LWT - Food Science and Technology 59 (2):1247–51. doi: 10.1016/j.lwt.2014.05.040.
  • Peixoto, M., F. Fernandes, I. Gouvêa, A. C. M. S. Santiago, M. C. P. A. Galhardo Borguini, R. Mateus, N. Ferreira. and I. M. P. L. V. O. 2016. Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of Functional Foods 24:373–81. doi: 10.1016/j.jff.2016.04.021.
  • Pinacho, R., R. Y. Cavero, I. Astiasarán, D. Ansorena, and M. I. Calvo. 2015. Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods 19:49–62. doi: 10.1016/j.jff.2015.09.015.
  • Pinto, J., V. Spínola, E. J. Llorent-Martínez, M. L. Fernández-de Córdova, L. Molina-García, and P. C. Castilho. 2017. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International 100 (Pt 3):404–10. doi: 10.1016/j.foodres.2017.03.044.
  • Quiros-Sauceda, A., J. F. Ayala-Zavala, H. Astiazaran-Garcia, J. Ornelas-Paz, A. Wall-Medrano, E. Alvarez-Parrilla, and G. Gonzalez-Aguilar. 2015. Bioaccessibility, bioavailability and antioxidant stability of phenolic compounds present in mango (cv. 'Ataulfo') following an in vitro digestion and microbial fermentation. The FASEB Journal 29:604–6. doi: 10.1096/fasebj.29.1_supplement.606.4.
  • Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26 (9-10):1231–37. doi:https://doi.org/10.1016/S0891-5849.(98)00315-3 doi: 10.1016/s0891-5849(98)00315-3.
  • Reginio, F. C., S. Ketnawa, and Y. Ogawa. 2020a. In vitro examination of starch digestibility of Saba banana [Musa ‘saba’(Musa acuminata × Musa balbisiana)]: impact of maturity and physical properties of digesta. Scientific Reports 10 (1). doi:10.1038/s41598-020-58611-5.
  • Reginio, F. C., W. Qin, S. Ketnawa, and Y. Ogawa. 2020b. Bio-properties of Saba banana (Musa ‘saba’, ABB Group): Influence of maturity and changes during simulated in vitro gastrointestinal digestion. Scientific Reports 10 (1). doi:10.1038/s41598-020-63501-x.
  • Rodríguez-Roque, M. J., M. A. Rojas-Graü, P. Elez-Martínez, and O. Martín-Belloso. 2013. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chemistry 136 (1):206–12. doi: 10.1016/j.foodchem.2012.07.115.
  • San Miguel-Chávez, R. 2017. Phenolic antioxidant capacity: A review of the state of the art. Phenolic Compounds-Biological Activity, 54–79.London: IntechOpen. doi:10.5772/66897.
  • Saura-Calixto, F., J. Serrano, and I. Goñi. 2007. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101 (2):492–501. doi: 10.1016/j.foodchem.2006.02.006.
  • Scalbert, A., C. Morand, C. Manach, and C. Rémésy. 2002. Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy  56 (6):276–82. doi: 10.1016/s0753-3322(02)00205-6.
  • Scalbert, A., and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. The Journal of Nutrition 130 (8S Suppl):2073–85. doi: 10.1093/jn/130.8.2073S.
  • Sengul, H., E. Surek, and D. Nilufer-Erdil. 2014. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Research International 62:1069–79. doi: 10.1016/j.foodres.2014.05.055.
  • Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods 18:820–97. doi: 10.1016/j.jff.2015.06.018.
  • Shahidi, F., and M. Naczk. 2003. Phenolics in food and nutraceuticals: CRC press: Boca Raton, FL.
  • Shahidi, F., and H. Peng. 2018. Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives 4 (0):11–68. doi: 10.31665/JFB.2018.4162.
  • Shim, S. M., S. H. Yoo, C. S. Ra, Y. K. Kim, J. O. Chung, and S. J. Lee. 2012. Digestive stability and absorption of green tea polyphenols: Influence of acid and xylitol addition. Food Research International 45 (1):204–10. doi: 10.1016/j.foodres.2011.10.016.
  • Shivashankara, K. S., and S. N. Acharya. 2010. Bioavailability of dietary polyphenols and the cardiovascular diseases. The Open Nutraceuticals Journal 3 (1):227–41. doi: 10.2174/1876396001003010227.
  • Soobrattee, M. A., V. S. Neergheen, A. Luximon-Ramma, O. I. Aruoma, and T. Bahorun. 2005. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research 579 (1–2):200–13. doi: 10.1016/j.mrfmmm.2005.03.023.
  • Stalmach, A., C. A. Edwards, J. D. Wightman, and A. Crozier. 2012. Gastrointestinal stability and bioavailability of (poly)phenolic compounds following ingestion of Concord grape juice by humans. Molecular Nutrition and Food Research 56 (3):497–509. doi: 10.1002/mnfr.201100566.
