1,698
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Microbial detoxification of mycotoxins in food and feed

, , , , , & show all

References

  • Abrunhosa, L., A. Inês, A. I. Rodrigues, E., A. Guimar, V. L. Pereira, P. Parpot, A. Mendes-Faia, and A. Venancio. 2014. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. International Journal of Food Microbiology 188:45–52. doi: 10.1016/j.ijfoodmicro.2014.07.019.
  • Adebo, O. A., P. B. Njobeh, S. Gbashi, O. C. Nwinyi, andV. Mavumengwana. 2017. Review on microbial degradation of aflatoxins. Critical Reviews in Food Science and Nutrition 57 (15):3208–17. doi:10.1080/10408398.2015.1106440. PMC: 26517507
  • Ahmad, A., and Y. Jae-Hyuk. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14 (6):632. doi: 10.3390/ijerph14060632.
  • Akiyama, H., M. Toyoda, M. Kato, S. Igimi, and S. Kumagai. 1997. The degradation of several mycotoxins by human intestinal microflora cultured by continuous flow culture system. Mycotoxins 1997 (44):21–7. doi: 10.2520/myco1975.1997.21.
  • Alberts, J. F., Z. W. H. Van, and W. C. A. Gelderblom. 2016. Biologically based methods for control of fumonisin-producing fusarium species and reduction of the fumonisins. Frontiers in Microbiology 7:548. doi: 10.3389/fmicb.2016.00548.
  • An, L., C. Kuan-Chen, L. Je-Ruei, and K. Petr. 2017. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. Plos One 12 (8):e0182220. doi: 10.1371/journal.pone.0182220.
  • Andrea, C., S. Rossana, P. Andrea, M. Giuseppe, and R. Alberto. 2012. Ochratoxin A adsorption phenotype: An inheritable yeast trait. The Journal of General and Applied Microbiology 58 (3):225–33. doi: 10.2323/jgam.58.225.
  • Armando, M. R., R. P. Pizzolitto, C. A. Dogi, A. Cristofolini, C. Merkis, V. Poloni, A. M. Dalcero, and L. R. Cavaglieri. 2012. Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. Journal of Applied Microbiology 113 (2):256–64. doi: 10.1111/j.1365-2672.2012.05331.x.
  • Awad, W. A., K. Ghareeb, J. Bohm, and J. Zentek. 2010. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (4):510–20. doi: 10.1080/19440040903571747.
  • Belhassen, H., I. Jiménez-Díaz, J. P. Arrebola, R. Ghali, H. Ghorbel, N. Olea, and A. Hedili. 2015. Zearalenone and its metabolites in urine and breast cancer risk: A case-control study in Tunisia. Chemosphere 128:1–6. doi: 10.1016/j.chemosphere.2014.12.055.
  • Ben Taheur, F., B. Kouidhi, Y. M. A. Al Qurashi, J. Ben Salah-Abbès, and K. Chaieb. 2019. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon: Official Journal of the International Society on Toxinology 160:12–22. doi: 10.1016/j.toxicon.2019.02.001.
  • Ben Taheur, F., C. Mansour, K. Ben Jeddou, Y. Machreki, B. Kouidhi, J. A. Abdulhakim, and K. Chaieb. 2020. Aflatoxin B1 degradation by microorganisms isolated from Kombucha culture. Toxicon: Official Journal of the International Society on Toxinology 179:76–83. doi: 10.1016/j.toxicon.2020.03.004.
  • Benedetti, R., F. Nazzi, R. Locci, and G. Firrao. 2006. Degradation of fumonisin B1 by a bacterial strain isolated from soil. Biodegradation 17 (1):31–8. doi: 10.1007/s10532-005-2797-y.
  • Bhat, R., and K. R. N. Reddy. 2017. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade. Food Chemistry 215:425–37. doi: 10.1016/j.foodchem.2016.07.161.
  • Braun, H., L. Woitsch, B. Hetzer, R. Geisen, B. Zange, and M. Schmidt-Heydt. 2018. Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. International Journal of Food Microbiology 280:10–6. doi: 10.1016/j.ijfoodmicro.2018.04.021.
  • Braun, M. S., and M. Wink. 2018. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives. Comprehensive Reviews in Food Ence and Food Safety 17:769-791. doi: 10.1111/1541-4337.12334.
  • Chang, X., Z. Wu, S. Wu, Y. Dai, and C. Sun. 2015. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (4):564–71. doi: 10.1080/19440049.2014.991948.
