624
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in physical fields-based frying techniques for enhanced efficiency and quality attributes

, , , , &

References

  • Adedeji, A. A., and M. Ngadi. 2018. Impact of freezing method, frying and storage on fat absorption kinetics and structural changes of parfried potato. Journal of Food Engineering 218:24–32. doi: 10.1016/j.jfoodeng.2017.08.024.
  • Ahmad Tarmizi, A. H., and K. Niranjan. 2013. Post-frying oil drainage from potato chips and French fries: A comparative study of atmospheric and vacuum drainage. Food and Bioprocess Technology 6 (2):489–97. doi: 10.1007/s11947-011-0685-5.
  • Akinpelu, O. R., M. A. Idowu, O. P. Sobukola, F. Henshaw, S. A. Sanni, G. Bodunde, M. Agbonlahor, and L. Munoz. 2014. Optimization of processing conditions for vacuum frying of high quality fried plantain chips using response surface methodology (RSM). Food Science and Biotechnology 23 (4):1121–8. doi: 10.1007/s10068-014-0153-x.
  • Al-Khusaibi, M. K., and K. Niranjan. 2012. The impact of blanching and high-pressure pretreatments on oil uptake of fried potato slices. Food and Bioprocess Technology 5 (6):2392–400. doi: 10.1007/s11947-011-0562-2.
  • Al Faruq, A., M. Zhang, and B. Adhikari. 2019. A novel vacuum frying technology of apple slices combined with ultrasound and microwave. Ultrasonics Sonochemistry 52:522–9. doi: 10.1016/j.ultsonch.2018.12.033.
  • Albertos, I., A. B. Martin-Diana, I. Jaime, A. M. Diez, and D. Rico. 2016. Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation. Innovative Food Science & Emerging Technologies 36:336–42. doi: 10.1016/j.ifset.2016.07.006.
  • Albertos, I., A. B. Martin-Diana, M. A. Sanz, J. M. Barat, A. M. Diez, I. Jaime, and D. Rico. 2016. Effect of high pressure processing or freezing technologies as pretreatment in vacuum fried carrot snacks. Innovative Food Science & Emerging Technologies 33:115–22. doi: 10.1016/j.ifset.2015.11.004.
  • Albertos, I., D. Rico, and A. B. Martin‐Diana. 2019. Improving the texture of healthy apple snacks by combining processing and technology (high pressure and vacuum frying). Journal of Food Processing and Preservation 44 (3):1–11.
  • Ali, R. M., M. R. Elkatory, and H. A. Hamad. 2020. Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 268:117297. doi: 10.1016/j.fuel.2020.117297.
  • Ananey-Obiri, D., L. Matthews, M. H. Azahrani, S. A. Ibrahim, C. M. Galanakis, and R. Tahergorabi. 2018. Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends in Food Science & Technology 80:167–74. doi: 10.1016/j.tifs.2018.08.012.
  • Andrés-Bello, A., P. García-Segovia, and J. Martínez-Monzó. 2011. Vacuum frying: An alternative to obtain high-quality dried products. Food Engineering Reviews 3 (2):63–78. doi: 10.1007/s12393-011-9037-5.
  • Antunes-Rohling, A., S. Ciudad-Hidalgo, J. Mir-Bel, J. Raso, G. Cebrián, and I. Álvarez. 2018. Ultrasound as a pretreatment to reduce acrylamide formation in fried potatoes. Innovative Food Science & Emerging Technologies 49:158–69. doi: 10.1016/j.ifset.2018.08.010.
  • Arslan, M., Z. Xiaobo, J. Shi, A. Rakha, X. Hu, M. Zareef, X. Zhai, and S. Basheer. 2018. Oil uptake by potato chips or French fries: A review. European Journal of Lipid Science and Technology 120 (10):1800058. doi: 10.1002/ejlt.201800058.
  • Arvanitoyannis, I. S., and N. Dionisopoulou. 2014. Acrylamide: Formation, occurrence in food products, detection methods, and legislation. Critical Reviews in Food Science and Nutrition 54 (6):708–33. doi: 10.1080/10408398.2011.606378.
  • Awad, T. S., H. A. Moharram, O. E. Shaltout, D. Asker, and M. M. Youssef. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International 48 (2):410–27. doi: 10.1016/j.foodres.2012.05.004.
  • Aydinkaptan, E., B. G. Mazi, and I. B. Mazi. 2017. Microwave heating of sunflower oil at frying temperatures: Effect of power levels on physicochemical properties. Journal of Food Process Engineering 40 (2):e12402–10. doi: 10.1111/jfpe.12402.
