1,073
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic implications of functional tea ingredients for ameliorating inflammatory bowel disease: a focused review

, , , &

References

  • A Gerges, G., M. Rizzo, A. Eid, I. H. Hussein, Z. Zgheib, M. N. Zeenny, R. Jurjus, M. L. Uzzo, G. F. Spatola, and A. Jurjus. 2017. Tea catechins induce crosstalk between signaling pathways and stabilize mast cells in ulcerative colitis. Journal of Biological Regulators and Homeostatic Agents 31 (4):865–77. PMID: 29254289.
  • Alejandro, V. V., Y. Kanno, and J. J. O'Shea. 2017. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nature Immunology 18 (4):374–84. doi: 10.1038/ni.3691.
  • Alderton, W. K., C. E. Cooper, and R. G. Knowles. 2001. Nitric oxide synthases: Structure, function and inhibition. The Biochemical Journal 357 (Pt 3):593–615. doi: 10.1042/0264-6021:3570593.
  • Aniwan, S., S. H. Park, and E. V. Loftus. 2017. Epidemiology, natural history, and risk stratification of crohn's disease. Gastroenterology Clinics of North America 46 (3):463–80. doi: 10.1016/j.gtc.2017.05.003.
  • Balentine, D. A., S. A. Wiseman, and L. C. Bouwens. 1997. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition 37 (8):693–704. doi: 10.1080/10408399709527797.
  • Ben-Horin, S., and C. Yehuda. 2014. Tailoring anti-TNF therapy in IBD: Drug levels and disease activity. Nature Reviews. Gastroenterology & Hepatology 11 (4):243–55. doi: 10.1038/nrgastro.2013.253.
  • Benchimol, E. I., A. Guttmann, A. M. Griffiths, L. Rabeneck, D. R. Mack, H. Brill, J. Howard, J. Guan, and T. To. 2009. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: Evidence from health administrative data. Gut 58 (11):1490–7. doi: 10.1136/gut.2009.188383.
  • Benchimol, E. I., D. G. Manuel, A. Guttmann, G. C. Nguyen, N. Mojaverian, P. Quach, and D. R. Mack. 2014. Changing age demographics of inflammatory bowel disease in Ontario, Canada: A population-based cohort study of epidemiology trends. Inflammatory Bowel Diseases 20 (10):1761–9. doi: 10.1097/MIB.0000000000000103.
  • Bernardo, D., M. Chaparro, and J. P. Gisbert. 2018. Human intestinal dendritic cells in inflammatory bowel diseases. Molecular Nutrition & Food Research 62 (7):e1700931. doi: 10.1002/mnfr.201700931.
  • Braune, A., and M. Blaut. 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7 (3):216–34. doi: 10.1080/19490976.2016.1158395.
  • Biasi, F., M. Astegiano, M. Maina, G. Leonarduzzi, and G. Poli. 2011. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr Med Chem 18 (31):4851–65. doi: 10.2174/092986711797535263.
  • Chen, H., S. Hayek, J. Rivera Guzman, N. D. Gillitt, S. A. Ibrahim, C. Jobin, and S. Sang. 2012. The microbiota is essential for the generation of black tea theaflavins-derived metabolites. PLoS One 7 (12):e51001. doi: 10.1371/journal.pone.0051001.
  • Chen, H., and S. Sang. 2014. Biotransformation of tea polyphenols by gut microbiota. Journal of Functional Foods 7 (1):26–42. doi: 10.1016/j.jff.2014.01.013.
  • Chen, L., M. J. Lee, H. Li, and C. S. Yang. 1997. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 25 (9):1045–50. PMID: 9311619.
  • Dave, M., P. D. Higgins, S. Middha, and K. P. Rioux. 2012. The human gut microbiome: Current knowledge, challenges, and future directions. Translational Research: The Journal of Laboratory and Clinical Medicine 160 (4):246–57. doi: 10.1016/j.trsl.2012.05.003.
