1,643
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Functionality of bovine milk proteins and other factors in foaming properties of milk: a review

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Althouse, P., P. Dinakar, and A. Kilara. 1995. Screening of proteolytic enzymes to enhance foaming of whey protein isolates. Journal of Food Science 60 (5):1110–2. doi: 10.1111/j.1365-2621.1995.tb06303.x.
  • Anderson, M., and B. E. Brooker. 1988. Dairy foams. In Advances in food emulsions and foams ed. E. Dickinson and G. Stainsby, 221–5. London:Elsevier Applied Science Publisher.
  • Augustin, M. 2000. Mineral salts and their effect on milk functionality. Australian Journal of Dairy Technology 55:61–4.
  • Augustin, M. A., and P. T. Clarke. 2008. Skim milk powders with enhanced foaming and steam-frothing properties. Dairy Science & Technology 88:149–61.
  • Bals, A., and U. Kulozik. 2003. Effect of pre-heating on the foaming properties of whey protein isolate using a membrane foaming apparatus. International Dairy Journal 13 (11):903–8. doi: 10.1016/S0958-6946(03)00111-0.
  • Blecker, C., M. Paquot, I. Lamberti, A. Sensidoni, G. Lognay, and C. Deroanne. 1997. Improved emulsifying and foaming of whey proteins after enzymic fat hydrolysis. Journal of Food Science 62 (1):48–52. +. doi: 10.1111/j.1365-2621.1997.tb04366.x.
  • Borcherding, K., W. Hoffmann, P. C. Lorenzen, and K. Schrader. 2008. Effect of milk homogenisation and foaming temperature on properties and microstructure of foams from pasteurised whole milk. Lwt - Food Science and Technology 41 (10):2036–43. doi: 10.1016/j.lwt.2007.11.020.
  • Borcherding, K., P. C. H. R. Lorenzen, and W. Hoffmann. 2009. Effect of protein content, casein-whey protein ratio and pH value on the foaming properties of skimmed milk. International Journal of Dairy Technology 62 (2):161–9. doi: 10.1111/j.1471-0307.2009.00472.x.
  • Borcherding, K., P. C. Lorenzen, W. Hoffmann, and K. Schrader. 2008. Effect of foaming temperature and varying time/temperature-conditions of pre-heating on the foaming properties of skimmed milk. International Dairy Journal 18 (4):349–58. doi: 10.1016/j.idairyj.2007.11.016.
  • Britten, M., and L. Lavoie. 1992. Foaming properties of proteins as affected by concentration. Journal of Food Science 57 (5):1219–41. &. doi: 10.1111/j.1365-2621.1992.tb11303.x.
  • Broyard, C., and F. Gaucheron. 2015. Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Science & Technology 95:831–62.
  • Buccioni, A., S. Minieri, and S. Rapaccini. 2013. Effect of total proteose-peptone content on the variability of bovine milk foaming property. Italian Journal of Animal Science 12 (1):e12. doi: 10.4081/ijas.2013.e12.
  • Buchanan, R. 1965. Lipolysis and the frothing of milk. Australian Journal of Dairy Technology 20:62.
  • Burlingame-Frey, J. p., and E. H. Marth. 1984. Changes in size of casein micelles caused by growth of psychrotrophic bacteria in raw skim milk. Journal of Food Protection 47 (1):16–9. doi: 10.4315/0362-028X-47.1.16.
  • Caessens, P. W. J. R., H. Gruppen, S. Visser, G. A. van Aken, and A. G. J. Voragen. 1997. Plasmin hydrolysis of beta-casein: Foaming and emulsifying properties of the fractionated hydrolysate. Journal of Agricultural and Food Chemistry 45 (8):2935–41. doi: 10.1021/jf9700889.
  • Carp, D. J., R. I. Baeza, G. B. Bartholomai, and A. M. R. Pilosof. 2004. Impact of proteins-kappa-carrageenan interactions on foam properties. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology 37 (5):573–80. doi: 10.1016/j.lwt.2003.11.007.
  • Chen, M., R. Bleeker, G. Sala, M. B. J. Meinders, H. J. F. van Valenberg, A. C. M. van Hooijdonk, and E. van der Linden. 2016. Particle size determines foam stability of casein micelle dispersions. International Dairy Journal 56:151–8. doi: 10.1016/j.idairyj.2016.01.020.