  • Ayustaningwarno, F., M. Dekker, V. Fogliano, and R. Verkerk. 2018. Effect of vacuum frying on quality attributes of fruits. Food Engineering Reviews 10 (3):154–64. doi: 10.1007/s12393-018-9178-x.
  • Azam, S. M. R., H. Ma, B. Xu, S. Devi, M. A. B. Siddique, S. L. Stanley, B. Bhandari, and J. Zhu. 2020. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends in Food Science & Technology 97:417–32. doi: 10.1016/j.tifs.2020.01.028.
  • Ballard, T. S., and P. Mallikarjunan. 2006. The effect of edible coatings and pressure frying using nitrogen gas on the quality of breaded fried chicken nuggets. Journal of Food Science 71 (3):S259–S264. doi: 10.1111/j.1365-2621.2006.tb15651.x.
  • Belkova, B., J. Hradecky, K. Hurkova, V. Forstova, L. Vaclavik, and J. Hajslova. 2018. Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry 241:51–9. doi: 10.1016/j.foodchem.2017.08.062.
  • Boreddy, S. R., D. J. Rose, and J. Subbiah. 2019. Radiofrequency-assisted thermal processing of soft wheat flour. Journal of Food Science 84 (9):2528–36. doi: 10.1111/1750-3841.14767.
  • Chandrasekaran, S., S. Ramanathan, and T. Basak. 2013. Microwave food processing—A review. Food Research International 52 (1):243–61. doi: 10.1016/j.foodres.2013.02.033.
  • Chen, H., M. Zhang, and Z. Fang. 2014. Vacuum frying of desalted grass carp (Ctenopharyngodon idellus) fillets. Drying Technology 32 (7):820–8. doi: 10.1080/07373937.2013.868812.
  • Fan, D., Q. Yan, and W. Chen. 2012. Effect of far-infrared frying on the quality characteristics of chicken. Science and Technology of Food Industry. 33 (2): 56–59. doi:10.13386/j.issn/1002-0306.2012.03.038.
  • Da Silva, P. F., and R. G. Moreira. 2008. Vacuum frying of high-quality fruit and vegetable-based snacks. LWT - Food Science and Technology 41 (10):1758–67. doi: 10.1016/j.lwt.2008.01.016.
  • Das, R., D. P. Pawar, and V. K. Modi. 2013. Quality characteristics of battered and fried chicken: Comparison of pressure frying and conventional frying. Journal of Food Science and Technology 50 (2):284–92. doi: 10.1007/s13197-011-0350-z.
  • Datta, A. K., and P. M. Davidson. 2000. Microwave and radio frequency processing. Journal of Food Safety 65 (s8):32–41. doi: 10.1111/j.1745-4565.2000.tb00616.x.
  • Dehghan Nasiri, F., M. Mohebbi, F. Tabatabaee Yazdi, and M. H. Haddad Khodaparast. 2011. Kinetic modeling of mass transfer during deep fat frying of shrimp nugget prepared without a pre-frying step. Food and Bioproducts Processing 89 (3):241–7. doi: 10.1016/j.fbp.2010.11.009.
  • Dehghannya, J., and L. Abedpour. 2018. Influence of a three stage hybrid ultrasound-osmotic-frying process on production of low-fat fried potato strips. Journal of the Science of Food and Agriculture 98 (4):1485–91. doi: 10.1002/jsfa.8617.
  • Dehghannya, J., E.-A. Naghavi, and B. Ghanbarzadeh. 2016. Frying of potato strips pretreated by ultrasound-assisted air-drying. Journal of Food Processing and Preservation 40 (4):583–92. doi: 10.1111/jfpp.12636.
  • Devi, S., M. Zhang, R. Ju, and B. Bhandari. 2020. Recent development of innovative methods for efficient frying technology. Critical Reviews in Food Science and Nutrition 1–16.
  • Devi, S., M. Zhang, R. Ju, and A. S. Mujumdar. 2019. Co-influence of ultrasound and microwave in vacuum frying on the frying kinetics and nutrient retention properties of mushroom chips. Drying Technology 1–12.
  • Devi, S., M. Zhang, and C. L. Law. 2018. Effect of ultrasound and microwave assisted vacuum frying on mushroom (Agaricus bisporus) chips quality. Food Bioscience 25:111–17. doi: 10.1016/j.fbio.2018.08.004.
  • Devi, S., M. Zhang, and A. S. Mujumdar. 2019. Influence of ultrasound and microwave-assisted vacuum frying on quality parameters of fried product and the stability of frying oil. Drying Technology 1–14.
  • Dias da Silva, G., Z. M. P. Barros, R. A. B. de Medeiros, C. B. O. de Carvalho, S. C. Rupert Brandão, and P. M. Azoubel. 2016. Pretreatments for melon drying implementing ultrasound and vacuum. LWT - Food Science and Technology 74:114–19. doi: 10.1016/j.lwt.2016.07.039.
