2,262
Views
16
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abaza, M. S., R. Al-Attiyah, R. Bhardwaj, G. Abbadi, M. Koyippally, and M. Afzal. 2013. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells. Pharmaceutical Biology 51 (9):1110–24. doi: 10.3109/13880209.2013.781194.
  • Abd Razak, D. L., N. H. M. Fadzil, A. Jamaluddin, N. Y. Abd Rashid, N. A. Sani, and M. A. Manan. 2019. Effects of different extracting conditions on anti-tyrosinase and antioxidant activities of Schizophyllum commune fruit bodies. Biocatalysis and Agricultural Biotechnology 19:101116. doi: 10.1016/j.bcab.2019.101116.
  • Ahmad, N., F. Mahmood, S. A. Khalil, R. Zamir, H. Fazal, and B. H. Abbasi. 2014. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms. Toxicology and Industrial Health 30 (9):826–34. doi: 10.1177/0748233712463775.
  • Akata, I., G. Zengin, C. Picot, and M. Mahomoodally. 2019. Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. South African Journal of Botany 120:95–9. doi: 10.1016/j.sajb.2018.01.008.
  • Akindahunsi, A. A., and F. L. Oyetayo. 2006. Nutrient and antinutrient distribution of edible mushroom, Pleurotus tuber-regium (fries) singer. LWT - Food Science and Technology 39 (5):548–53. doi: 10.1016/j.lwt.2005.04.005.
  • Alam, N., M. M. Sikder, M. A. Karim, and S. M. R. Amin. 2019. Antioxidant and antityrosinase activities of milky white mushroom. Bangladesh Journal of Botany 48 (4):1065–73. doi: 10.3329/bjb.v48i4.49054.
  • Alam, N., K. N. Yoon, and T. S. Lee. 2011. Evaluation of the antioxidant and antityrosinase activities of three extracts from Pleurotus nebrodensis fruiting bodies. African Journal of Biotechnology 10:2978–86.
  • Aljadi, A., and M. Kamaruddin. 2004. Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry 85 (4):513–8. doi: 10.1016/S0308-8146(02)00596-4.
  • Alkan, S., A. Uysal, G. Kasik, S. Vlaisavljevic, S. Berežni, and G. Zengin. 2020. Chemical characterization, antioxidant, enzyme inhibition and antimutagenic properties of eight mushroom species: A comparative study. Journal of Fungi 6 (3):166. doi: 10.3390/jof6030166.
  • Alkhatib, A. 2020. Antiviral functional foods and exercise lifestyle prevention of coronavirus. Nutrients 12, 1 (9):2633. doi: 10.3390/nu1209.
  • Altaf, U., P. Lalotra, and Y. Sharma. 2020. Nutritional and mineral composition of four wild edible mushrooms from Jammu and Kashmir, India. Indian Phytopathology 73 (2):313–20. doi: 10.1007/s42360-020-00230-1.
  • Alves, M. J., I. C. Ferreira, H. J. Froufe, R. M. Abreu, A. Martins, and M. Pintado. 2013. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology 115 (2):346–57. doi: 10.1111/jam.12196.
  • Angelini, P., R. Venanzoni, G. Angeles Flores, B. Tirillini, G. Orlando, L. Recinella, A. Chiavaroli, L. Brunetti, S. Leone, S. C. Di Simone, et al. 2020. Evaluation of antioxidant, antimicrobial and tyrosinase inhibitory activities of extracts from Tricholosporum goniospermum, an edible wild mushroom. Antibiotics 9 (8):513. doi: 10.3390/antibiotics9080513.
  • Anu Bhushani, J., and C. Anandharamakrishnan. 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology 38 (1):21–33. doi: 10.1016/j.tifs.2014.03.004.
  • Aprotosoaie, A. C., D. E. Zavastin, C.-T. Mihai, G. Voichita, D. Gherghel, M. Silion, A. Trifan, and A. Miron. 2017. Antioxidant and antigenotoxic potential of Ramaria largentii Marr & D. E. Stuntz, a wild edible mushroom collected from Northeast Romania. Food and Chemical Toxicology 108:429–37. doi: 10.1016/j.fct.2017.02.006.
  • Araujo, J. R., P. Goncalves, and F. Martel. 2011. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutrition Research (New York, N.Y.) 31 (2):77–87. doi: 10.1016/j.nutres.2011.01.006.
  • Arora, S., S. Goyal, J. Balani, and S. Tandon. 2013. Enhanced antiproliferative effects of aqueous extracts of some medicinal mushrooms on colon cancer cells. International Journal of Medicinal Mushrooms 15 (3):301–14. doi: 10.1615/intjmedmushr.v15.i3.70.