  • Chauhan, R., J. Singh, T. Sachdev, T. Basu, and B. D. Malhotra. 2016. Recent advances in mycotoxins detection. Biosensors & Bioelectronics 81:532–45. doi: 10.1016/j.bios.2016.03.004.
  • Chen, J., X. Zhang, S. Cai, D. Wu, M. Chen, S. Wang, and J. Zhang. 2014. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosensors & Bioelectronics 57:226–31. doi: 10.1016/j.bios.2014.02.001.
  • Chen, S.-W., H.-T. Wang, W.-Y. Shih, Y.-A. Ciou, Y.-Y. Chang, L. Ananda, S.-Y. Wang, and J.-T. Hsu. 2019. Application of Zearalenone (ZEN)-Detoxifying Bacillus in animal feed decontamination through fermentation. Toxins 11 (6):330. doi: 10.3390/toxins11060330.
  • Chilaka, C., M., D. Boevre, O. Atanda, and S., D. Saege. 2017. The status of fusarium mycotoxins in Sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards food control. Toxins 9 (1):19. doi: 10.3390/toxins9010019.
  • Csutorás, C., L. Rácz, K. Rácz, P. Fűtő, P. Forgó, and A. Kiss. 2013. Monitoring of ochratoxin A during the fermentation of different wines by applying high toxin concentrations. Microchemical Journal 107:182–4. doi: 10.1016/j.microc.2012.07.001.
  • Dexter, J., 2., D. Dziga, J. Lv, J. Zhu, W. Strzalka, A. M Aksylewicz, M. Maroszek, S. Marek, and P. Fu. 2018. Heterologous expression of mlrA in a photoautotrophic host–Engineering cyanobacteria to degrade microcystins. Environmental Pollution 237:926–35. doi: 10.1016/j.envpol.2018.01.071.
  • Diao, E., H. Hou, W. Hu, H. Dong, and X. Li. 2018. Removing and detoxifying methods of patulin: A review. Trends in Food Science & Technology 81:139–45. doi: 10.1016/j.tifs.2018.09.016.
  • Diaz, D. E., W. M. Hagler Jr, J. T. Blackwelder, J. A. Eve, B. A. Hopkins, K. L. Anderson, F. T. Jones, and L. W. Whitlow. 2004. Aflatoxin Binders II: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia 157 (2):233–41. . doi: 10.1023/B:MYCO.0000020587.93872.59.
  • Dong-Ho, K., H. Sung-Yong, K. Jea, C. Sung, L. Kyu, A. Tae, L. Chan, and C. Soo. 2017. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins 9 (3):106. doi: 10.3390/toxins9030106.
  • Eckard, S., F. E. Wettstein, H. R. Forrer, and S. Vogelgsang. 2011. Incidence of Fusarium species and mycotoxins in silage maize. Toxins 3 (8):949–67. doi: 10.3390/toxins3080949.
  • Ehrlich, K. C., and K. W. Daigle. 1987. Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochimica et Biophysica Acta (Bba) - General Subjects 923 (2):206–13. . (87)90005-5 doi: 10.1016/0304-4165(87)90005-5.
  • El Khoury, A., A. Atoui, and J. Yaghi. 2011. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control 22 (10):1695–9. doi: 10.1016/j.foodcont.2011.04.001.
  • El-Nezami, H. S., A. Chrevatidis, S. Auriola, S. Salminen, and H. Mykk?Nen. 2002. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants 19 (7):680–6. doi: 10.1080/02652030210134236.
  • El-Nezami, H., N. Polychronaki, S. Salminen, and H. Mykkänen. 2002. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative (')alpha-earalenol. Applied and Environmental Microbiology 68 (7):3545–9. doi: 10.1128/aem.68.7.3545-3549.2002.
  • El-Nezami, H., P. Kankaanpaa, S. Salminen, and J. Ahokas. 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 36 (4):321–6. . (97)00160-9 doi: 10.1016/S0278-6915(97)00160-9.
  • Farbo, M. G., P. P. Urgeghe, S. Fiori, S. Marceddu, S. Jaoua, and Q. Migheli. 2016. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads. International Journal of Food Microbiology 217:29–34. doi: 10.1016/j.ijfoodmicro.2015.10.012.