  • Dourado, C., C. Pinto, F. J. Barba, J. M. Lorenzo, I. Delgadillo, and J. A. Saraiva. 2019. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends in Food Science & Technology 88:274–89. doi: 10.1016/j.tifs.2019.03.015.
  • Dueik, V., C. Marzullo, and P. Bouchon. 2013. Effect of vacuum inclusion on the quality and the sensory attributes of carrot snacks. LWT - Food Science and Technology 50 (1):361–5. doi: 10.1016/j.lwt.2012.05.011.
  • Dueik, V., P. Robert, and P. Bouchon. 2010. Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry 119 (3):1143–9. doi: 10.1016/j.foodchem.2009.08.027.
  • Elizabeth, O. O., S. Anuoluwapo, and O. J. John. 2017. Effect of deep and infrared rays frying on the acrylamide concentration formation in Musa paradisiaca. American Journal of Food Technology 12 (6):385–9. doi: 10.3923/ajft.2017.385.389.
  • Erdogdu, F., and P. Dejmek. 2010. Determination of heat transfer coefficient during high pressure frying of potatoes. Journal of Food Engineering 96 (4):528–32. doi: 10.1016/j.jfoodeng.2009.08.036.
  • Fan, K., M. Zhang, and B. Bhandari. 2019. Osmotic-ultrasound dehydration pretreatment improves moisture adsorption isotherms water state of microwave-assisted vacuum fried purple-fleshed sweet potato slices. Food and Bioproducts Processing 115:154–64. doi: 10.1016/j.fbp.2019.03.011.
  • Fang, Z., D. Wu, D. Yü, X. Ye, D. Liu, and J. Chen. 2011. Phenolic compounds in Chinese purple yam and changes during vacuum frying. Food Chemistry 128 (4):943–8. doi: 10.1016/j.foodchem.2011.03.123.
  • Farag, K. W., J. G. Lyng, D. J. Morgan, and D. A. Cronin. 2011. A comparison of conventional and radio frequency thawing of beef meats: Effects on product temperature distribution. Food and Bioprocess Technology 4 (7):1128–36. doi: 10.1007/s11947-009-0205-z.
  • Fauster, T., D. Schlossnikl, F. Rath, R. Ostermeier, F. Teufel, S. Toepfl, and H. Jaeger. 2018. Impact of pulsed electric field (PEF) pretreatment on process performance of industrial French fries production. Journal of Food Engineering 235:16–22. doi: 10.1016/j.jfoodeng.2018.04.023.
  • Feng, Y., C. Zhou, A. ElGasim A. Yagoub, Y. Sun, P. Owusu-Ansah, X. Yu, X. Wang, X. Xu, J. Zhang, and Z. Ren. 2019. Improvement of the catalytic infrared drying process and quality characteristics of the dried garlic slices by ultrasound-assisted alcohol pretreatment. LWT - Food Science and Technology 116:108577–85. doi: 10.1016/j.lwt.2019.108577.
  • García-Segovia, P., A. M. Urbano-Ramos, S. Fiszman, and J. Martínez-Monzó. 2016. Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Science and Technology 69:515–21. doi: 10.1016/j.lwt.2016.02.014.
  • Gharachorloo, M., M. Ghavami, M. Mahdiani, and R. Azizinezhad. 2010. The effects of microwave frying on physicochemical properties of frying and sunflower oils. Journal of the American Oil Chemists' Society 87 (4):355–60. doi: 10.1007/s11746-009-1508-y.
  • Gong, C., M. Liao, H. Zhang, Y. Xu, Y. Miao, and S. Jiao. 2020. Investigation of hot air–assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology 13 (3):419–29. doi: 10.1007/s11947-019-02400-0.
  • Honerlaw, J. P., Y. L. Ho, X. T. Nguyen, K. Cho, J. L. Vassy, D. R. Gagnon, C. J. O'Donnell, J. M. Gaziano, P. W. F. Wilson, L. Djousse, et al. 2020. Fried food consumption and risk of coronary artery disease: The Million Veteran Program. Clinical Nutrition 39 (4):1203–8. doi: 10.1016/j.clnu.2019.05.008.
  • Hosseinzadeh Samani, B., H. Gudarzi, S. Rostami, Z. Lorigooini, Z. Esmaeili, and F. Jamshidi-Kia. 2018. Development and optimization of the new ultrasonic-infrared-vacuum dryer in drying Kelussia odoratissima and its comparison with conventional methods. Industrial Crops and Products 123:46–54. doi: 10.1016/j.indcrop.2018.06.053.