  • Chen, B., M. J. Lewis, and A. S. Grandison. 2014. Effect of seasonal variation on the composition. and properties of raw milk destined for processing in the UK. Food Chemistry 158:216–23. doi: 10.1016/j.foodchem.2014.02.118.
  • Chramostova, J., O. Hanuš, M. K. Šová, I. Němečková, P. Roubal, J. Kopecký, R. Jedelska, and L. N. Schlebová. 2017. Proteolysis in raw milk in relation to microbiological indicators. Czech Journal of Food Sciences 34 (No. 4):306–12. doi: 10.17221/64/2016-CJFS.
  • Considine, T., H. A. Patel, S. G. Anema, H. Singh, and L. K. Creamer. 2007. Interactions of milk proteins during heat and high hydrostatic pressure treatments - A review. Innovative Food Science & Emerging Technologies 8:1–23.
  • Coppola, L. E., M. S. Molitor, S. A. Rankin, and J. A. Lucey. 2014. Comparison of milk-derived whey protein concentrates containing various levels of casein. International Journal of Dairy Technology 67 (4):467–73. doi: 10.1111/1471-0307.12157.
  • Corzo-Martínez, M.,. F. J. Moreno, M. Villamiel, J. M. R. Patino, and C. C. Sánchez. 2017. Effect of glycation and limited hydrolysis on interfacial and foaming properties of bovine β-lactoglobulin. Food Hydrocolloids 66:16–26. doi: 10.1016/j.foodhyd.2016.12.008.
  • Dalgleish, D. G., and M. Corredig. 2012. The structure of the casein micelle of milk and its changes during processing. Annual Review of Food Science and Technology 3:449–67. doi: 10.1146/annurev-food-022811-101214.
  • Damodaran, S. 2006. Protein Stabilization of Emulsions and Foams. Journal of Food Science 70 (3):R54–R66. doi: 10.1111/j.1365-2621.2005.tb07150.x.
  • Davoodi, S. H., R. Shahbazi, S. Esmaeili, S. Sohrabvandi, A. Mortazavian, S. Jazayeri, and A. Taslimi. 2016. Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Research : IJPR 15 (3):573–91.
  • Deeth, H. C. 2006. Lipoprotein lipase and lipolysis in milk. International Dairy Journal 16 (6):555–62. doi: 10.1016/j.idairyj.2005.08.011.
  • Deeth, H. C., and R. A. D. Smith. 1983. Lipolysis and other factors affecting the steam frothing capacity of milk. Australian Journal of Dairy Technology 38:14–9.
  • DePeters, E. J., and J. P. Cant. 1992. Nutritional Factors Influencing the Nitrogen Composition of Bovine Milk: A Review1. Journal of Dairy Science 75 (8):2043–70. doi: 10.3168/jds.S0022-0302(92)77964-8.
  • Dickinson, E. 2001. Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids and Surfaces. B, Biointerfaces 20 (3):197–210. doi: 10.1016/S0927-7765(00)00204-6.
  • Dickinson, E., and E. Izgi. 1996. Foam stabilization by protein-polysaccharide complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 113 (1-2):191–201. doi: 10.1016/0927-7757(96)03647-3.
  • Dold, S., C. Lindinger, E. Kolodziejczyk, P. Pollien, S. Ali, J. C. Germain, S. G. Perin, N. Pineau, B. Folmer, K.-H. Engel, et al. 2011. Influence of foam structure on the release kinetics of volatiles from espresso coffee prior to consumption. Journal of Agricultural and Food Chemistry 59 (20):11196–203. doi: 10.1021/jf201758h.
  • Dombrowski, J., J. Dechau, and U. Kulozik. 2016. Multiscale approach to characterize bulk, surface and foaming behavior of casein micelles as a function of alkalinisation. Food Hydrocolloids. 57:92–102. doi: 10.1016/j.foodhyd.2015.12.022.
  • Dombrowski, J., C. Mattejat, and U. Kulozik. 2016. Correlation between surface activity and foaming properties of individual milk proteins in dependence of solvent composition. International Dairy Journal 61:166–75. doi: 10.1016/j.idairyj.2016.05.006.
  • Elliott, A. J., N. Datta, B. Amenu, and H. C. Deeth. 2005. Heat-induced and other chemical changes in commercial UHT milks. The Journal of Dairy Research 72 (4):442–6. doi: 10.1017/S002202990500138X.