  • Fuchs, S., G. Sontag, R. Stidl, V. Ehrlich, M. Kundi, and S. Knasmüller. 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 46 (4):1398–407. doi: 10.1016/j.ijfoodmicro.2015.10.012.
  • Gallo, A., G. Giuberti, J. C. Frisvad, T. Bertuzzi, and K. F. Nielsen. 2015. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 7 (8):3057–111. doi: 10.3390/toxins7083057.
  • Garda-Buffon, J., L. Kupski, and E. Badiale-Furlong. 2011. Deoxynivalenol (DON) degradation and peroxidase enzyme activity in submerged fermentation. Ciência e Tecnologia de Alimentos 31 (1):198–203. doi: 10.1590/S0101-20612011000100030.
  • Girgis, G. N., J. R. Barta, C. K. Girish, N. A. Karrow, H. J. Boermans, and T. K. Smith. 2010. Effects of feed-borne Fusarium mycotoxins and an organic mycotoxin adsorbent on immune cell dynamics in the jejunum of chickens infected with Eimeria maxima. Veterinary Immunology and Immunopathology 138 (3):218–23. doi: 10.1016/j.vetimm.2010.07.018.
  • Gomaa, E. Z., M. F. Abdelall, and O. M. El-Mahdy. 2018. Detoxification of Aflatoxin B1 by antifungal compounds from Lactobacillus brevis and Lactobacillus paracasei, isolated from dairy products. Probiotics and Antimicrobial Proteins 10 (2):201–9. doi: 10.1007/s12602-017-9350-2.
  • Gonçalves, B. L., R. E. Rosim, C. A. F. D. Oliveira, and C. H. Corassin. 2015. The in vitro ability of different Saccharomyces cerevisiae-based products to bind aflatoxin\{B1\}. Food Control 47:298–300. doi: 10.1016/j.foodcont.2014.07.024.
  • HAGgblom, P., and E. Nordkvist. 2015. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. Mycotoxin Research 31 (2):101–7. doi: 10.1007/s12550-015-0220-z.
  • Haq, M., N. Gonzalez, K. Mintz, A. Jaja-Chimedza, C. L. De-Jesus, C. Lydon, A. Z. Welch, and J. P. Berry. 2016. Teratogenicity of ochratoxin A and the degradation product, ochratoxin α, in the Zebrafish (Danio rerio) embryo model of vertebrate development. Toxins 8 (2):40. doi: 10.3390/toxins8020040.
  • Harkai, P., I. Szabó, M. Cserháti, C. Krifaton, A. Risa, J. Radó, A. Balázs, K. Berta, and B. Kriszt. 2016. Biodegradation of aflatoxin-B1 and zearalenone by Streptomyces sp. collection. International Biodeterioration & Biodegradation 108:48–56. doi: 10.1016/j.ibiod.2015.12.007.
  • Hassan, Y., and T. Zhou. 2018. Promising detoxification strategies to mitigate mycotoxins in food and feed. Toxins 10 (3):116. doi: 10.3390/toxins10030116.
  • Heinl, S., D. Hartinger, M. Thamhesl, E. Vekiru, R. Krska, G. Schatzmayr, W. D. Moll, and R. Grabherr. 2010. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology 145 (2):120–9. doi: 10.1016/j.jbiotec.2009.11.004.
  • Heinl, S., D. Hartinger, M. Thamhesl, G. Schatzmayr, W. D. Moll, and R. Grabherr. 2011. An aminotransferase from bacterium ATCC 55552 deaminates hydrolyzed fumonisin B. Biodegradation 22 (1):25–30. doi: 10.1007/s10532-010-9371-y.
  • Helle-Katrine, K., A. Jan, B. R. Lars, B. Margherita, B. Beat, C. Sandra, C. Bruce, D. Michael, E. Lutz, and G. K. Bettina. 2018. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA Journal 16 (5):e05242. doi: 10.2903/j.efsa.2018.5242.
  • Hope, R., D. Aldred, and N. Magan. 2005. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Letters in Applied Microbiology 40 (4):295–300. doi: 10.1111/j.1472-765X.2005.01674.x.
  • Hruska, Z., H. Yao, R. Kincaid, R. Brown, T. Cleveland, and D. Bhatnagar. 2014. Fluorescence excitation-emission features of aflatoxin and related secondary metabolites and their application for rapid detection of mycotoxins. Food and Bioprocess Technology 7 (4):1195–201. doi: 10.1007/s11947-014-1265-2.