  • Bach, F., A. A. F. Zielinski, C. V. Helm, G. M. Maciel, A. C. Pedro, A. P. Stafussa, S. Ávila, and C. W. I. Haminiuk. 2019. Bio compounds of edible mushrooms: In vitro antioxidant and antimicrobial activities. LWT 107:214–20. doi: 10.1016/j.lwt.2019.03.017.
  • Bae, J. Y., J. S. Choi, S. W. Kang, Y. J. Lee, J. Park, and Y. H. Kang. 2010. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Experimental Dermatology 19 (8):e182–e190. doi: 10.1111/j.1600-0625.2009.01044.x.
  • Bahadori, M. B., C. Sarikurkcu, O. U. Yalcin, M. Cengiz, and H. Gungor. 2019. Metal concentration, phenolics profiling, and antioxidant activity of two wild edible Melanoleuca mushrooms (M. cognata and M. stridula). Microchemical Journal 150:104172. doi: 10.1016/j.microc.2019.104172.
  • Barros, L., P. Baptista, L. M. Estevinho, and I. C. Ferreira. 2007. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. Journal of Agricultural and Food Chemistry 55 (21):8766–71. doi: 10.1021/jf071435+.
  • Barros, L., D. M. Correia, I. C. F. R. Ferreira, P. Baptista, and C. Santos-Buelga. 2008. Optimization of the determination of tocopherols in Agaricus sp. edible mushrooms by a normal phase liquid chromatographic method. Food Chemistry 110 (4):1046–50. doi: 10.1016/j.foodchem.2008.03.016.
  • Bell, L. N. 2001. Stability testing of nutraceuticals and functional foods. In: Handbook of Nutraceuticals and Functional Foods, eds Wildman, R.E.C. New York, NY: CRC Press.
  • Blade, C., G. Aragones, A. Arola-Arnal, B. Muguerza, F. I. Bravo, M. J. Salvado, L. Arola, and M. Suarez. 2016. Proanthocyanidins in health and disease. Biofactors 42:5–12.
  • Bouzgarrou, C., K. Amara, F. S. Reis, J. C. M. Barreira, F. Skhiri, N. Chatti, A. Martins, L. Barros, and I. Ferreira. 2018. Incorporation of tocopherol-rich extracts from mushroom mycelia into yogurt. Food & Function 9 (6):3166–72. doi: 10.1039/c8fo00482j.
  • Carcelli, M., D. Rogolino, J. Bartoli, N. Pala, C. Compari, N. Ronda, F. Bacciottini, M. Incerti, and E. Fisicaro. 2020. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chemistry 303:125310 doi:10.1016/j.foodchem.2019.125310. PMC: 31473456
  • Çayan, F., E. Deveci, G. Tel-Çayan, and M. E. Duru. 2020. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. Journal of Food Measurement and Characterization 14 (3):1690–9. doi: 10.1007/s11694-020-00417-0.
  • Chang, T. S. 2009. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 10 (6):2440–75. doi: 10.3390/ijms10062440.
  • Chen, G.-L., S.-G. Chen, Y.-Y. Zhao, C.-X. Luo, J. Li, and Y.-Q. Gao. 2014. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products 57:150–7. doi: 10.1016/j.indcrop.2014.03.018.
  • Chen, Y., J. Lv, K. Li, J. Xu, M. Li, W. Zhang, and X. Pang. 2016. Sporoderm-broken spores of Ganoderma lucidum inhibit the growth of lung cancer: Involvement of the Akt/mTOR signaling pathway. Nutrition and Cancer 68 (7):1151–60. doi: 10.1080/01635581.2016.1208832.
  • Circu, M. L., and T. Y. Aw. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology & Medicine 48 (6):749–62. doi: 10.1016/j.freeradbiomed.2009.12.022.
  • Ćirić, A., I. Kruljević, D. Stojković, Â. Fernandes, L. Barros, R. C. Calhelha, I. C. Ferreira, M. Soković, and J. Glamočlija. 2019. Comparative investigation on edible mushrooms Macrolepiota mastoidea, M. rhacodes and M. procera: Functional foods with diverse biological activities. Food & Function 10 (12):7678–86. doi: 10.1039/C9FO01900F.
  • Contato, A. G., F. D. Inácio, C. A. V. de Araújo, T. Brugnari, G. M. Maciel, C. W. I. Haminiuk, A. Bracht, R. M. Peralta, and C. G. M. de Souza. 2020. Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: Chemical composition and antioxidant analysis. Journal of Food Measurement and Characterization 14 (2):830–7. doi: 10.1007/s11694-019-00331-0.
  • Dandapat, S., and M. Sinha. 2015. Antioxidant and anti-inflammatory activity of Pleurotus tuber-regium (Rumph. ex Fr.) Singer. Advances in Biological Research 9:140–5.