  • Ewert, J., W. Claaßen, C. Glück, B. Zeeb, J. Weiss, J. Hinrichs, T. Stressler, and L. Fischer. 2016. A non-invasive method for the characterisation of milk protein foams by image analysis. International Dairy Journal 62:1–9. doi: 10.1016/j.idairyj.2016.06.012.
  • Foegeding, E. A., and J. P. Davis. 2011. Food protein functionality: A comprehensive approach. Food Hydrocolloids. 25 (8):1853–64. doi: 10.1016/j.foodhyd.2011.05.008.
  • Fox, P. F. 2003. Milk proteins: general and historical aspects. In Advanced dairy chemistry—1 proteins: Part A/Part B ed. P. F. Fox and P. L. H. McSweeney, 1–48. Boston, MA: Springer US.
  • Gamboa, G. V., and V. L. Barraquio. 2012. Foaming properties at different fat levels and age of milk. Philippine Agricultural Scientist 95:416–21.
  • Gamboa, G. V., and V. L. Barraquio. 2013. Foaming properties at different fat levels and age of milk. The Philippine Agricultural Scientist 95:416–21.
  • Goh, J., O. Kravchuk, and H. C. Deeth. 2009. Comparison of mechanical agitation, steam injection and air bubbling for foaming milk of different types. Milchwissenschaft-Milk Science International 64:121–4.
  • Hettiarachchi, C. A., M. Corzo-Martínez, M. S. Mohan, and F. M. Harte. 2018. Enhanced foaming and emulsifying properties of high-pressure-jet-processed skim milk. International Dairy Journal 87:60–6. doi: 10.1016/j.idairyj.2018.06.004.
  • Hidden, F., J. Boomsma, A. Schins, and E. Van den Berg. 2012. Cappuccino and specific heat versus heat of vaporization. The Physics Teacher 50 (2):103–4. doi: 10.1119/1.3677286.
  • Ho, T. M., P. Dhungana, B. Bhandari, and N. Bansal. 2021. Effect of the native fat globule size on foaming properties and foam structure of milk. Journal of Food Engineering 291:110227. doi: 10.1016/j.jfoodeng.2020.110227.
  • Ho, T. M., T. H. A. Le, A. Yan, B. R. Bhandari, and N. Bansal. 2019. Foaming properties and foam structure of milk during storage. Food Research International (Ottawa, Ont.) 116:379–86. doi: 10.1016/j.foodres.2018.08.051.
  • Huppertz, T. 2010. Foaming properties of milk: A review of the influence of composition and processing. International Journal of Dairy Technology 63 (4):477–88. doi: 10.1111/j.1471-0307.2010.00629.x.
  • Ibanoglu, E., and S. Ibanoglu. 1999. Foaming behaviour of EDTA-treated alpha-lactalbumin. Food Chemistry 66:477–81.
  • Innocente, N., M. Biasutti, and C. Blecker. 2011. HPLC profile and dynamic surface properties of the proteose-peptone fraction from bovine milk and from whey protein concentrate. International Dairy Journal 21 (4):222–8. doi: 10.1016/j.idairyj.2010.11.004.
  • Ipsen, R., and J. Otte. 2004. The relation between protein structure, interfacial rheology and foam formation for various milk proteins. Annual Transactions of the Nordic Rheology Society 12:143–8.
  • Jimenez-Junca, C., A. Sher, J. C. Gumy, and K. Niranjan. 2015. Production of milk foams by steam injection: The effects of steam pressure and nozzle design. Journal of Food Engineering 166:247–54. doi: 10.1016/j.jfoodeng.2015.05.035.
  • Kamath, S. 2007. Foaming of milk. PhD thesis., Brisbane: University of Queensland.
  • Kamath, S., T. Huppertz, A. V. Houlihan, and H. C. Deeth. 2008. The influence of temperature on the foaming of milk. International Dairy Journal 18 (10-11):994–1002. doi: 10.1016/j.idairyj.2008.05.001.
  • Kamath, S., A. Wulandewi, and H. Deeth. 2008. Relationship between surface tension, free fatty acid concentration and foaming properties of milk. Food Research International 41 (6):623–9. doi: 10.1016/j.foodres.2008.03.014.
  • Karleskind, D., I. Laye, F. I. Mei, and C. V. Morr. 1995. Foaming properties of lipid-reduced and calcium-reduced whey-protein concentrates. Journal of Food Science 60 (4):738–41. doi: 10.1111/j.1365-2621.1995.tb06218.x.