  • Ikuo, S., I. Michihiro, I. Masumi, I. Yoko, S. Yukari, Y. Shigenobu, K. Motoo, and T. Seiya. 2012. Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. Fems Microbiology Letters 327 (2):110–7. doi: 10.1111/j.1574-6968.2011.02461.x.
  • Ilse, V., D. M. Laura, D. B. Marthe, U. Valdet, D. M. José, D. S. Sarah, D. G. Leen, and A. Kris. 2017. Microbial Detoxification of Deoxynivalenol (DON), assessed via a Lemna minor L. bioassay, through biotransformation to 3-epi-DON and 3-epi-DOM-1. Toxins 9 (2):63. doi: 10.3390/toxins902006.
  • Ji, C., Y. Fan, and L. Zhao. 2016. Review on biological degradation of mycotoxins. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 2 (3):127–33. doi: 10.1016/j.aninu.2016.07.003.
  • Ju, J., S. E. Tinyiro, W. Yao, H. Yu, Y. Guo, H. Qian, and Y. Xie. 2019. The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. Journal of Food Processing Presserve 43:1–19. doi: 10.1111/jfpp.14122.
  • Juan, C., A. Ritieni, and J. Mañes. 2012. Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry. Food Chemistry 134 (4):2389–97. doi: 10.1016/j.foodchem.2012.04.051.
  • Kakeya, H., N. Takahashi-Ando, M. Kimura, R. Onose, and H. Osada. 2002. Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Bioence Biotechnology & Biochemistry 66 (12):2723–6. doi: 10.1111/jfpp.14122.
  • Karbalaei, M. a., S. A. b Rezaee, and H. c Farsiani. 2020. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins (Review). Journal of Cellular Physiology 235 (9):5867–81. doi: 10.1002/jcp.29583.
  • Khatibi, P. A., S. A. Newmister, I. Rayment, S. P. Mccormick, N. J. Alexander, and D. G. Schmale. 2011. Bioprospecting for trichothecene 3-O-acetyltransferases in the fungal genus Fusarium yields functional enzymes with different abilities to modify the mycotoxin deoxynivalenol . Applied and Environmental Microbiology 77 (4):1162–1 170. doi: 10.1128/AEM.01738-10.
  • Lee, L. S., J. J. Dunn, A. J. Delucca, and A. Ciegler. 1981. Role of lactone ring of aflatoxin B1 in toxicity and mutagenicity. Experientia 37 (1):16–7. doi: 10.1007/BF01965543.
  • Lei, Y. P., L. H. Zhao, Q. G. Ma, J. Y. Zhang, T. Zhou, C. Q. Gao, and C. Ji. 2014. Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01G. World Mycotoxin Journal 7 (2):143–51. doi: 10.3920/WMJ2013.1623.
  • Li, R., B. Tao, M. Pang, Y. Liu, and J. Dong. 2015. Natural occurrence of fumonisins B1 and B2 in maize from three main maize-producing provinces in China. Food Control 50:838–42. doi: 10.1016/j.foodcont.2014.09.034.
  • Liu, D.-L., D.-S. Yao, Y.-Q. Liang, T.-H. Zhou, Y.-P. Song, L. Zhao, and L. Ma. 2001. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20). Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 39 (5):461–6. . (00)00161-7 doi: 10.1016/S0278-6915(00)00161-7.
  • Loiseau, N., A. Polizzi, A. Dupuy, N. Therville, M. Rakotonirainy, J. Loy, J. Viadere, A. M. Cossalter, J. D. Bailly, O. Puel, et al. 2015. New insights into the organ-specific adverse effects of fumonisin B1: Comparison between lung and liver. Archives of Toxicology 89 (9):1619–29. doi: 10.1007/s00204-014-1323-6.
  • Luo, Y., X. Liu, and J. Li. 2018. Updating techniques on controlling mycotoxins-A review. Food Control 89:123–32. doi: 10.1016/j.foodcont.2018.01.016.
  • Luz, C., J. Ferrer, J. Mañes, and G. Meca. 2018. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 112:60–6. doi: 10.1016/j.fct.2017.12.030.
  • Lv, L., C. Cui, C. Liang, W. Quan, S. Wang, and Z. Guo. 2016. Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control 60:296–301. doi: 10.1016/j.foodcont.2015.08.002.
  • Lv, L.,. C. Cui, C. Liang, W. Quan, S. Wang, and Z. Guo. 2016. Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control 60:296–301. doi: 10.1016/j.foodcont.2015.08.002.