  • Denis, M.-C., Y. Desjardins, A. Furtos, V. Marcil, S. Dudonné, A. Montoudis, C. Garofalo, E. Delvin, A. Marette, E. Levy, et al. 2015. Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clinical Science (London, England: 1979) 128 (3):197–212. doi: 10.1042/CS20140210.
  • Dixon, L. J., A. Kabi, K. P. Nickerson, and C. McDonald. 2015. Combinatorial effects of diet and genetics on inflammatory bowel disease pathogenesis. Inflammatory Bowel Diseases 21 (4):912–22. doi: 10.1097/MIB.0000000000000289.
  • Donaldson, G. P., S. M. Lee, and S. K. Mazmanian. 2016. Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology 14 (1):20–32. doi: 10.1038/nrmicro3552.
  • Dryden, G. W., A. Lam, K. Beatty, H. H. Qazzaz, and C. J. McClain. 2013. A pilot study to evaluate the safety and efficacy of an oral dose of (-)-epigallocatechin-3-gallate-rich polyphenon E in patients with mild to moderate ulcerative colitis. Inflammatory Bowel Diseases 19 (9):1904–12. doi: 10.1097/MIB.0b013e31828f5198.
  • Du, H., Q. Wang, and X. Yang. 2019. Fu brick tea alleviates chronic kidney disease of rats with high fat diet consumption through attenuating insulin resistance in skeletal muscle. Journal of Agricultural and Food Chemistry 67 (10):2839–47. doi: 10.1021/acs.jafc.8b06927.
  • Du, Y., H. Ding, K. Vanarsa, S. Soomro, S. Baig, J. Hicks, and C. Mohan. 2019. Low dose epigallocatechin gallate alleviates experimental colitis by subduing inflammatory cells and cytokines, and improving intestinal permeability. Nutrients 11 (8):1743. doi: 10.3390/nu11081743.
  • Elisa, M., S. Nathalie, V. M. Francesca, and G. E. J. A. P. Boeckxstaens. 2019. Intestinal macrophages and their interaction with the enteric nervous system in health and inflammatory bowel disease. Acta Physiologica (Oxford, England) 225 (3):e13163. doi: 10.1111/apha.13163.
  • Eui-Baek, B., S. K. Woo, S. Nak-Yun, and B. Eui-Hong. 2018. Epigallocatechin-3-Gallate regulates anti-inflammatory action through 67-kDa laminin receptor-mediated tollip signaling induction in lipopolysaccharide-stimulated human intestinal epithelial cells. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 46 (5):2072–81. doi: 10.1159/000489447.
  • Fabiana, A. M., M. O. F. Goulart, S. B. G. Campos, and A. S. D. P. Martins. 2020. The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. Current Medicinal Chemistry 27 (13):2059–76. doi: 10.2174/0929867325666180904115633.
  • Fabiola, G. O., S. Brian R, N. Andrew P, G. Rodney, F. Mario G, and B. Joshua A. 2010. Green and black tea inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells via inhibition of NF-κB activity. Planta Medica 76 (15):1659–65. doi: 10.1055/s-0030-1249975.
  • Fei, G., L. Anna B, L. Guangxun, Y. Zhihong, S. Yuhai, Y. Chung S, and J. Jihyeung. 2012. Deleterious effects of high concentrations of (-)-epigallocatechin-3-gallate and atorvastatin in mice with colon inflammation. Nutrition and Cancer 64 (6):847–55. doi: 10.1080/01635581.2012.695424.
  • Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (7480):446–50. doi: 10.1038/nature12721.
  • Gan, R. Y., H. B. Li, Z. Q. Sui, and H. Corke. 2018. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Critical Reviews in Food Science and Nutrition 58 (6):924–41. doi: 10.1080/10408398.2016.1231168.
  • Gao, Z., C. Yu, H. Liang, X. Wang, Y. Liu, X. Li, K. Ji, H. Xu, M. Yang, K. Liu, et al. 2018. Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Involvement of NF-κB and MAPK signalling pathways. International Immunopharmacology 57:82–90. doi: 10.1016/j.intimp.2018.02.012.