  • Khezri, M., S. Shahriari, and L. Shahsavani. 2017. The effect of xanthan gum and temperature on foam stability of milk-based espresso coffees. Journal of Food Biosciences and Technology 7:15–22.
  • Kilara, A., and D. Panyam. 2003. Peptides from milk proteins and their properties. Critical Reviews in Food Science and Nutrition 43 (6):607–33. doi: 10.1080/10408690390251138.
  • Kim, S. H., C. V. Morr, A. Seo, and J. G. Surak. 1989. Effect of whey pretreatment on composition and functional-properties of whey-protein concentrate. Journal of Food Science 54 (1):25–9. doi: 10.1111/j.1365-2621.1989.tb08559.x.
  • Kinsella, J. E. 1981. Functional-properties of proteins: Possible relationships between structure and function in foams. Food Chemistry 7 (4):273–88. doi: 10.1016/0308-8146(81)90033-9.
  • Kinsella, J. E., and C. V. Morr. 1984. Milk proteins: Physicochemical and functional properties. Critical Reviews in Food Science and Nutrition 21 (3):197–262. doi: 10.1080/10408398409527401.
  • Kitchen, B., and K. Cranston. 1969. Lipase activation in farm milk supplies. Australian Journal of Dairy Technology 24:107–12.
  • Kontkanen, H., S. Rokka, A. Kemppinen, H. Miettinen, J. Hellstrom, K. Kruus, P. Marnila, T. Alatossava, and H. Korhonen. 2011. Enzymatic and physical modification of milk fat: A review. International Dairy Journal 21 (1):3–13. doi: 10.1016/j.idairyj.2010.05.003.
  • Lam, R. S. H., and M. T. Nickerson. 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi: 10.1016/j.foodchem.2013.04.038.
  • Lee, S.-Y., C. V. Morr, and E. Y. W. Ha. 1992. Structural and functional properties of caseinate and whey protein isolate as affected by temperature and pH. Journal of Food Science 57 (5):1210–29. doi: 10.1111/j.1365-2621.1992.tb11301.x.
  • Levy, M. 2003. The effects of composition and processing of milk on foam characteristics as measured by steam frothing, Citeseer.
  • Lieske, B. r., and G. Konrad. 1996. Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. International Dairy Journal 6 (1):13–31. doi: 10.1016/0958-6946(94)00049-2.
  • Lilbaek, H. M., T. M. Fatum, R. Ipsen, and N. K. Sorensen. 2007. Modification of milk and whey surface properties by enzymatic hydrolysis of milk phospholipids. Journal of Agricultural and Food Chemistry 55 (8):2970–8. doi: 10.1021/jf062705b.
  • Liu, Z. Q., A. Logan, B. G. Cocks, and S. Rochfort. 2017. Seasonal variation of polar lipid content in bovine milk. Food Chemistry 237:865–9. doi: 10.1016/j.foodchem.2017.06.038.
  • Lorient, D., B. Closs, and J. L. Courthaudon. 1989. Surface properties of the bovine casein components: Relationships between structure and foaming properties. Journal of Dairy Research 56 (3):495–502. doi: 10.1017/S0022029900028983.
  • Luck, P. J., N. Bray, and E. A. Foegeding. 2002. Factors determining yield stress and overrun of whey protein foams. Journal of Food Science 67 (5):1677–81. doi: 10.1111/j.1365-2621.2002.tb08704.x.
  • Mac, T. H. 2014. Size fractionation of casein micelles and characterization of their fundamental and functional properties. PhD thesis., The University of Queensland, Brisbane, Australia.
  • Maldonado-Valderrama, J., A. Martin-Molina, A. Martin-Rodriguez, M. A. Cabrerizo-Vilchez, M. J. Galvez-Ruiz, and D. Langevin. 2007. Surface properties and foam stability of protein/surfactant mixtures: Theory and experiment. The Journal of Physical Chemistry C 111 (6):2715–23. doi: 10.1021/jp067001j.
  • Marinova, K. G., E. S. Basheva, B. Nenova, M. Temelska, A. Y. Mirarefi, B. Campbell, and I. B. Ivanov. 2009. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids. 23 (7):1864–76. doi: 10.1016/j.foodhyd.2009.03.003.