  • Magan, N., R. Hope, A. Colleate, and E. S. Baxter. 2002. Relationship between growth and mycotoxin production by fusarium species, biocides and environment. European Journal of Plant Pathology 108 (7):685–90. doi: 10.1023/A:1020618728175.
  • Marin, S., A. J. Ramos, G. Cano-Sancho, and V. Sanchis. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 60:218–37. doi: 10.1016/j.fct.2013.07.047.
  • Markowiak, P., K. ŚliŻewska, A. Nowak, A. Chlebicz, A. Żbikowski, K. Pawłowski, and P. Szeleszczuk. 2019. Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. Journal of the Science of Food and Agriculture 99 (9):4309–18. doi: 10.1002/jsfa.9664.
  • Masching, S., K. Naehrer, H.-E. Schwartz-Zimmermann, M. Sărăndan, S. Schaumberger, I. Dohnal, V. Nagl, and D. Schatzmayr. 2016. Gastrointestinal degradation of fumonisin B (1) by carboxylesterase FumD prevents fumonisin induced alteration of sphingolipid metabolism in Turkey and swine. Toxins (Basel) 8 (3):84–101. doi: 10.3390/toxins8030084.
  • Moretti, A. F., R. R. Gamba, J. Puppo, N. Malo, and M. A. Golowczyc. 2018. Incorporation of Lactobacillus plantarum and zeolites in poultry feed can reduce aflatoxin B1 levels. Journal of Food Ence & Technology 55 (14 Suppl):1–6. doi: 10.1007/s13197-017-2923-y.
  • Mu, P., Y. Deng, and J. Wen. 2016. Mycotoxins: Cytotoxicity and biotransformation in animal cells. Toxicology Research 5 (2):377–87. (No. doi: 10.1039/c5tx00293a.
  • Müller, G., H. Rosner, B. Rohrmann, W. Erler, G. Geschwend, U. Gräfe, B. Burkert, U. Möller, R. Diller, K. Sachse, et al. 2003. Effects of the myco-toxin ochratoxin A and some of its metabolites on the human cell line THP-1. Toxicology 184 (1):69–82., (02)00593-0 doi: 10.1016/S0300-483X.
  • Niderkorn, V., D. P. Morgavi, E. Pujos, A. Tissandier, and H. Boudra. 2007. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Additives and Contaminants 24 (4):406–15. doi: 10.1080/02652030601101110.
  • Niderkorn, V., H. Boudra, and D. P. Morgavi. 2006. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology 101 (4):849–56. doi: 10.1111/j.1365-2672.2006.02958.x.
  • Oluwafemi, F., M. Kumar, R. Bandyopadhyay, T. Ogunbanwo, and K. B. Ayanwande. 2010. Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. Toxin Reviews 29 (3-4):115–22. doi: 10.3109/15569543.2010.512556.
  • Pestka, J. J. 2007. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animal Feed Science and Technology 137 (3-4):283–98. doi: 10.1016/j.anifeedsci.2007.06.006.
  • Pestka, J. J. 2010. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology 84 (9):663–79. doi: 10.1007/s00204-010-0579-8.
  • Petchkongkaew, A., P. Taillandier, P. Gasaluck, and A. Lebrihi. 2008. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification. Journal of Applied Microbiology 104 (5):1495–502. doi: 10.1111/j.1365-2672.2007.03700.x.
  • Péteri, Z., J. Téren, C. Vágvölgyi, and J. Varga. 2007. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiology 24 (3):205–10. doi: 10.1016/j.fm.2006.06.003.
  • Petruzzi, L., A. Bevilacqua, A. Baiano, L. Beneduce, M. R. Corbo, and M. Sinigaglia. 2014. Study of Saccharomyces cerevisiae\{W13\} as a functional starter for the removal of ochratoxin A. Food Control. 35 (1):373–7. doi: 10.1016/j.foodcont.2013.07.033.
  • Pierron, A., S. Mimoun, L. S. Murate, N. Loiseau, Y. Lippi, A.-P F. L. Bracarense, G. Schatzmayr, J. W. He, T. Zhou, W.-D. Moll, et al. 2016. Microbial biotransformation of DON: Molecular basis for reduced toxicity. Scientific Reports 6:29105. doi: 10.1038/srep29105.