  • Huang, M-s, M. Zhang, and B. Bhandari. 2018. Synergistic effects of ultrasound and microwave on the pumpkin slices qualities during ultrasound-assisted microwave vacuum frying. Journal of Food Process Engineering 41 (6):e12835. doi: 10.1111/jfpe.12835.
  • Huang, P.-Y., and Y.-C. Fu. 2014. Relationship between oil uptake and water content during deep-fat frying of potato particulates under isothermal temperature. Journal of the American Oil Chemists' Society 91 (7):1179–87. doi: 10.1007/s11746-014-2472-8.
  • Ignat, A., L. Manzocco, N. P. Brunton, M. C. Nicoli, and J. G. Lyng. 2015. The effect of pulsed electric field pre-treatments prior to deep-fat frying on quality aspects of potato fries. Innovative Food Science & Emerging Technologies 29:65–9. doi: 10.1016/j.ifset.2014.07.003.
  • Islam, M., M. Zhang, and D. Fan. 2019. Ultrasonically enhanced low-temperature microwave-assisted vacuum frying of edamame: Effects on dehydration kinetics and improved quality attributes. Drying Technology 37 (16):2087–104. doi: 10.1080/07373937.2018.1558234.
  • Jeong, S.-G., O.-D. Baik, and D.-H. Kang. 2017. Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds. International Journal of Food Microbiology 254:54–61. doi: 10.1016/j.ijfoodmicro.2017.04.007.
  • Karimi, S., M. Wawire, and F. M. Mathooko. 2017. Impact of frying practices and frying conditions on the quality and safety of frying oils used by street vendors and restaurants in Nairobi, Kenya. Journal of Food Composition and Analysis 62:239–44. doi: 10.1016/j.jfca.2017.07.004.
  • Kirmaci, B., and R. K. Singh. 2012. Quality of chicken breast meat cooked in a pilot-scale radio frequency oven. Innovative Food Science & Emerging Technologies 14:77–84. doi: 10.1016/j.ifset.2012.01.003.
  • Kowalski, S. J., and D. Mierzwa. 2015. US-assisted convective drying of biological materials. Drying Technology 33 (13):1601–13. doi: 10.1080/07373937.2015.1026985.
  • Kumar, V., P. S. Rao, S. R. Purohit, and Y. Kumar. 2019. Effects of high pressure processing (HPP) and acid pre-treatment on quality attributes of hilsa (Tenualosa ilisha) fillets. LWT - Food Science and Technology 111:647–52. doi: 10.1016/j.lwt.2019.05.084.
  • Kurek, M., M. Ščetar, and K. Galić. 2017. Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocolloids 71:225–35. doi: 10.1016/j.foodhyd.2017.05.006.
  • Li, K., M. Zhang, A. S. Mujumdar, and B. Chitrakar. 2019. Recent developments in physical field-based drying techniques for fruits and vegetables. Drying Technology 37 (15):1954–73. doi: 10.1080/07373937.2018.1546733.
  • Liu, C. Y., N. Grimi, N. Lebovka, and E. Vorobiev. 2018. Effects of preliminary treatment by pulsed electric fields and convective air-drying on characteristics of fried potato. Innovative Food Science & Emerging Technologies 47:454–60. doi: 10.1016/j.ifset.2018.04.011.
  • Liu, J., M. Peng, X. Yang, Y. Lei, X. Huang, and J. Wang. 2019. Effects of radio frequency pretreatment on hot air drying characteristics and nutrients of apricot. Food and Fermentation Industry 45 (3):176–82.
  • Liu, T., E. Dodds, S. Y. Leong, G. T. Eyres, D. J. Burritt, and I. Oey. 2017. Effect of pulsed electric fields on the structure and frying quality of "kumara" sweet potato tubers. Innovative Food Science & Emerging Technologies 39:197–208. doi: 10.1016/j.ifset.2016.12.010.
  • Liu, Y.-H., Y. Zeng, R.-R. Hu, and X. Sun. 2019. Effect of contact ultrasonic power on moisture migration during far‐infrared radiation drying of kiwifruit. Journal of Food Process Engineering 42 (6):e13235. doi: 10.1111/jfpe.13235.
  • Liu, Y., B. Yang, and Z. Mao. 2010. Radio frequency technology and its application in agro-product and food processing. Transactions of the Chinese Society of Agricultural Machinery 41 (8):115–20.
  • Luning, P., and M. Sanny. 2016. Chapter 8 - Acrylamide in Fried Potato Products. In Acrylamide in food, ed. V. Gökmen, 159–79. Cambridge, MA: Academic Press.