  • Martin, A. H., K. Grolle, M. A. Bos, M. A. Stuart, and T. van Vliet. 2002. Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability. Journal of Colloid and Interface Science 254 (1):175–83. doi: 10.1006/jcis.2002.8592.
  • Martinez, M. J., C. Carrera Sánchez, J. M. Rodríguez Patino, and A. M. R. Pilosof. 2012. Interactions between β-lactoglobulin and casein glycomacropeptide on foaming. Colloids and Surfaces. B, Biointerfaces 89:234–41. doi: 10.1016/j.colsurfb.2011.09.022.
  • Martínez-Padilla, L. P., J. L. García-Rivera, V. Romero-Arreola, and N. B. Casas-Alencáster. 2015. Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. Journal of Food Engineering 156:22–30. doi: 10.1016/j.jfoodeng.2015.01.018.
  • Martinez-Padilla, L. P., V. Garcia-Mena, N. B. Casas-Alencaster, and M. G. Sosa-Herrera. 2014. Foaming properties of skim milk powder fortified with milk proteins. International Dairy Journal 36 (1):21–8. doi: 10.1016/j.idairyj.2013.11.011.
  • Mishra, S., B. Mann, and V. K. Joshi. 2001. Functional improvement of whey protein concentrate on interaction with pectin. Food Hydrocolloids. 15 (1):9–15. doi: 10.1016/S0268-005X(00)00043-6.
  • Morales, R., M. J. Martinez, and A. M. R. Pilosof. 2017. Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties. Colloids and Surfaces. B, Biointerfaces 159:501–8. doi: 10.1016/j.colsurfb.2017.08.017.
  • Moro, A., G. D. Báez, P. A. Busti, G. A. Ballerini, and N. J. Delorenzi. 2011. Effects of heat-treated β-lactoglobulin and its aggregates on foaming properties. Food Hydrocolloids. 25 (5):1009–15. doi:10.1016/j.foodhyd.2010.09.021.
  • Mott, C., N. Hettiarachchy, and M. Qi. 1999. Effect of xanthan gum on enhancing the foaming properties of whey protein isolate. Journal of the American Oil Chemists' Society 76 (11):1383–6. doi: 10.1007/s11746-999-0154-8.
  • Mulvihill, D. M., and M. P. Ennis. 2003. Functional milk proteins: production and utilization. In Advanced dairy chemistry—1 proteins: Part A/Part B ed. P. F. Fox and P. L. H. McSweeney, 1175–228. Boston, MA: Springer US.
  • Nanua, J., L. Osorio, U. Mcgregor, and S. Traylor. 2004. Contribution of the products of fat hydrolysis to the frothing capacity of milk. International Journal of Agriculture and Rural Development 5:114–20.
  • Narsimhan, G., and N. Xiang. 2018. Role of proteins on formation, drainage, and stability of liquid food foams. Annual Review of Food Science and Technology 9:45–63. doi: 10.1146/annurev-food-030216-030009.
  • Nylander, T., T. Arnebrant, M. Bos, and P. Wilde. 2008. Protein/Emulsifier Interactions. In Food emulsifiers and their applications: second edition ed. G. L. Hasenhuettl and R. W. Hartel, 89–171. New York: Springer.
  • Oduse, K., L. Campbell, J. Lonchamp, and S. R. Euston. 2017. Electrostatic complexes of whey protein and pectin as foaming and emulsifying agents. International Journal of Food Properties 20 (sup3):S3027–S3041. doi: 10.1080/10942912.2017.1396478.
  • Oetjen, K., C. Bilke-Krause, M. Madani, and T. Willers. 2014. Temperature effect on foamability, foam stability, and foam structure of milk. Colloids and Surfaces A: Physicochemical and Engineering Aspects 460:280–5. doi: 10.1016/j.colsurfa.2014.01.086.
  • Patel, M. T., and A. Kilara. 1990. Studies on whey protein concentrates. 2. Foaming and emulsifying properties and their relationships with physicochemical properties. Journal of Dairy Science 73 (10):2731–40. doi: 10.3168/jds.S0022-0302(90)78958-8.
  • Peltonen-Shalaby, R., and M. Mangino. 1986. Compositional factors that affect the emulsifying and foaming properties of whey protein concentrates. Journal of Food Science 51 (1):91–5. doi: 10.1111/j.1365-2621.1986.tb10843.x.
  • Perez, A. A., C. R. Carrara, C. C. Sanchez, L. G. Santiago, and J. M. R. Patino. 2010. Interfacial and foaming characteristics of milk whey protein and polysaccharide mixed systems. Aiche Journal 56:1107–17.