  • Poór, M., S. Kunsági-Máté, L. Szente, G. Matisz, G. Secenji, Z. Czibulya, and T. Kőszegi. 2015. Interaction of ochratoxin A with quaternary ammonium beta-cyclodextrin. Food Chem 172 (Apr. 1):143–9. doi: 10.1016/j.foodchem.2014.09.034.
  • Del Prete, V., H. Rodriguez, A. V. Carrascosa, B. De Las Rivas, E. Garcia-Moruno, andR. Muñoz. 2007. In vitro removal of ochratoxin A by wine lactic acid bacteria. Journal of Food Protection 70 (9):2155–60. doi:10.4315/0362-028x-70.9.2155. PMC: 17900096
  • Purnell, G. 2012. Microbial decontamination in the food industry. Food Science, Technology and Nutrition 2:41–273. doi: 10.1533/9780857095756.2.241.
  • Qu, Z., F. Hu, K. Chen, Z. Duan, H. Gu, and H. Xu. 2013. A facile route to the synthesis of spherical poly(acrylic acid) brushes via RAFT polymerization for high-capacity protein immobilization. Journal of Colloid and Interface Science 398:82–7. doi: 10.1016/j.jcis.2013.02.001.
  • Rai, A., S. Dixit, S. P. Singh, N. K. Gautam, M. Das, and A. Tripathi. 2018. Presence of zearalenone in cereal grains and its exposure risk assessment in Indian population. Journal of Food Science 83 (12):3126–33. doi: 10.1111/1750-3841.14404.
  • Raksha, R. K., A. V. Vipin, P. Hariprasad, K. A. Anu Appaiah, and G. Venkateswaran. 2017. Biological detoxification of Aflatoxin B1 by Bacillus licheniformis CFR1. Food Control 71:234–41. doi: 10.1016/j.foodcont.2016.06.040.
  • Rania, M. A., M. T. Wael, M. H. Abdel-Rahman, K. Mohamed, A.-E. Mohamed, and K. Refai. 2005. Detection and estimation of Aflatoxin B1 in feeds and its biogradation by bacteria and fungi. Egyptian Journal of Natural Toxins 2:39–56. https://www.researchgate.net/publication/228621913.
  • Repečkienė, J., L. Levinskaitė, A. Paškevičius, and V. Raudonienė. 2013. Toxinproducing fungi on feed grains and application of yeasts for their detoxification. Polish Journal of Veterinary Sciences 16 (2):391–3. doi: 10.2478/pjvs-2013-0054.
  • Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. de Lourdes Bastos, G. Bories, A. Chesson, P. S. Cocconcelli, G. Flachowsky, J. Gropp, et al. 2016. Safety and efficacy of fumonisin esterase (FUMzyme®) as a technological feed additive for all avian species. EFSA Journal 14 (11):e4617. doi: 10.2903/j.efsa.2016.4617.
  • Samuel, M. S., A. Sivaramakrishna, and A. Mehta. 2014. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. International Biodeterioration & Biodegradation 86:202–9. doi: 10.1016/j.ibiod.2013.08.026.
  • Schwartz-Zimmermann, H. E., D. Hartinger, B. Doupovec, C. Gruber-Dorninger, M. Aleschko, S. Schaumberger, V. Nagl, I. Hahn, F. Berthiller, D. Schatzmayr, et al. 2018. Application of biomarker methods to investigate FUMzyme mediated gastrointestinal hydrolysis of fumonisins in pigs. World Mycotoxin Journal 11 (2):201–14. doi: 10.3920/WMJ2017.2265.
  • Selvaraj, J. N., Y. Wang, L. Zhou, Y. Zhao, F. Xing, X. Dai, and Y. Liu. 2015. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: A review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (4):440–52. doi: 10.1080/19440049.2015.1010185.
  • Shanakhat, H., A. Sorrentino, A. Raiola, A. Romano, P. Masi, and S. Cavella. 2018. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: An overview. Journal of the Science of Food and Agriculture 98 (11):4003–13. (No. doi: 10.1002/jsfa.8933.
  • Shang, Q. H., Z. B. Yang, W. R. Yang, Z. Li, G. G. Zhang, and S. Z. Jiang. 2015. Toxicity of mycotoxins from contaminated corn with or without yeast cell wall adsorbent on broiler chickens. Asian-Australasian Journal of Animal Sciences 29 (5):674–80. doi: 10.5713/ajas.15.0165.