  • George, R. S., and J. E. Darnell. 2012. The JAK-STAT pathway at twenty. Immunity 36 (4):503–14. doi: 10.1016/j.immuni.2012.03.013.
  • Gong, Z.-P., J. Ouyang, X.-L. Wu, F. Zhou, D.-M. Lu, C.-J. Zhao, C.-F. Liu, W. Zhu, J.-C. Zhang, N.-X. Li, et al. 2020. Dark tea extracts: Chemical constituents and modulatory effect on gastrointestinal function. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 130:110514 doi: 10.1016/j.biopha.2020.110514.
  • Helieh, S. O., S. C. Theresa, F. Deborah, and W. J. de Villiers. 2013. Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Frontiers in Immunology 4 (5):132. doi: 10.3389/fimmu.2013.00132.
  • Henning, S. M., J. Yang, M. Hsu, R. P. Lee, E. M. Grojean, A. Ly, C. H. Tseng, D. Heber, and Z. Li. 2018. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. European Journal of Nutrition 57 (8):2759–69. doi: 10.1007/s00394-017-1542-8.
  • Hirofumi, I., M. Y. Mari, N. Atsushi, T. Takuji, and M. Akira. 2013. Low and medium but not high doses of green tea polyphenols ameliorated dextran sodium sulfate-induced hepatotoxicity and nephrotoxicity. Bioscience, Biotechnology, and Biochemistry 77 (6):1223–8. doi: 10.1271/bbb.121003.
  • Honda, K., and D. R. Littman. 2012. The microbiome in infectious disease and inflammation. Annual Review of Immunology 30:759–95. doi: 10.1146/annurev-immunol-020711-074937.
  • Hua, Y., D. Pardoll, and R. Jove. 2009. STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews. Cancer 9 (11):798–809. doi: 10.1038/nrc2734.
  • Hua, J. J., H. B. Yuan, Y. L. Deng, Y. W. Jiang, J. J. Wang, C. W. Dong, and J. Li. 2018. Far-Infrared optimization of the fragrance-improving process with temperature and humidity control for green tea. Journal of Food Science 83 (6):1668–75. doi: 10.1111/1750-3841.14130.
  • Huang, F., X. Zheng, X. Ma, R. Jiang, W. Zhou, S. Zhou, Y. Zhang, S. Lei, S. Wang, J. Kuang, et al. 2019. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications 10 (1):4971. doi: 10.1038/s41467-019-12896-x.
  • Huang, Y. N., L. Qiu, X. Mi, Z. H. Zhang, D. Xu, X. Y. Tao, K. Y. Xing, Q. L. Wu, and H. Wei. 2020. Hot-water extract of ripened Pu-erh tea attenuates DSS-induced colitis through modulation of the NF-κB and HIF-1α signaling pathways in mice. Food & Function 11 (4):3459–70. doi: 10.1039/C9FO02803J.
  • Huang, Y. N., Q. Yang, X. Mi, L. Qiu, X. Y. Tao, Z. H. Zhang, J. Xia, Q. L. Wu, and H. Wei. 2021. Ripened Pu-erh tea extract promotes gut microbiota resilience against dextran sulphate sodium-induced colitis. Journal of Agricultural and Food Chemistry. doi: 10.1021/acs.jafc.0c07537.
  • Ijssennagger, N., R. V. D. Meer, and S. W. C. V. Mil. 2016. Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends in Molecular Medicine 22 (3):190–9. doi: 10.1016/j.molmed.2016.01.002.
  • Jeong, H. W., J. K. Kim, A. Y. Kim, D. Cho, J. H. Lee, J. K. Choi, M. Park, and W. Kim. 2020. Green tea encourages growth of Akkermansia muciniphila. Journal of Medicinal Food 23 (8):841–51. doi: 10.1089/jmf.2019.4662.