  • Phillips, L. G., W. Schulman, and J. E. Kinsella. 1990. pH and heat-treatment effects on foaming of whey-protein isolate. Journal of Food Science 55 (4):1116–9. doi: 10.1111/j.1365-2621.1990.tb01612.x.
  • Pilhofer, G. M., H.-C. Lee, M. J. McCarthy, P. S. Tong, and J. Bruce German. 1994. Functionality of milk fat in foam formation and stability. Journal of Dairy Science 77 (1):55–63. doi: 10.3168/jds.S0022-0302(94)76928-9.
  • Qi, P. X., D. Ren, Y. Xiao, and P. M. Tomasula. 2015. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk. Journal of Dairy Science 98 (5):2884–97. doi: 10.3168/jds.2014-8920.
  • Qian, F., J. Sun, D. Cao, Y. Tuo, S. Jiang, and G. Mu. 2017. Experimental and modelling study of the denaturation of milk protein by heat treatment. Korean Journal for Food Science of Animal Resources 37 (1):44–51. doi: 10.5851/kosfa.2017.37.1.44.
  • Raikos, V. 2010. Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids. 24 (4):259–65. doi: 10.1016/j.foodhyd.2009.10.014.
  • Rinn, J.-C., C. Morr, A. Seo, and J. Surak. 1990. Evaluation of nine semi-pilot scale whey pretreatment modifications for producing whey protein concentrate. Journal of Food Science 55 (2):510–5. doi: 10.1111/j.1365-2621.1990.tb06798.x.
  • Saint-Jalmes, A., M. L. Peugeot, H. Ferraz, and D. Langevin. 2005. Differences between protein and surfactant foams: Microscopic properties, stability and coarsening. Colloids and Surfaces A: Physicochemical and Engineering Aspects 263 (1-3):219–25. doi: 10.1016/j.colsurfa.2005.02.002.
  • Samaržija, D., Š. Zamberlin, and T. Pogačić. 2012. Psychrotrophic bacteria and milk and dairy products quality. Mljekarstvo 62:77–95.
  • Schramm, L. L. 2005. Emulsions, foams, and suspensions: fundamentals and applications, Weinheim: John Wiley & Sons.
  • Silva, S.,s A. Espiga, K. Niranjan, S. Livings, J. C. Gumy, and A. Sher. 2008. Formation and stability of milk foams. In Bubbles in Food 2: Novelty, Health and Luxury ed. G. M. Campbell, M. G. Scanlon and D. L. Pyle, 153–62. Minnesota: AACC International, Inc.
  • Sinaga, H., N. Bansal, and B. Bhandari. 2017. Effects of milk pH alteration on casein micelle size and gelation properties of milk. International Journal of Food Properties 20 (1):179–97. doi: 10.1080/10942912.2016.1152480.
  • Slattery, H., and R. Fitzgerald. 1998. Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. Journal of Food Science 63 (3):418–22. doi: 10.1111/j.1365-2621.1998.tb15755.x.
  • Srilaorkul, S.,. L. Ozimek, B. Ooraikul, D. Hadziyev, and F. Wolfe. 1991. Effect of Ultrafiltration of Skim Milk on Casein Micelle Size Distribution in Retentate. Journal of Dairy Science 74 (1):50–7. doi: 10.3168/jds.S0022-0302(91)78142-3.
  • Summer, A., P. Formaggioni, P. Franceschi, M. Malacarne, and P. Mariani. 2003. Proteose-peptone content in the milk of Italian Friesian cows with moderate and high somatic cell values. Italian Journal of Animal Science 2:266–8.
  • Tamm, F., G. Sauer, M. Scampicchio, and S. Drusch. 2012. Pendant drop tensiometry for the evaluation of the foaming properties of milk-derived proteins. Food Hydrocolloids. 27 (2):371–7. doi: 10.1016/j.foodhyd.2011.10.013.
  • Thomas, M. E. C., J. Scher, S. Desobry-Banon, and S. Desobry. 2004. Milk powders ageing: Effect on physical and functional properties. Critical Reviews in Food Science and Nutrition 44 (5):297–322. doi: 10.1080/10408690490464041.