  • Shcherbakova, L., N. Statsyuk, O. Mikityuk, T. Nazarova, and V. Dzhavakhiya. 2015. Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 Isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus. Jundishapur Journal of Microbiology 8 (1):e24324. doi: 10.5812/jjm.24324.
  • Sheikh-Zeinoddin, M., and M. Khalesi. 2019. Biological detoxification of ochratoxin A in plants and plant products. Toxin Reviews 38 (3):187–99. doi: 10.1080/15569543.2018.1452264.
  • Shetty, P. H., and L. Jespersen. 2006. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science & Technology 17 (2):48–55. doi: 10.1016/j.tifs.2005.10.004.
  • Shetty, P. H., B. Hald, and L. Jespersen. 2007. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology 113 (1):41–6. doi: 10.1016/j.ijfoodmicro.2006.07.013.
  • Shi, H., S. Li, Y. Bai, L. L. Prates, Y. Lei, and P. Yu. 2018. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 91:202–15. doi: 10.1016/j.foodcont.2018.03.036.
  • Sobrova, P., V. Adam, A. Vasatkova, M. Beklova, L. Zeman, and R. Kizek. 2010. Deoxynivalenol and its toxicity. Interdisciplinary Toxicology 3 (3):94–9. doi: 10.2478/v10102-010-0019-x.
  • Streit, E., G. Schatzmayr, P. Tassis, E. Tzika, D. Marin, I. Taranu, C. Tabuc, A. Nicolau, I. Aprodu, O. Puel, et al. 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 4 (10):788–809. doi: 10.3390/toxins4100788.
  • Taheur, F. B., K. Fedhila, K. Chaieb, B. Kouidhi, A. Bakhrouf, and L. Abrunhosa. 2017. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology 251:1–7. doi: 10.1016/j.ijfoodmicro.2017.03.021.
  • Takahashi-Ando, N., M. Kimura, H. Kakeya, H. Osada, and I. Yamaguchi. 2002. A novel lactonohydrolase responsible for the detoxification of zearalenone: Enzyme purification and gene cloning. The Biochemical Journal 365 (Pt 1):1–6. doi: 10.1042/BJ20020450.
  • Taylor, M. C., C. J. Jackson, D. B. Tattersall, N. French, T. S. Peat, J. Newman, L. J. Briggs, G. V. Lapalikar, P. M. Campbell, C. Scott, et al. 2010. Identification and characterization of two families of F420 H2-dependent reductases from Mycobacteria that catalyse aflatoxin degradation . Molecular Microbiology 78 (3):561–75. doi: 10.1111/j.1365-2958.2010.07356.x.
  • Tsui-Chun, H., Y. Ping-Jung, L. Ting-Yu, L. Je-Ruei, and D. Etienne. 2018. Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. Plos One 13 (4):e0194866. doi: 10.1371/journal.pone.0194866.
  • Var, I., B. Kabak, and Z. Erginkaya. 2008. Reduction in ochratoxin A levels in white wine, following treatment with activated carbon and sodium bentonite. Food Control 19 (6):592–8. doi: 10.1016/j.foodcont.2007.06.013.
  • Voss, K. A., G. W. Smith, and W. M. Haschek. 2007. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Animal Feed Science and Technology 137 (3-4):299–325. doi: 10.1016/j.anifeedsci.2007.06.007.
  • Wan, M. L. Y., P. C. Turner, K. J. Allen, and H. El-Nezami. 2016. Lactobacillus rhamnosus GG modulates intestinal mucosal barrier and inflammation in mice following combined dietary exposure to deoxynivalenol and zearalenone. Journal of Functional Foods 22:34–43. doi: 10.1016/j.jff.2016.01.014.
  • Wang, G. F., J. Xu, Z. M. Sun, and S. L. Zheng. 2020. Surface functionalization of montmorillonite with chitosan and the role of surface properties on its adsorptive performance: A comparative study on mycotoxins adsorption. Langmuir: The ACS Journal of Surfaces and Colloids 36 (10):2601–11. doi: 10.1021/acs.langmuir.9b03673.
  • Wang, J., and Y. Xie. 2020. Review on microbial degradation of zearalenone and aflatoxins. Grain & Oil Science and Technology 3 (3):117–25. doi: 10.1016/j.gaost.2020.05.002.
  • Wang, N., W. Wu, J. Pan, and M. Long. 2019. Detoxification strategies for zearalenone using microorganisms: A review. Microorganisms 7 (7):208. doi: 10.3390/microorganisms7070208.