  • de Souza Campos Junior, F. A., M. H. Petrarca, A. D. Meinhart, M. de Jesus Filho, and H. T. Godoy. 2019. Multivariate optimization of extraction and validation of phenolic acids in edible mushrooms by capillary electrophoresis. Food Research International 126:108685. doi: 10.1016/j.foodres.2019.108685.
  • Dennis, E. A., and P. C. Norris. 2015. Eicosanoid storm in infection and inflammation. Nature Reviews Immunology 15 (8):511–23. doi: 10.1038/nri3859.
  • Ding, X., Y. Hou, and W. Hou. 2012. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohydrate Polymers 89 (2):397–402. doi: 10.1016/j.carbpol.2012.03.020.
  • Elkhateeb, W., G. Daba, P. Thomas, and T.-C. Wen. 2019. Medicinal mushrooms as a new source of natural therapeutic bioactive compounds. Egyptian Pharmaceutical Journal 18:88–101.
  • Elmastas, M., O. Isildak, I. Turkekul, and N. Temur. 2007. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. Journal of Food Composition and Analysis 20 (3-4):337–45. doi: 10.1016/j.jfca.2006.07.003.
  • Elsayed, E. A., H. El Enshasy, M. A. Wadaan, and R. Aziz. 2014. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators of Inflammation 2014:805841. doi: 10.1155/2014/805841.
  • Erjavec, J., M. Ravnikar, J. Brzin, T. Grebenc, A. Blejec, M. Ž. Gosak, J. Sabotič, J. Kos, and T. Dreo. 2016. Antibacterial activity of wild mushroom extracts on bacterial wilt pathogen Ralstonia solanacearum. Plant Disease 100 (2):453–64. doi: 10.1094/PDIS-08-14-0812-RE.
  • Faienza, M. F., A. Ventura, F. Marzano, and L. Cavallo. 2013. Postmenopausal osteoporosis: The role of immune system cells. Clinical & Developmental Immunology 2013:575936. doi: 10.1155/2013/575936.
  • Fang, Z., and B. Bhandari. 2010. Encapsulation of polyphenols–A review. Trends in Food Science & Technology 21 (10):510–23. doi: 10.1016/j.tifs.2010.08.003.
  • Faridi Esfanjani, A., and S. M. Jafari. 2016. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces 146:532–43. doi: 10.1016/j.colsurfb.2016.06.053.
  • Feeney, M. J., J. Dwyer, C. M. Hasler-Lewis, J. A. Milner, M. Noakes, S. Rowe, M. Wach, R. B. Beelman, J. Caldwell, M. T. Cantorna, et al. 2014. Mushrooms and health summit proceedings. Journal of Nutrition 144:8.
  • Sabino Ferrari, A. B., G. Azevedo De Oliveira, H. Mannochio Russo, L. Carvalho Bertozo, V. Silva Bolzani, D. Cunha Zied, V. Farias Ximenes, and M. L. Zeraik. 2021. Pleurotusostreatus and Agaricus subrufescens : investigation of chemical composition and antioxidant properties of these mushrooms cultivated with different handmade and commercial supplements. International Journal of Food Science & Technology 56 (1):452–60. doi:10.1111/ijfs.14660.
  • Ferreira, I. C., L. Barros, and R. M. Abreu. 2009. Antioxidants in wild mushrooms. Current Medicinal Chemistry 16 (12):1543–60. doi: 10.2174/092986709787909587.
  • Garduno-Diaz, S. D., and S. Khokhar. 2012. Prevalence, risk factors and complications associated with type 2 diabetes in migrant South Asians. Diabetes/Metabolism Research and Reviews 28 (1):6–24. doi: 10.1002/dmrr.1219.
  • Garrab, M., H. Edziri, R. El Mokni, M. Mastouri, H. Mabrouk, and W. Douki. 2019. Phenolic composition, antioxidant and anticholinesterase properties of the three mushrooms Agaricus silvaticus Schaeff., Hydnum rufescens Pers. and Meripilus giganteus (Pers.) Karst. in Tunisia. South African Journal of Botany 124:359–63.
  • Gąsecka, M., M. Siwulski, and M. Mleczek. 2018. Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. Journal of Food Processing and Preservation 42 (1):e13386. doi: 10.1111/jfpp.13386.
  • Gogoi, P., P. Chutia, P. Singh, and C. L. Mahanta. 2019. Effect of optimized ultrasound‐assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. Journal of Food Process Engineering 42 (6):e13172. doi: 10.1111/jfpe.13172.
  • Gonzalez-Vallinas, M., M. Gonzalez-Castejon, A. Rodriguez-Casado, and A. Ramirez de Molina. 2013. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutrition Reviews 71:585–99.
  • Guillamon, E., A. Garcia-Lafuente, M. Lozano, M. D'Arrigo, M. A. Rostagno, A. Villares, and J. A. Martinez. 2010. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 81 (7):715–23. doi: 10.1016/j.fitote.2010.06.005.