  • Maity, T., A. S. Bawa, and P. S. Raju. 2014. Effect of vacuum frying on changes in quality attributes of jackfruit (Artocarpus heterophyllus) bulb slices. International Journal of Food Science and Technology 2014:752047.
  • Mesías, M., F. Holgado, G. Márquez-Ruiz, and F. J. Morales. 2017. Impact of the characteristics of fresh potatoes available in-retail on exposure to acrylamide: Case study for French fries. Food Control 73:1407–14. doi: 10.1016/j.foodcont.2016.11.005.
  • Mohammadalinejhad, S., and J. Dehghannya. 2018. Effects of ultrasound frequency and application time prior to deep-fat frying on quality aspects of fried potato strips. Innovative Food Science & Emerging Technologies 47:493–503. doi: 10.1016/j.ifset.2018.05.001.
  • Mojaharul Islam, M., M. Zhang, B. Bhandari, and Z. Guo. 2019. A hybrid vacuum frying process assisted by ultrasound and microwave to enhance the kinetics of moisture loss and quality of fried edamame. Food and Bioproducts Processing 118:326–35. doi: 10.1016/j.fbp.2019.10.004.
  • Moreira, R. G. 2014. Vacuum frying versus conventional frying – An overview. European Journal of Lipid Science and Technology 116 (6):723–34. doi: 10.1002/ejlt.201300272.
  • Muralidhara, H. S., D. Ensminger, and A. Putnam. 1985. Acoustic dewatering and drying (low and high frequency): State of the art review. Drying Technology 3 (4):529–66. doi: 10.1080/07373938508916296.
  • Ngobese, N. Z., and T. S. Workneh. 2018. Potato (Solanum tuberosum L.) nutritional changes associated with French fry processing: Comparison of low-temperature long-time and high-temperature short-time blanching and frying treatments. LWT - Food Science and Technology 97:448–55. doi: 10.1016/j.lwt.2018.07.039.
  • Oey, I., F. Faridnia, S. Y. Leong, D. J. Burritt, and T. Liu. 2016. Determination of pulsed electric fields effects on the structure of potato tubers. In Handbook of electroporation, 1–19.
  • Ojha, K. S., T. J. Mason, C. P. O'Donnell, J. P. Kerry, and B. K. Tiwari. 2017. Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry 34:410–7. doi: 10.1016/j.ultsonch.2016.06.001.
  • Oladejo, A. O., H. Ma, W. Qu, C. Zhou, B. Wu, X. Yang, and D. I. Onwude. 2017. Effects of ultrasound pretreatments on the kinetics of moisture loss and oil uptake during deep fat frying of sweet potato (Ipomea batatas). Innovative Food Science & Emerging Technologies 43:7–17. doi: 10.1016/j.ifset.2017.07.019.
  • Oliveira, M. M. d., A. A. L. Tribst, B. R. d C. Leite Júnior, R. A. d Oliveira, and M. Cristianini. 2015. Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innovative Food Science & Emerging Technologies 31:45–53. doi: 10.1016/j.ifset.2015.07.004.
  • Pankaj, S. K., and K. M. Keener. 2017. A review and research trends in alternate frying technologies. Current Opinion in Food Science 16:74–9. doi: 10.1016/j.cofs.2017.09.001.
  • Parikh, A., and P. S. Takhar. 2016. Comparison of microwave and conventional frying on quality attributes and fat content of potatoes. Journal of Food Science 81 (11):E2743–E2755. doi: 10.1111/1750-3841.13498.
  • Patsioura, A., J.-M. Vauvre, R. Kesteloot, P. Smith, G. Trystram, and O. Vitrac. 2016. Mechanisms of oil uptake in french fries. In Advances in potato chemistry and technology, ed. J. Singh, 2nd ed., 503–26. New Zealand: Academic Press.
  • Pawar, D. P., S. Boomathi, S. C. Hathwar, A. K. Rai, and V. K. Modi. 2013. Effect of conventional and pressure frying on lipids and fatty acid composition of fried chicken and oil. Journal of Food Science and Technology 50 (2):381–6. doi: 10.1007/s13197-011-0331-2.
  • Pedreschi, F. 2012. Frying of potatoes: Physical, chemical, and microstructural changes. Drying Technology 30 (7):707–25. doi: 10.1080/07373937.2012.663845.
  • Peng, J., X. Yin, S. Jiao, K. Wei, K. Tu, and L. Pan. 2019. Air jet impingement and hot air-assisted radio frequency hybrid drying of apple slices. LWT- Food Science and Technology 116:108517. doi: 10.1016/j.lwt.2019.108517.