  • Johansson, M. E. V., D. Ambort, T. Pelaseyed, A. Schütte, J. K. Gustafsson, A. Ermund, D. B. Subramani, J. M. Holmén-Larsson, K. A. Thomsson, J. H. Bergström, et al. 2011. Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences: CMLS 68 (22):3635–41. doi: 10.1007/s00018-011-0822-3.
  • Kapoor, M. P., L. R. Juneja, T. Rao, and T. Okubo. 2013. Green tea polyphenols: Nutraceuticals of modern life. Boca Raton, FL: CRC Press:.
  • Lambert, J. D., M. J. Lee, H. Lu, X. Meng, J. J. Hong, D. N. Seril, M. G. Sturgill, and C. S. Yang. 2003. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. The Journal of Nutrition 133 (12):4172–7. doi: 10.1111/j.0105-2896.2004.00182.x.
  • Li, Y., S. U. Rahman, Y. Huang, Y. Zhang, P. Ming, L. Zhu, X. Chu, J. Li, S. Feng, X. Wang, et al. 2020. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. The Journal of Nutritional Biochemistry 78:108324. doi: 10.1016/j.jnutbio.2019.108324.
  • Liang, Y., L. Zhang, and J. L. Lu. 2005. A study on chemical estimation of Pu-erh tea quality. Journal of the Science of Food and Agriculture 85 (3):381–90. doi: 10.1002/jsfa.1857.
  • Liu, B., T. Yang, L. Zeng, L. Shi, Y. Li, Z. Xia, X. Xia, Q. Lin, and F. J. I. J. o F. S. Luo. 2016. Crude extract of Fuzhuan brick tea ameliorates DSS-induced colitis in mice. International Journal of Food Science & Technology 51 (12):2574–82. doi: 10.1111/ijfs.13241.
  • Liu, L. Q., S. P. Nie, M. Y. Shen, J. L. Hu, Q. Yu, D. Gong, and M. Y. Xie. 2018. Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway. Journal of Agricultural and Food Chemistry 66 (17):4384–93. doi: 10.1021/acs.jafc.8b00710.
  • Liu, Y., L. Luo, Y. Luo, J. Zhang, X. Wang, K. Sun, and L. Zeng. 2020. Prebiotic properties of green and dark tea contribute to protective effects in chemical-induced colitis in mice: A Fecal microbiota transplantation study . Journal of Agricultural and Food Chemistry 68 (23):6368–80. doi: 10.1021/acs.jafc.0c02336.
  • Liu, Y., X. Wang, Q. Chen, L. Luo, M. Ma, B. Xiao, and L. Zeng. 2020. Camellia sinensis and Litsea coreana ameliorate intestinal inflammation and modulate gut microbiota in dextran sulfate sodium‐induced colitis mice. Molecular Nutrition & Food Research 64 (6):1900943. doi: 10.1002/mnfr.201900943.
  • Yu, L., H. Yu, X. Li, C. Jin, Y. Zhao, S. Xu, and X. Sheng. 2016. P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes. Cell Biology International 40 (8):934–42. doi: 10.1002/cbin.10637.
  • Markus, B., S. Westphal, W. Domschke, T. Kucharzik, and A. Lügering. 2012. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. Journal of Crohn's & Colitis 6 (2):226–35. doi: 10.1016/j.crohns.2011.08.012.
  • Marie, C., and P. R. Philippe. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews 75 (1):50–83. doi: 10.1128/MMBR.00013-12.
  • Barnett, M. P. G., J. M. Cooney, Y. E. M. Dommels, K. Nones, D. T. Brewster, Z. Park, C. A. Butts, W. C. McNabb, W. A. Laing, and N. C. Roy. 2013. Modulation of colonic inflammation in Mdr1a(-/-) mice by green tea polyphenols and their effects on the colon transcriptome and proteome. The Journal of Nutritional Biochemistry 24 (10):1678–90. doi: 10.1016/j.jnutbio.2013.02.007.