  • Heleno, S. A., L. Barros, M. J. Sousa, A. Martins, and I. C. F. R. Ferreira. 2010. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry 119 (4):1443–50. doi: 10.1016/j.foodchem.2009.09.025.
  • Hu, Q., and Y. Luo. 2016. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydrate Polymers 151:624–39. doi: 10.1016/j.carbpol.2016.05.109.
  • Hu, Q., B. Yuan, H. Xiao, L. Zhao, X. Wu, K. Rakariyatham, L. Zhong, Y. Han, B. Muinde Kimatu, and W. Yang. 2018. Polyphenols-rich extract from Pleurotus eryngii with growth inhibitory of HCT116 colon cancer cells and anti-inflammatory function in RAW264.7 cells. Food & Function 9 (3):1601–11. doi: 10.1039/c7fo01794d.
  • Huang, H.-C., T.-F. Hsu, H.-L. Chao, C.-C. Chen, S.-W. Chiu, and T.-M. Chang. 2014. Inhibition of melanogenesis in murine melanoma cells by Agaricus brasiliensis methanol extract and anti-reactive oxygen species (ROS) activity. African Journal of Microbiology Research 8:519–24.
  • Hwang, A. Y., S. C. Yang, J. Kim, T. Lim, H. Cho, and K. T. Hwang. 2019. Effects of non-traditional extraction methods on extracting bioactive compounds from chaga mushroom (Inonotus obliquus) compared with hot water extraction. LWT 110:80–4. doi: 10.1016/j.lwt.2019.04.073.
  • Hwang, B. S., I. K. Lee, H. J. Choi, and B. S. Yun. 2015. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorganic & Medicinal Chemistry Letters 25 (16):3256–60. doi: 10.1016/j.bmcl.2015.05.081.
  • Islam, T., X. Yu, and B. Xu. 2016. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT - Food Science and Technology 72:423–31. doi: 10.1016/j.lwt.2016.05.005.
  • Jayakumar, T., P. A. Thomas, and P. Geraldine. 2009. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies 10 (2):228–34. doi: 10.1016/j.ifset.2008.07.002.
  • Jeong, E. M., M. Liu, M. Sturdy, G. Gao, S. T. Varghese, A. A. Sovari, and S. C. Dudley. Jr. 2012. Metabolic stress, reactive oxygen species, and arrhythmia. Journal of Molecular and Cellular Cardiology 52 (2):454–63. doi: 10.1016/j.yjmcc.2011.09.018.
  • Kaewnarin, K., N. Suwannarach, J. Kumla, and S. Lumyong. 2016. Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods 27:352–64. doi: 10.1016/j.jff.2016.09.008.
  • Kalac, P. 2013. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93:209–18.
  • Kato, A., H. Yasuko, H. Goto, J. Hollinshead, R. J. Nash, and I. Adachi. 2009. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 16 (2-3):258–61. doi: 10.1016/j.phymed.2007.04.008.
  • Keflie, T. S., and H. K. Biesalski. 2021. Micronutrients and bioactive substances: Their potential roles in combating COVID-19. Nutrition 84:111103. doi: 10.1016/j.nut.2020.111103.
  • Khan, A. A., A. Gani, M. Ahmad, F. A. Masoodi, F. Amin, and S. Kousar. 2016. Mushroom varieties found in the Himalayan regions of India: Antioxidant, antimicrobial, and antiproliferative activities. Food Science and Biotechnology 25 (4):1095–100. doi: 10.1007/s10068-016-0176-6.
  • Khoshnoudi-Nia, S., N. Sharif, and S. M. Jafari. 2020. Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends in Food Science & Technology 95:59–74. doi: 10.1016/j.tifs.2019.11.013.
  • Koike, D., K. Yamadera, and E. P. DiMagno. 1995. Effect of a wheat amylase inhibitor on canine carbohydrate digestion, gastrointestinal function, and pancreatic growth. Gastroenterology 108 (4):1221–9. doi: 10.1016/0016-5085(95)90223-6.
  • Kosanić, M., B. Ranković, and M. Dašić. 2012. Mushrooms as possible antioxidant and antimicrobial agents. Iranian Journal of Pharmaceutical Research: IJPR 11 (4):1095–102.
  • Kosanić, M., B. Ranković, A. Rančić, and T. Stanojković. 2016. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis 24 (3):477–84. doi: 10.1016/j.jfda.2016.01.008.
  • Lee, I.-K., S.-J. Seok, W.-G. Kim, and B.-S. Yun. 2006. Diaporthin and orthosporin from the fruiting body of Daldinia concentrica. Mycobiology 34 (1):38–40. doi: 10.4489/MYCO.2006.34.1.038.