  • Piyalungka, P., M. B. Sadiq, R. Assavarachan, and L. T. Nguyen. 2019. Effects of osmotic pretreatment and frying conditions on quality and storage stability of vacuum‐fried pumpkin chips. International Journal of Food Science & Technology 54 (10):2963–72. doi: 10.1111/ijfs.14209.
  • Puertolas, E., and F. J. Barba. 2016. Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization. Food and Bioproducts Processing 100:172–84. doi: 10.1016/j.fbp.2016.06.020.
  • Qiu, L., M. Zhang, Y. Wang, and B. Bhandari. 2018. Effects of ultrasound pretreatments on the quality of fried sweet potato (Ipomea batatas) chips during microwave-assisted vacuum frying. Journal of Food Process Engineering 41 (8):e12879. doi: 10.1111/jfpe.12879.
  • Quan, X., M. Zhang, W. Zhang, and B. Adhikari. 2014. Effect of microwave-assisted vacuum frying on the quality of potato chips. Drying Technology 32 (15):1812–9. doi: 10.1080/07373937.2014.947428.
  • Rahimi, D., M. Kashaninejad, A. M. Ziaiifar, and A. S. Mahoonak. 2018. Effect of infrared final cooking on some physico-chemical and engineering properties of partially fried chicken nugget. Innovative Food Science & Emerging Technologies 47:1–8. doi: 10.1016/j.ifset.2018.01.004.
  • Rahimi, J. 2015. Microstructure and surface characterization of fried batter coatings. McGill University: Montreal, QC, Canada.
  • Ran, X-l, M. Zhang, Y. Wang, and B. Bhandari. 2019. Dielectric properties of carrots affected by ultrasound treatment in water and oil medium simulated systems. Ultrasonics Sonochemistry 56:150–9. doi: 10.1016/j.ultsonch.2019.04.016.
  • Rashid, M. T., H. Ma, M. A. Jatoi, B. Safdar, H. S. El‐Mesery, F. Sarpong, Z. Ali, and A. Wali. 2019. Multi‐frequency ultrasound and sequential infrared drying on drying kinetics, thermodynamic properties, and quality assessment of sweet potatoes. Journal of Food Process Engineering 42 (5):e13127. doi: 10.1111/jfpe.13127.
  • Rastogi, N. K. 2012. Recent trends and developments in infrared heating in food processing. Critical Reviews in Food Science and Nutrition 52 (9):737–60. doi: 10.1080/10408398.2010.508138.
  • Riadh, M. H., S. A. B. Ahmad, M. H. Marhaban, and A. C. Soh. 2015. Infrared heating in food drying: An overview. Drying Technology 33 (3):322–35. doi: 10.1080/07373937.2014.951124.
  • Rocca-Poliméni, R., D. Flick, and J. Vasseur. 2011. A model of heat and mass transfer inside a pressure cooker. Journal of Food Engineering 107 (3–4):393–404. doi: 10.1016/j.jfoodeng.2011.06.022.
  • Rojas, M. L., and P. E. D. Augusto. 2018. Ethanol and ultrasound pre-treatments to improve infrared drying of potato slices. Innovative Food Science & Emerging Technologies 49:65–75. doi: 10.1016/j.ifset.2018.08.005.
  • Roknul, A. S. M., M. Zhang, A. S. Mujumdar, and Y. Wang. 2014. A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L. ). Drying Technology 32 (6):657–66. doi: 10.1080/07373937.2013.850435.
  • Sansano, M., R. De los Reyes, A. Andrés, and A. Heredia. 2018. Effect of microwave frying on acrylamide generation, mass transfer, color, and texture in French fries. Food and Bioprocess Technology 11 (10):1934–9. doi: 10.1007/s11947-018-2144-z.
  • Sensoy, I., S. Sahin, and G. Sumnu. 2013. Microwave frying compared with conventional frying via numerical simulation. Food and Bioprocess Technology 6 (6):1414–9. doi: 10.1007/s11947-012-0805-x.
  • Shen, X., M. Zhang, B. Bhandari, and Z. Guo. 2018. Effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips. Journal of the Science of Food and Agriculture 98 (12):4436–44. doi: 10.1002/jsfa.8966.
  • Shi, H., M. Zhang, and C. Yang. 2019. Effect of low‐temperature vacuum frying assisted by microwave on the property of fish fillets (Aristichthys nobilis). Journal of Food Process Engineering 42 (4):1–8. doi: 10.1111/jfpe.13050.
  • Su, Y., M. Zhang, B. Adhikari, A. S. Mujumdar, and W. Zhang. 2018. Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innovative Food Science & Emerging Technologies 50:148–59. doi: 10.1016/j.ifset.2018.10.011.