  • Mazzon, E., C. Muià, R. D. Paola, T. Genovese, M. Menegazzi, A. De Sarro, H. Suzuki, and S. Cuzzocrea. 2005. Green tea polyphenol extract attenuates colon injury induced by experimental colitis. Free Radical Research 39 (9):1017–25. doi: 10.1080/10715760500197177.
  • Misaka, S., K. Kawabe, S. Onoue, J. P. Werba, M. Giroli, J. Kimura, H. Watanabe, and S. Yamada. 2013. Development of rapid and simultaneous quantitative method for green tea catechins on the bioanalytical study using UPLC/ESI-MS. Biomedical Chromatography: BMC 27 (1):1–6. doi: 10.1002/bmc.2740.
  • Mogensen, T. H. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews 22 (2):240–73. doi: 10.1128/CMR.00046-08.
  • Molodecky, N. A., I. S. Soon, D. M. Rabi, W. A. Ghali, M. Ferris, G. Chernoff, E. I. Benchimol, R. Panaccione, S. Ghosh, H. W. Barkema, et al. 2012. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142 (1):46–54. doi: 10.1053/j.gastro.2011.10.001.
  • Ng, S. C., W. Tang, J. Y. Ching, M. Wong, C. M. Chow, A. J. Hui, T. C. Wong, V. K. Leung, S. W. Tsang, H. H. Yu, et al. 2013. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific crohn's and colitis epidemiology study. Gastroenterology 145 (1):158–65. doi: 10.1016/S0016-5085(16)30195-0.
  • Ning, K., K. Lu, Q. Chen, Z. Guo, X. Du, F. Riaz, L. Feng, Y. Fu, C. Yin, F. Zhang, et al. 2020. Epigallocatechin gallate protects mice against methionine-choline-deficient-diet-induced nonalcoholic steatohepatitis by improving gut microbiota to attenuate hepatic injury and regulate metabolism. ACS Omega 5 (33):20800–9. doi: 10.1021/acsomega.0c01689.
  • Kamada, N., T. Hisamatsu, S. Okamoto, H. Chinen, T. Kobayashi, T. Sato, A. Sakuraba, M. T. Kitazume, A. Sugita, K. Koganei, et al. 2008. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis . The Journal of Clinical Investigation 118 (6):2269–80. doi: 10.1172/jci34610.
  • Paul, K., and M. Donna-Marie. 2000. Nitric oxide and intestinal inflammation. The American Journal of Medicine 109 (2):150–8. doi: 10.1016/s0002-9343(00)00480-0.
  • Pereira-Caro, G., J. M. Moreno-Rojas, N. Brindani, D. Del Rio, M. E. J. Lean, Y. Hara, and A. Crozier. 2017. Bioavailability of black tea theaflavins: Absorption, metabolism, and colonic catabolism. Journal of Agricultural and Food Chemistry 65 (26):5365–74. doi: 10.1021/acs.jafc.7b01707.
  • Perez-Lopez, A., J. Behnsen, S. P. Nuccio, and M. J. N. R. I. Raffatellu. 2016. Mucosal immunity to pathogenic intestinal bacteria. Nature Reviews. Immunology 16 (3):135–48. doi: 10.1038/nri.2015.17.
  • Prakash, D., G. Charu, and S. Girish. 2012. Importance of phytochemicals in nutraceuticals. Journal of Chinese Medicine Research and Development 1 (3):70–8. doi: 10.1016/0006-2952(78)90465-3.
  • Li, Q., S. Chai, Y. Li, J. Huang, Y. Luo, L. Xiao, and Z. Liu. 2018. Biochemical components associated with microbial community shift during the pile-fermentation of primary dark tea. Frontiers in Microbiology 9:1509. doi: 10.3389/fmicb.2018.01509.
  • Qu, F. F., F. F. Qiu, X. J. Zhu, Z. Y. Ai, Y. J. Ai, and D. J. Ni. 2019. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT- Food Science and Technology 99:112–8. doi: 10.1016/j.lwt.2018.09.036.