  • Lee, S., J. Y. Park, D. Lee, S. Seok, Y. J. Kwon, T. S. Jang, K. S. Kang, and K. H. Kim. 2017. Chemical constituents from the rare mushroom Calvatia nipponica inhibit the promotion of angiogenesis in HUVECs. Bioorganic & Medicinal Chemistry Letters 27 (17):4122–7. doi: 10.1016/j.bmcl.2017.07.036.
  • Lewandowska, H., M. Kalinowska, W. Lewandowski, T. M. Stępkowski, and K. Brzóska. 2016. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. The Journal of Nutritional Biochemistry 32:1–19. doi: 10.1016/j.jnutbio.2015.11.006.
  • Lin, S., L. T. Ching, K. Lam, and P. C. K. Cheung. 2017. Anti-angiogenic effect of water extract from the fruiting body of Agrocybe aegerita. LWT 75:155–63. doi: 10.1016/j.lwt.2016.08.044.
  • Liu, K., X. Xiao, J. Wang, C. Y. O. Chen, and H. Hu. 2017. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT - Food Science and Technology 82:154–61. doi: 10.1016/j.lwt.2017.04.041.
  • Liu, Y. T., J. Sun, Z. Y. Luo, S. Q. Rao, Y. J. Su, R. R. Xu, and Y. J. Yang. 2012. Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50 (5):1238–44. doi: 10.1016/j.fct.2012.01.023.
  • Lu, X., M. A. Brennan, J. Narciso, W. Guan, J. Zhang, L. Yuan, L. Serventi, and C. S. Brennan. 2020. Correlations between the phenolic and fibre composition of mushrooms and the glycaemic and textural characteristics of mushroom enriched extruded products. LWT 118:108730. doi: 10.1016/j.lwt.2019.108730.
  • Lucas-González, R., M. Viuda-Martos, J. A. P. Álvarez, and J. Fernández-López. 2018. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chemistry 256:252–8. doi: 10.1016/j.foodchem.2018.02.128.
  • Ma, G., W. Yang, L. Zhao, F. Pei, D. Fang, and Q. Hu. 2018. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness 7 (2):125–33. doi: 10.1016/j.fshw.2018.05.002.
  • Mahmoud, K. F., A. A. Amin, E. I. Seliem, and M. F. Salama. 2016. Nano capsulated polyphenol extracted from oyster mushroom (Pleurotus ostreatus), characterization and stability evaluation. International Journal of PharmTech Research 9:2016.
  • Martinkovich, S., D. Shah, S. L. Planey, and J. A. Arnott. 2014. Selective estrogen receptor modulators: Tissue specificity and clinical utility. Clinical Interventions in Aging 9:1437–52. doi: 10.2147/CIA.S66690.
  • Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies 15: 523–30.
  • Miles, P. G., and S.-T. Chang. 2004. Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact. Washington , DC: CRC Press.
  • Mingyi, Y., T. Belwal, H. P. Devkota, L. Li, and Z. Luo. 2019. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends in Food Science & Technology 92:94–110. doi: 10.1016/j.tifs.2019.08.009.
  • Moro, C., I. Palacios, M. Lozano, M. D’Arrigo, E. Guillamón, A. Villares, J. A. Martínez, and A. García-Lafuente. 2012. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chemistry 130 (2):350–5. doi: 10.1016/j.foodchem.2011.07.049.
  • Muszyńska, B., A. Grzywacz-Kisielewska, K. Kała, and J. Gdula-Argasińska. 2018. Anti-inflammatory properties of edible mushrooms: A review. Food Chemistry 243:373–81. doi: 10.1016/j.foodchem.2017.09.149.
  • Muszyńska, B., K. Sułkowska-Ziaja, and H. Ekiert. 2013. Phenolic acids in selected edible Basidiomycota species: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. Acta Scientiarum Polonorum - Hortorum Cultus 12:107–16.
  • Mutukwa, I. B., C. A. Hall, III, L. Cihacek, and C. W. Lee. 2019. Evaluation of drying method and pretreatment effects on the nutritional and antioxidant properties of oyster mushroom (Pleurotus ostreatus). Journal of Food Processing and Preservation 43 (4):e13910. doi: 10.1111/jfpp.13910.
  • Nakajima, Y., H. Nishida, S. Matsugo, and T. Konishi. 2009. Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (persoon) Pilat]. Journal of Medicinal Food 12 (3):501–7. doi: 10.1089/jmf.2008.1149.
  • Nowacka-Jechalke, N., M. Olech, and R. Nowak. 2018. Chapter 11 - Mushroom polyphenols as chemopreventive agents. In Polyphenols: Prevention and treatment of human disease, ed. R. R. Watson, V. R. Preedy, and S. Zibadi, 2nd ed., 137–50. London: Academic Press.