  • Su, Y., M. Zhang, B. Bhandari, and W. Zhang. 2018. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology. Ultrasonics Sonochemistry 44:368–79. doi: 10.1016/j.ultsonch.2018.02.049.
  • Su, Y., M. Zhang, B. Chitrakar, and W. Zhang. 2020. Effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips. Ultrasonics Sonochemistry 63:104958. doi: 10.1016/j.ultsonch.2020.104958.
  • Su, Y., M. Zhang, Z. Fang, and W. Zhang. 2017. Analysis of dehydration kinetics, status of water and oil distribution of microwave-assisted vacuum frying potato chips combined with NMR and confocal laser scanning microscopy. Food Research International (Ottawa, Ont.) 101:188–97. doi: 10.1016/j.foodres.2017.08.067.
  • Su, Y., M. Zhang, and W. Zhang. 2016. Effect of low temperature on the microwave-assisted vacuum frying of potato chips. Drying Technology 34 (2):227–34. doi: 10.1080/07373937.2015.1040027.
  • Su, Y., M. Zhang, W. Zhang, B. Adhikari, and Z. Yang. 2016. Application of novel microwave-assisted vacuum frying to reduce the oil uptake and improve the quality of potato chips. LWT - Food Science and Technology 73:490–7. doi: 10.1016/j.lwt.2016.06.047.
  • Su, Y., M. Zhang, W. Zhang, C. Liu, and B. Adhikari. 2018. Ultrasonic microwave-assisted vacuum frying technique as a novel frying method for potato chips at low frying temperature. Food and Bioproducts Processing 108:95–104. doi: 10.1016/j.fbp.2018.02.001.
  • Su, Y., M. Zhang, W. M. Zhang, C. Q. Liu, and B. Bhandari. 2018. Low oil content potato chips produced by infrared vacuum pre-drying and microwave-assisted vacuum frying. Drying Technology 36 (3):294–306. doi: 10.1080/07373937.2017.1326500.
  • Sulaiman, A., M. J. Soo, M. M. L. Yoon, M. Farid, and F. V. M. Silva. 2015. Modeling the polyphenoloxidase inactivation kinetics in pear, apple and strawberry purees after high pressure processing. Journal of Food Engineering 147:89–94. doi: 10.1016/j.jfoodeng.2014.09.030.
  • Sun, Y., M. Zhang, and D. Fan. 2019. Effect of ultrasonic on deterioration of oil in microwave vacuum frying and prediction of frying oil quality based on low field nuclear magnetic resonance (LF-NMR). Ultrasonics Sonochemistry 51:77–89. doi: 10.1016/j.ultsonch.2018.10.015.
  • Teruel, M. R., P. García-Segovia, J. Martínez-Monzó, M. B. Linares, and M. D. Garrido. 2014. Use of vacuum-frying in chicken nugget processing. Innovative Food Science & Emerging Technologies 26:482–9. doi: 10.1016/j.ifset.2014.06.005.
  • Udomkun, P., P. Niruntasuk, and B. Innawong. 2019. Impact of novel far‐infrared frying technique on quality aspects of chicken nuggets and frying medium. Journal of Food Processing and Preservation 43 (5):e13931. doi: 10.1111/jfpp.13931.
  • Vadivambal, R., and D. S. Jayas. 2010. Non-uniform temperature distribution during microwave heating of food materials - A review. Food and Bioprocess Technology 3 (2):161–71. doi: 10.1007/s11947-008-0136-0.
  • van Koerten, K. N., M. A. I. Schutyser, D. Somsen, and R. M. Boom. 2015. Crust morphology and crispness development during deep-fat frying of potato. Food Research International (Ottawa, Ontario) 78:336–42. doi: 10.1016/j.foodres.2015.09.022.
  • Wang, K., J. Li, F. Peng, Y. Liu, Q. Ma, M. Li, and H. Xu. 2020. Effects of radio frequency treatment on short- and medium-wavelength infrared drying kinetics and quality characteristics of red jujubes. Food Science 41 (7):117–23.
  • Wang, Q., S. Li, X. Han, Y. Ni, D. Zhao, and J. Hao. 2019. Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave–assisted drying methods. LWT - Food Science and Technology 107:236–42. doi: 10.1016/j.lwt.2019.03.020.
  • Wang, X. L., Y. B. Feng, C. S. Zhou, Y. H. Sun, B. G. Wu, A. A. Yagoub, and E. A. A. Aboagarib. 2019. Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chemistry 295:432–40. doi: 10.1016/j.foodchem.2019.05.145.
  • Wang, Y., W. Zhang, and G. Zhou. 2019. Effects of ultrasound‐assisted frying on the physiochemical properties and microstructure of fried meatballs. International Journal of Food Science & Technology 54 (10):2915–26. doi: 10.1111/ijfs.14159.