  • Riku, K., L. Aleksi, K. Hannu, and M. Eeva. 2005. Nitric oxide production and signaling in inflammation. Current drug targets. Inflammation and Allergy 4 (4):471–9. doi: 10.2174/1568010054526359.
  • Robbins, D. J., E. Zhen, M. Cheng, S. Xu, C. A. Vanderbilt, D. Ebert, C. Garcia, A. Dang, and M. H. Cobb. 1993. Regulation and properties of extracellular signal-regulated protein kinases 1, 2, and 3. Journal of the American Society of Nephrology: JASN 4 (5):1104–10. PMID: 8305637.
  • Rogler, G. 2010. Gastrointestinal and liver adverse effects of drugs used for treating IBD. Best Practice & Research. Clinical Gastroenterology 24 (2):157–65. doi: 10.1016/j.bpg.2009.10.011.
  • Sang, S. J. D. Lambert, C. T. Ho, and C. S. Yang. 2011. The chemistry and biotransformation of tea constituents. Pharmacological Research 64 (2):87–99. doi: 10.1016/j.phrs.2011.02.007.
  • Shouval, D. S., and P. A. Rufo. 2017. The role of environmental factors in the pathogenesis of inflammatory bowel diseases: A review. JAMA Pediatrics 171 (10):999–1005. doi: 10.1001/jamapediatrics.2017.2571.
  • Smith, A. M., F. Z. Rahman, B. Hayee, S. J. Graham, D. J. B. Marks, G. W. Sewell, C. D. Palmer, J. Wilde, B. M. J. Foxwell, I. S. Gloger, et al. 2009. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in crohn's disease. The Journal of Experimental Medicine 206 (9):1883–97. doi: 10.1084/jem.20091233.
  • Joo, S.-Y., Y.-A. Song, Y.-L. Park, E. Myung, C.-Y. Chung, K.-J. Park, S.-B. Cho, W.-S. Lee, H.-S. Kim, J.-S. Rew, et al. 2012. Epigallocatechin-3-gallate inhibits LPS-induced NF-κB and MAPK signaling pathways in bone marrow-derived macrophages. Gut and Liver 6 (2):188–96. doi: 10.5009/gnl.2012.6.2.188.
  • Söderholm, J. D., G. Olaison, K. H. Peterson, L. E. Franzén, T. Lindmark, M. Wirén, C. Tagesson, and R. Sjödahl. 2002. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of crohn's disease. Gut 50 (3):307–13. doi: 10.1136/gut.50.3.307.
  • Sun, H., P. Zhang, Y. Zhu, Q. Lou, and S. He. 2018. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Scientific Reports 8 (1):5018. doi: 10.1038/s41598-018-23397-0.
  • Sun, L., G. M. Nava, and T. S. J. C. O. G. Stappenbeck. 2011. Host genetic susceptibility, dysbiosis, and viral triggers in inflammatory bowel disease. Current Opinion in Gastroenterology 27 (4):321–7. doi: 10.1097/MOG.0b013e32834661b4.
  • Swapna, M., Anindita, U. K. Sudipan, D. Neeta, C. Tirthankar, V. Joseph, R. G. Dilip, K., and D. Pijush K. 2003. Thearubigin, the major polyphenol of black tea, ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. European Journal of Pharmacology 470 (1-2):103–12. doi: 10.1016/S0014-2999(03)01760-6.
  • Tan, F., C. Tan, A. Zhao, and M. Li. 2011. Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. Journal of Agricultural and Food Chemistry 59 (20):10839–47. doi: 10.1021/jf2023325.
  • Tenesa, A., and M. G. J. N. R. G. Dunlop. 2009. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nature Reviews. Genetics 10 (6):353–8. doi: 10.1038/nrg2574.
  • Ukil, A., S. Maity, and P. K. Das. 2006. Protection from experimental colitis by theaflavin-3,3'-digallate correlates with inhibition of IKK and NF-kappaB activation. British Journal of Pharmacology 149 (1):121–31. doi: 10.1038/sj.bjp.0706847.