  • Nowacka, N., R. Nowak, M. Drozd, M. Olech, R. Los, and A. Malm. 2014. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Science and Technology 59 (2):689–94. doi: 10.1016/j.lwt.2014.05.041.
  • Nowacka, N., R. Nowak, M. Drozd, M. Olech, R. Los, and A. Malm. 2015. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One 10 (10):e0140355. doi: 10.1371/journal.pone.0140355.
  • Nukata, M., T. Hashimoto, I. Yamamoto, N. Iwasaki, M. Tanaka, and Y. Asakawa. 2002. Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry 59 (7):731–7. doi: 10.1016/S0031-9422(02)00050-X.
  • Okuda, T., and H. Ito. 2011. Tannins of constant structure in medicinal and food plants—Hydrolyzable tannins and polyphenols related to tannins. Molecules 16 (3):2191–217. doi: 10.3390/molecules16032191.
  • Olawuyi, I. F., and W. Y. Lee. 2019. Quality and antioxidant properties of functional rice muffins enriched with shiitake mushroom and carrot pomace. International Journal of Food Science & Technology 54 (7):2321–8. doi: 10.1111/ijfs.14155.
  • Oliveira, D. A., M. Angonese, C. Gomes, and S. R. S. Ferreira. 2016. Valorization of passion fruit (Passiflora edulis sp.) by-products: Sustainable recovery and biological activities. The Journal of Supercritical Fluids 111:55–62. doi: 10.1016/j.supflu.2016.01.010.
  • Orhan, I., and O. Üstün. 2011. Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. Journal of Food Composition and Analysis 24 (3):386–90. doi: 10.1016/j.jfca.2010.11.005.
  • Oyetayo, V. O. 2009. Free radical scavenging and antimicrobial properties of extracts of wild mushrooms. Brazilian Journal of Microbiology 40 (2):380–6. doi: 10.1590/S1517-83822009000200031.
  • Ozen, T., C. Darcan, O. Aktop, and I. Turkekul. 2011. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the black sea region of Turkey. Combinatorial Chemistry & High Throughput Screening 14 (2):72–84. doi: 10.2174/138620711794474079.
  • Palacios, I., M. Lozano, C. Moro, M. D’Arrigo, M. A. Rostagno, J. A. Martínez, A. García-Lafuente, E. Guillamón, and A. Villares. 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry 128 (3):674–8. doi: 10.1016/j.foodchem.2011.03.085.
  • Park, I.-H., S.-K. Chung, K.-B. Lee, Y.-C. Yoo, S.-K. Kim, G.-S. Kim, and K.-S. Song. 2004. An antioxidant hispidin from the mycelial cultures of Phellinus linteus. Archives of Pharmacal Research 27 (6):615–8. doi: 10.1007/BF02980159.
  • Paul, N., P. S. Slathia, A. Vaid, and R. Kumar. 2018. Traditional knowledge of Gucchi, Morchella esculenta (Ascomycetes), in Doda District, Jammu and Kashmir, India. International Journal of Medicinal Mushrooms 20 (5):445–50. doi: 10.1615/IntJMedMushrooms.2018025995.
  • Pavithra, M., K. R. Sridhar, A. A. Greeshma, and K. Tomita-Yokotani. 2016. Bioactive potential of the wild mushroom Astraeus hygrometricus in South-west India. Mycology 7 (4):191–202. doi: 10.1080/21501203.2016.1260663.
  • Perluigi, M., F. De Marco, C. Foppoli, R. Coccia, C. Blarzino, M. Luisa Marcante, and C. Cini. 2003. Tyrosinase protects human melanocytes from ROS-generating compounds. Biochemical and Biophysical Research Communications 305 (2):250–6. doi: 10.1016/S0006-291X(03)00751-4.
  • Quang, D. N., L. Harinantenaina, T. Nishizawa, T. Hashimoto, C. Kohchi, G.-I. Soma, and Y. Asakawa. 2006. Inhibitory activity of nitric oxide production in RAW 264.7 cells of daldinals A–C from the fungus Daldinia childiae and other metabolites isolated from inedible mushrooms. Journal of Natural Medicines 60 (4):303–7. doi: 10.1007/s11418-006-0010-1.
  • Rathore, H., S. Prasad, and S. Sharma. 2017. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 5 (2):35–46. doi: 10.1016/j.phanu.2017.02.001.
  • Ruksiriwanich, W., J. Sirithunyalug, K. Boonpisuttinant, and P. Jantrawut. 2014. Potent in vitro collagen biosynthesis stimulating and antioxidant activities of edible mushroom Volvariella volvacea aqueous extract. International Journal of Pharmacy and Pharmaceutical Sciences 6:406–12.
  • Sadi, G., A. Kaya, H. A. Yalcin, B. Emsen, A. Kocabas, D. I. Kartal, and A. Altay. 2016. Wild edible mushrooms from turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. International Journal of Medicinal Mushrooms 18 (1):83–95. doi: 10.1615/IntJMedMushrooms.v18.i1.100.