  • Wang, Y., H. Zhang, H. Yan, C. Yin, Y. Liu, Q. Xu, X. Liu, and Z. Zhang. 2018. Effective Biodegradation of Aflatoxin B1 Using the Bacillus licheniformis (BL010) Strain. Toxins (Basel) 10 (12):497. doi: 10.3390/toxins10120497.
  • Wang, Y., L. Wang, F. Wu, F. Liu, Q. Wang, X. Zhang, J. N. Selvaraj, Y. Zhao, F. Xing, W.-B. Yin, et al. 2018. A Consensus ochratoxin A biosynthetic pathway: Insights from the genome sequence of Aspergillus ochraceus and a comparative genomic analysis. Applied and Environmental Microbiology 84 (19):e01009. doi: 10.1128/AEM.01009-18.
  • Wochner, K. F., T. A. Becker-Algeri, E. Colla, E. Badiale-Furlong, and D. A. Drunkler. 2018. The action of probiotic microorganisms on chemical contaminants in milk. Critical Reviews in Microbiology 44 (1):112–23. doi: 10.1080/1040841X.2017.1329275.
  • Wu, L., Xu, Y. Y. D. Wang, H. M. Sun. X., and L. 2018. Research progress in the mechanism of microbial removal of mycotoxins. Food Research and Development 39 (22):192–9. doi: 10.3969/j.issn.1005-6521.2018.22.033.
  • Wu, Q., A. Jezkova, Z. Yuan, L. Pavlikova, V. Dohnal, and K. Kuca. 2009. Biological degradation of aflatoxins. Drug Metabolism Reviews 41 (1):1–7. doi: 10.1080/03602530802563850.
  • Wu, X., P. Murphy, J. Cunnick, and S. Hendrich. 2007. Synthesis and characterization of deoxynivalenol glucuronide: Its comparative immunotoxicity with deoxynivalenol. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 45 (10):1846–55. doi: 10.1016/j.fct.2007.03.018.
  • Xiong, K., H-w Zhi, J-y Liu, X-y Wang, Z-y Zhao, P-g Pei, L. Deng, and S-y Xiong. 2020. Detoxification of Ochratoxin A by a novel Aspergillus oryzae strain and optimization of its biodegradation. Revista Argentina de Microbiología. doi: 10.1016/j.ram.2020.06.001.
  • Xu, Z., W. Liu, C.-C. Chen, Q. Li, J.-W. Huang, T.-P. Ko, G. Liu, W. Liu, W. Peng, Y.-S. Cheng, et al. 2016. Enhanced αZearalenol hydrolyzing activity of a mycoestrogen-Detoxifying lactonase by structure-Based engineering. ACS Catalysis 6 (11):7657–63. doi: 10.1021/acscatal.6b01826.
  • Yan, Z., H. Yousef, L. Dion, S. Suqin, and Z. Ting. 2017. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 9 (4):130. doi: 10.3390/toxins9040130.
  • Zhang, H., and Q. Sang. 2015. Production and extraction optimization of xylanase and β-mannanase by Penicillium chrysogenum QML-2 and primary application in saccharification of corn cob. Biochemical Engineering Journal 97:101–10. doi: 10.1016/j.bej.2015.02.014.
  • Zhang, H., M. T. Apaliya, G. K. Mahunu, L. Chen, and W. Li. 2016. Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: A review. Trends in Food Science & Technology 51:88–97. doi: 10.1016/j.tifs.2016.03.012.
  • Zhao, L., H. Jin, J. Lan, R. Zhang, H. Ren, X. Zhang, and G. Yu. 2015. Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro. Food Control 54:158–64. doi: 10.1016/j.foodcont.2015.02.003.
  • Zhao, Z., Q. Rao, S. Song, N. Liu, Z. Han, J. Hou, and A. Wu. 2014. Simultaneous determination of major type B trichothecenes and deoxynivalenol-3-glucoside in animal feed and raw materials using improved DSPE combined with LC-MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 963:75–82. doi: 10.1016/j.jchromb.2014.05.053.
  • Zhao, Z., Y. Zhang, A. Gong, N. Liu, S. Chen, X. Zhao, X. Li, L. Chen, C. Zhou, and J. Wang. 2019. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79. Applied Microbiology and Biotechnology 103 (17):7129–40. doi: 10.1007/s00253-019-09979-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.