  • Stalmach, A., H. Steiling, G. Williamson, and A. Crozier. 2010. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Archives of Biochemistry and Biophysics 501 (1):98–105. doi: 10.1016/j.abb.2010.03.005.
  • Stanisavljević, N., J. Samardžić, T. Janković, K. Šavikin, M. Mojsin, V. Topalović, and M. Stevanović. 2015. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix. Food Chemistry 175:516–22. doi: 10.1016/j.foodchem.2014.12.009.
  • Sun, D., S. Huang, S. Cai, J. Cao, and P. Han. 2015. Digestion property and synergistic effect on biological activity of purple rice (Oryza sativa L.) anthocyanins subjected to a simulated gastrointestinal digestion in vitro. Food Research International 78:114–23. doi: 10.1016/j.foodres.2015.10.029.
  • Tagliazucchi, D., E. Verzelloni, D. Bertolini, and A. Conte. 2010. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry 120 (2):599–606. doi: 10.1016/j.foodchem.2009.10.030.
  • Tarko, T., A. Duda-Chodak, and N. Zajac. 2013. Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. Roczniki Panstwowego Zakladu Higieny 64 (2):79–84. doi: 10.32394/R23987074.
  • Tenore, G. C., P. Campiglia, D. Giannetti, and E. Novellino. 2015. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chemistry 169:320–26. doi: 10.1016/j.foodchem.2014.08.006.
  • Thuengtung, S., C. Niwat, M. Tamura, and Y. Ogawa. 2018. In vitro examination of starch digestibility and changes in antioxidant activities of selected cooked pigmented rice. Food Bioscience 23:129–36. doi: 10.1016/j.fbio.2017.12.014.
  • Ti, H., R. Zhang, Q. Li, Z. Wei, and M. Zhang. 2015. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Research International 76 (Pt 3):813–20. doi: 10.1016/j.foodres.2015.07.032.
  • Tourino, S., J. Pérez-Jiménez, M. L. Mateos-Martín, E. Fuguet, M. P. Vinardell, M. Cascante, and J. L. Torres. 2011. Metabolites in contact with the rat digestive tract after ingestion of a phenolic-rich dietary fiber matrix. Journal of Agricultural and Food Chemistry 59 (11):5955–63. doi: 10.1021/jf200159f.
  • Vinholes, J., S. F. Reis, G. Lemos, R. L. Barbieri, V. de Freitas, R. C. Franzon, and M. Vizzotto. 2018. Effect of in vitro digestion on the functional properties of Psidium cattleianum Sabine (araçá), Butia odorata (Barb. Rodr.) Noblick (butiá) and Eugenia uniflora L. (pitanga) fruit extracts. Food and Function 9 (12):6380–90. doi: 10.1039/c8fo01329b.
  • Walle, T., A. M. Browning, L. L. Steed, S. G. Reed, and U. K. Walle. 2005. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. The Journal of Nutrition 135 (1):48–52. doi: 10.1093/jn/135.1.48.
  • Wang, S., J. P. Melnyk, R. Tsao, and M. F. Marcone. 2011. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Research International 44 (1):14–22. doi: 10.1016/j.foodres.2010.09.028.
  • Williamson, G., and M. N. Clifford. 2017. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology 139:24–39. doi: 10.1016/j.bcp.2017.03.012.
  • Wojtunik-Kulesza, K.,. A. Oniszczuk, T. Oniszczuk, M. Combrzyński, D. Nowakowska, and A. Matwijczuk. 2020. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-A non-systematic review. Nutrients 12 (5):1401. doi: 10.3390/nu12051401.
  • Wootton-Beard, P. C., A. Moran, and L. Ryan. 2011. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International 44 (1):217–24. doi: 10.1016/j.foodres.2010.10.033.
  • Xiao, J. 2017. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Critical Reviews in Food Science and Nutrition 57 (9):1874–905. doi: 10.1080/10408398.2015.1032400.
  • Zhao, Y., Y. Wu, and M. Wang. 2015. Bioactive substances of plant origin. In Handbook of food chemistry, ed. P. C. K. Cheung and B. M. Mehta, 967–1008. Springer Berlin Heidelberg: Berlin, Heidelberg.
  • Zorić, Z.,. J. Markić, S. Pedisić, V. Bučević-Popović, I. Generalić-Mekinić, K. Grebenar, and T. Kulišić-Bilušić. 2016. Stability of rosmarinic acid in aqueous extracts from different Lamiaceae species after in vitro digestion with human gastrointestinal enzymes. Food Technology and Biotechnology 54 (1):97–102. doi: 10.17113/ftb.54.01.16.4033.
  • ThomasUnited States clockmaker who introduced mass production (1785-1859)More (Definitions, Synonyms, Translation)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.