  • Saltarelli, R., F. Palma, A. M. Gioacchini, C. Calcabrini, U. Mancini, R. De Bellis, V. Stocchi, and L. Potenza. 2019. Phytochemical composition, antioxidant and antiproliferative activities and effects on nuclear DNA of ethanolic extract from an Italian mycelial isolate of Ganoderma lucidum. Journal of Ethnopharmacology 231:464–73. doi: 10.1016/j.jep.2018.11.041.
  • Seok, J. K., and Y. C. Boo. 2015. p-Coumaric acid attenuates UVB-induced release of stratifin from keratinocytes and indirectly regulates matrix metalloproteinase 1 release from fibroblasts. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 19 (3):241–7. doi: 10.4196/kjpp.2015.19.3.241.
  • Sezgin, S., A. Dalar, and Y. Uzun. 2020. Determination of antioxidant activities and chemical composition of sequential fractions of five edible mushrooms from Turkey. Journal of Food Science and Technology 57 (5):1866–11. doi: 10.1007/s13197-019-04221-7.
  • Shahidi, F. 2000. Antioxidants in food and food antioxidants. Nahrung/Food 44 (3):158–63. doi: 10.1002/1521-3803(20000501)44:3<158::AID-FOOD158>3.0.CO;2-L.
  • Shobana, S., Y. N. Sreerama, and N. G. Malleshi. 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry 115 (4):1268–73. doi: 10.1016/j.foodchem.2009.01.042.
  • Singhal, S., P. Rasane, J. Singh, S. Kaur, V. Kumar, K. Dhawan, S. Gurumayum, N. Kaur, N. Gupta, and D. Kaur. 2020. Effect of processing on vital chemical components of button mushroom. Journal of Food Process Engineering 43 (1):e13229. doi: 10.1111/jfpe.13229.
  • Smolskaitė, L., P. R. Venskutonis, and T. Talou. 2015. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT - Food Science and Technology 60 (1):462–71. doi: 10.1016/j.lwt.2014.08.007.
  • Soleymani, S., A. Iranpanah, F. Najafi, T. Belwal, S. Ramola, Z. Abbasabadi, S. Momtaz, and M. H. Farzaei. 2019. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Archives of Dermatological Research 311 (8):577–12. doi: 10.1007/s00403-019-01930-z.
  • Song, J., M. M. Manir, and S. S. Moon. 2009. Cytotoxic grifolin derivatives isolated from the wild mushroom Boletus pseudocalopus (Basidiomycetes). Chemistry & Biodiversity 6 (9):1435–42. doi: 10.1002/cbdv.200800217.
  • Soto, M. L., E. Falqué, and H. Domínguez. 2015. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2 (3):259–76. doi: 10.3390/cosmetics2030259.
  • Souilem, F., Â. Fernandes, R. C. Calhelha, J. C. M. Barreira, L. Barros, F. Skhiri, A. Martins, and I. C. F. R. Ferreira. 2017. Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry 230:40–8. doi: 10.1016/j.foodchem.2017.03.026.
  • Spim, S. R. V., N. R. C. M. Castanho, A. M. H. Pistila, A. F. Jozala, J. M. O. Júnior, and D. Grotto. 2021. Lentinula edodes mushroom as an ingredient to enhance the nutritional and functional properties of cereal bars. Journal of Food Science and Technology58:1349–57.
  • Stoffel, F., W. D. O. Santana, R. C. Fontana, J. G. N. Gregolon, T. B. L. Kist, F. G. De Siqueira, S. Mendonça, and M. Camassola. 2019. Chemical features and bioactivity of grain flours colonized by macrofungi as a strategy for nutritional enrichment. Food Chemistry 297:124988. doi: 10.1016/j.foodchem.2019.124988.
  • Stojkovic, D., M. Smiljkovic, A. Ciric, J. Glamoclija, L. Van Griensven, I. C. F. R. Ferreira, and M. Sokovic. 2019. An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany 120:100–3. doi: 10.1016/j.sajb.2018.01.007.
  • Tanaka, T., N. Kawaguchi, N. Zaima, T. Moriyama, Y. Fukuta, and N. Shirasaka. 2017. Antiosteoporotic activity of a syringic acid diet in ovariectomized mice. Journal of Natural Medicines 71 (4):632–41. doi: 10.1007/s11418-017-1105-6.
  • Tanaka, T., H. Onuma, T. Shigihara, E. Kimura, Y. Fukuta, N. Shirasaka, T. Moriyama, and Y. Homma. 2019. Anti-osteoporotic effects of syringic acid and vanilic acid in the extracts of waste beds after mushroom cultivation. Journal of Bioscience and Bioengineering 128 (5):622–9. doi: 10.1016/j.jbiosc.2019.04.021.