  • Warning, A., A. Dhall, D. Mitrea, and A. K. Datta. 2012. Porous media based model for deep-fat vacuum frying potato chips. Journal of Food Engineering 110 (3):428–40. doi: 10.1016/j.jfoodeng.2011.12.024.
  • Wen, J. 2016. Infrared heating technology and its application in food sterilization. Food and Machinery 32 (3):243–6.
  • Wexler, L., A. M. Perez, E. Cubero-Castillo, and F. Vaillant. 2016. Use of response surface methodology to compare vacuum and atmospheric deep-fat frying of papaya chips impregnated with blackberry juice. CyTA - Journal of Food 14 (4):578–86. doi: 10.1080/19476337.2016.1180324.
  • Wu, H., H. Jouhara, S. A. Tassou, and T. G. Karayiannis. 2012. Modelling of energy flows in potato crisp frying processes. Applied Energy 89 (1):81–8. doi: 10.1016/j.apenergy.2011.01.008.
  • Wu, X.-F., M. Zhang, A. S. Mujumdar, and C.-H. Yang. 2020. Effect of ultrasound-assisted osmotic dehydration pretreatment on the infrared drying of Pakchoi Stems. Drying Technology 38 (15):2015–2. doi: 10.1080/07373937.2019.1608232.
  • Xi, H.-H., Y.-H. Liu, L.-G. Guo, and R.-R. Hu. 2020. Effect of ultrasonic power on drying process and quality properties of far-infrared radiation drying on potato slices. Food Science and Biotechnology 29 (1):93–101. doi: 10.1007/s10068-019-00645-1.
  • Xu, B., L. Wang, B. Wei, and R. Zeng. 2018. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics Sonochemistry 40:619–28. doi: 10.1016/j.ultsonch.2017.08.005.
  • Xu, J., X. Su, S. Lim, J. Griffin, E. Carey, B. Katz, J. Tomich, J. S. Smith, and W. Wang. 2015. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chemistry 186:90–6. doi: 10.1016/j.foodchem.2014.08.123.
  • Yagua, C. V., and R. G. Moreira. 2011. Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering 104 (2):272–83. doi: 10.1016/j.jfoodeng.2010.12.018.
  • Yao, L., L. Fan, and Z. Duan. 2020. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry 305 (125477):125477. doi: 10.1016/j.foodchem.2019.125477.
  • Yin, P., L. Lou, H. Chen, J. Chen, X. Ye, and D. Liu. 2019. Effects of vacuum and atmospheric frying on the microstructure and bioactive compounds of red cabbage. Food Science 40 (9):41–7.
  • Zhang, X., M. Zhang, and B. Adhikari. 2020. Recent developments in frying technologies applied to fresh foods. Trends in Food Science & Technology 98:68–81. doi: 10.1016/j.tifs.2020.02.007.
  • Zhang, Y., T. Zhang, D. Fan, J. Li, and L. Fan. 2018. The description of oil absorption behavior of potato chips during the frying. LWT - Food Science and Technology 96:119–26. doi: 10.1016/j.lwt.2018.04.094.
  • Zhang, Y., Zhou, L. Li, Y. Meng, C. Lei, Y. Zhao. H. W., and Y. 2015. Effect of radio frequency heating and blanching on physicochemical properties and microstructure of apple slices. Review of China Agricultural Science and Technology 17 (5):134–41.
  • Zhang, Z., Y. Yao, Q. Shi, J. Zhao, H. Fu, and Y. Wang. 2020. Effects of radio-frequency-assisted blanching on the polyphenol oxidase, microstructure, physical characteristics, and starch content of potato. LWT- Food Science and Technology 125:109357. doi: 10.1016/j.lwt.2020.109357.
  • Zhao, Y.-Y., J.-Y. Yi, J.-F. Bi, Q.-Q. Chen, M. Zhou, and B. Zhang. 2019. Improving of texture and rehydration properties by ultrasound pretreatment for infrared-dried shiitake mushroom slices. Drying Technology 37 (3):352–62. doi: 10.1080/07373937.2018.1456449.
  • Zhou, X., and S. Wang. 2019. Recent developments in radio frequency drying of food and agricultural products: A review. Drying Technology 37 (3):271–86. doi: 10.1080/07373937.2018.1452255.
  • Zhou, X., R. Xu, B. Zhang, S. Pei, Q. Liu, H. S. Ramaswamy, and S. Wang. 2018. Radio frequency-vacuum drying of kiwifruits: Kinetics, uniformity, and product quality. Food and Bioprocess Technology 11 (11):2094–109. doi: 10.1007/s11947-018-2169-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.