  • Urszula, G. C., P. Wysocka-Wojakiewicz, M. Jasielska, B. Cukrowska, S. Więcek, M. Kniażewska, and J. Chudek. 2018. Oxidative and antioxidative stress status in children with inflammatory bowel disease as a result of a chronic inflammatory pocess. Mediators of Inflammation 2018:1–7. doi: 10.1155/2018/4120973.
  • Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39 (1):44–84. doi: 10.1016/j.biocel.2006.07.001.
  • Wang, Y., A. Xu, P. Liu, and Z. Li. 2015. Effects of Fuzhuan Brick-Tea water extract on mice infected with E. coli O157:H7. Nutrients 7 (7):5309–26. doi: 10.3390/nu7075218.
  • Wells, J. M., O. Rossi, M. Meijerink, and P. van Baarlen. 2011. Epithelial crosstalk at the microbiota-mucosal interface. Proceedings of the National Academy of Sciences of Sciences 108 (Supplement_1):4607–14. doi: 10.1073/pnas.1000092107.
  • Wu, M., Q. Luo, R. Nie, X. Yang, Z. Tang, and H. Chen. 2020. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Critical Reviews in Food Science and Nutrition :1–19. doi: 10.1080/10408398.2020.1773390.
  • Xi, J., S. Ge, L. Zuo, Y. Zhu, L. Wang, and Q. Xie. 2018. Protective role of green tea polyphenols in intestinal mucosal barrier function of mice with colitis induced by TNBS through inhibiting JAK2/STAT3 pathway. Xi Bao yu Fen zi Mian yi Xue za Zhi = Chinese Journal of Cellular and Molecular Immunology 34 (3):237–41. PMID: 29773105.
  • Yang, F., H. Oz, S. Barve, W. J. Devilliers, C. J. McClain, and G. Varilek. 2001. The Green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-κB activation by inhibiting IκB kinase activity in the intestinal epithelial cell line IEC-6. Gastroenterology 120 (5):A188– 533. doi: 10.1016/S0016-5085(08)80931-6.
  • Song, Y.-A., Y.-L. Park, K.-Y. Kim, C.-Y. Chung, G.-H. Lee, D.-H. Cho, H.-S. Ki, K.-J. Park, S.-B. Cho, W.-S. Lee, et al. 2011. Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis. BMC Complementary and Alternative Medicine 11:91 doi: 10.1186/1472-6882-11-91.
  • Yuan, X., Y. Long, Z. Ji, J. Gao, T. Fu, M. Yan, L. Zhang, H. Su, W. Zhang, X. Wen, et al. 2018. Green tea liquid consumption alters the human intestinal and oral microbiome. Molecular Nutrition & Food Research 62 (12):e1800178. doi: 10.1002/mnfr.201800178.
  • Zachary, T. B., R. J. Elias, M. Vijay-Kumar, and J. D. Lambert. 2016. (-)-Epigallocatechin-3-gallate decreases colonic inflammation and permeability in a mouse model of colitis, but reduces macronutrient digestion and exacerbates weight loss. Molecular Nutrition & Food Research 60 (10):2267–74. doi: 10.1002/mnfr.201501042.
  • Zheng, W. J., X. C. Wan, and G. H. Bao. 2015. Brick dark tea: A review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochemistry Reviews 14 (3):499–523. doi: 10.1007/s11101-015-9402-8.
  • Zhi, H. R., C. Chen, and S. D. Xiao. 2008. Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomedicine & Pharmacotherapy 62 (3):189–96. doi: 10.1016/j.biopha.2008.02.002.
  • Zhu, J., R. Cai, Y. Tan, X. Wu, Q. Wen, Z. Liu, S.-H. Ouyang, Z. Yin, and H. Yang. 2020. Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. Journal of Functional Foods 64:103621. doi: 10.1016/j.jff.2019.103621.
  • Zuo, T., M. A. Kamm, J. F. Colombel, and S. C. Ng. 2018. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nature Reviews. Gastroenterology & Hepatology 15 (7):440–52. doi: 10.1038/s41575-018-0003-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.