  • Tran Le, T.,. P. Saveyn, H. D. Hoa, and P. Van der Meeren. 2008. Determination of heat-induced effects on the particle size distribution of casein micelles by dynamic light scattering and nanoparticle tracking analysis. International Dairy Journal 18 (12):1090–6. doi: 10.1016/j.idairyj.2008.06.006.
  • Tran, M., R. Roberts, T. Felix, and F. Harte. 2018. Effect of high-pressure-jet processing on the viscosity and foaming properties of pasteurized whole milk. Journal of Dairy Science 101 (5):3887–99. doi: 10.3168/jds.2017-14103.
  • Truong, T., M. Palmer, N. Bansal, and B. Bhandari. 2016. Methodologies to vary milk fat globule size. In Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products, 15–30. New York: Springer International Publishing.
  • Udabage, P., I. R. McKinnon, and M. A. Augustin. 2000. Mineral and casein equilibria in milk: Effects of added salts and calcium-chelating agents. The Journal of Dairy Research 67 (3):361–70. doi: 10.1017/s0022029900004271.
  • Vaghela, M. N., and A. Kilara. 1996. Foaming and emulsifying properties of whey protein concentrates as affected by lipid composition. Journal of Food Science 61 (2):275–80. doi: 10.1111/j.1365-2621.1996.tb14175.x.
  • van der Ven, C., H. Gruppen, D. B. A. de Bont, and A. G. J. Voragen. 2002. Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates. Journal of Agricultural and Food Chemistry 50 (10):2938–46. doi: 10.1021/jf011190f.
  • Varshavsky, A. 2001. Proteolysis. In Encyclopedia of Genetics ed. J. H. Miller, 1573–5. New York: Academic Press.
  • Walstra, P. 1989. Principles of foam formation and stability. In Foams: Physics, chemistry and structure ed. A. Wilson, 1–15. London: Springer.
  • Walstra, P., T. J. Geurts, A. Noomen, A. Jellema, and M. A. J. S. vanBoekel. 1999. Dairy technology: principles of milk properties and processes, New York: Marcel Dekker, Inc.
  • Ward, B. R., S. J. Goddard, M. A. Augustin, and I. R. McKinnon. 1997. EDTA-induced dissociation of casein micelles and its effect on foaming properties of milk. Journal of Dairy Research 64 (4):495–504. doi: 10.1017/S0022029997002367.
  • Wei, X-f, and H-z Liu. 2000. Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures. Journal of Surfactants and Detergents 3 (4):491–5. doi: 10.1007/s11743-000-0148-6.
  • Wiking, L., M. Bjerring, M. M. Løkke, P. Løvendahl, and T. Kristensen. 2019. Herd factors influencing free fatty acid concentrations in bulk tank milk. Journal of Dairy Research 86 (2):226–7. doi: 10.1017/S0022029919000190.
  • Wilde, P. J., and D. C. Clark. 1996. Foam formation and stability. In Methods of testing protein functionality ed. G. M. Hall, 110–52. London: Blackie Academic and Professional.
  • Xiong, X.,. M. T. Ho, B. Bhandari, and N. Bansal. 2020. Foaming properties of milk protein dispersions at different protein content and casein to whey protein ratios. International Dairy Journal 109:104758. doi: 10.1016/j.idairyj.2020.104758.
  • Zayas, J. F. 1997. Foaming properties of proteins. In Functionality of Proteins in Food ed. J. F. Zayas, 260–309. Berlin: Springer Berlin Heidelberg.
  • Zhang, Z.,. D. G. Dalgleish, and H. D. Goff. 2004. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids and Surfaces B: Biointerfaces 34 (2):113–21. doi: 10.1016/j.colsurfb.2003.11.009.
  • Zhu, H. M., and S. Damodaran. 1994a. Effects of Calcium and Magnesium-Ions on Aggregation of Whey-Protein Isolate and Its Effect on Foaming Properties. Journal of Agricultural and Food Chemistry 42 (4):856–62. doi: 10.1021/jf00040a003.
  • Zhu, H. M., and S. Damodaran. 1994b. Heat-induced conformational-changes in whey-protein isolate and its relation to foaming properties. Journal of Agricultural and Food Chemistry 42 (4):846–55. doi: 10.1021/jf00040a002.
  • Zhu, H. M., and S. Damodaran. 1994c. Proteose peptones and physical factors affect foaming properties of whey-protein isolate. Journal of Food Science 59 (3):554–60. doi: 10.1111/j.1365-2621.1994.tb05560.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.