  • Taofiq, O., R. C. Calhelha, S. Heleno, L. Barros, A. Martins, C. Santos-Buelga, M. Queiroz, and I. Ferreira. 2015. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International 76 (Pt 3):821–7. doi: 10.1016/j.foodres.2015.07.044.
  • Taofiq, O., A. M. González-Paramás, A. Martins, M. F. Barreiro, and I. C. Ferreira. 2016. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products 90:38–48. doi: 10.1016/j.indcrop.2016.06.012.
  • Taofiq, O., S. A. Heleno, R. C. Calhelha, I. P. Fernandes, M. J. Alves, L. Barros, A. M. González-Paramás, I. C. Ferreira, and M. F. Barreiro. 2018. Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Industrial Crops and Products 124:44–52. doi: 10.1016/j.indcrop.2018.07.057.
  • Taofiq, O., F. Rodrigues, L. Barros, M. F. Barreiro, I. C. F. R. Ferreira, and M. B. P. P. Oliveira. 2019. Mushroom ethanolic extracts as cosmeceuticals ingredients: Safety and ex vivo skin permeation studies. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 127:228–36. doi: 10.1016/j.fct.2019.03.045.
  • Tella, S. H., and J. C. Gallagher. 2014. Prevention and treatment of postmenopausal osteoporosis. The Journal of Steroid Biochemistry and Molecular Biology 142:155–70. doi: 10.1016/j.jsbmb.2013.09.008.
  • Tepsongkroh, B., K. Jangchud, A. Jangchud, P. Chonpracha, R. Ardoin, and W. Prinyawiwatkul. 2020. Consumer perception of extruded snacks containing brown rice and dried mushroom. International Journal of Food Science & Technology 55 (1):46–54. doi: 10.1111/ijfs.14220.
  • Ucar, T. M., and A. Karadag. 2019. The effects of vacuum and freeze-drying on the physicochemical properties and in vitro digestibility of phenolics in oyster mushroom (Pleurotus ostreatus). Journal of Food Measurement and Characterization 13 (3):2298–309. doi: 10.1007/s11694-019-00149-w.
  • Ukaegbu, C. I., S. R. Shah, H. Abd Hamid, O. R. Alara, and M. Z. I. Sarker. 2020. Phenolic compounds of aqueous and methanol extracts of Hypsizygus tessellatus (brown and white var.) and Flammulina velutipes caps: Antioxidant and antiproliferative activities. Pharmaceutical Chemistry Journal 54 (2):170–83. doi: 10.1007/s11094-020-02174-2.
  • Vaz, J. A., G. M. Almeida, I. C. Ferreira, A. Martins, and M. H. Vasconcelos. 2012. Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: Identification of phenolic acids with cytotoxic potential. Food Chemistry 132 (1):482–6. doi: 10.1016/j.foodchem.2011.11.031.
  • Vaz, J. A., L. Barros, A. Martins, C. Santos-Buelga, M. H. Vasconcelos, and I. C. F. R. Ferreira. 2011. Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chemistry 126 (2):610–6. doi: 10.1016/j.foodchem.2010.11.063.
  • Veljovic, S., M. Veljovic, N. Nikicevic, S. Despotovic, S. Radulovic, M. Niksic, and L. Filipovic. 2017. Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. Journal of Food Science and Technology 54:1312–20.
  • Wagay, J. A., G. A. Nayik, S. A. Wani, R. A. Mir, M. A. Ahmad, Q. I. Rahman, and D. Vyas. 2019. Phenolic profiling and antioxidant capacity of Morchella esculenta L. by chemical and electrochemical methods at multiwall carbon nanotube paste electrode. Journal of Food Measurement and Characterization 13 (3):1805–19. doi: 10.1007/s11694-019-00099-3.
  • Wang, W., Z. Wu, X. Wang, C. Li, K. Zhang, J. Zhou, S. Cheng, and F. Lu. 2018. Enzymatic hydrolysis combined with high‐pressure homogenisation for the preparation of polysaccharide‐based nanoparticles from the by‐product of Flammulina velutipes. International Journal of Food Science & Technology 53 (10):2422–9. doi: 10.1111/ijfs.13836.
  • Wieczorek, P. P., D. Witkowska, I. Jasicka-Misiak, A. Poliwoda, M. Oterman, and K. Zielińska. 2015. Chapter 5 - Bioactive alkaloids of hallucinogenic mushrooms. In Studies in natural products chemistry, ed. R. Atta ur, 133–68. Cambridge, USA: Elsevier.
  • Witkowska, A. M., M. E. Zujko, and I. Mirończuk-Chodakowska. 2011. Comparative study of wild edible mushrooms as sources of antioxidants. International Journal of Medicinal Mushrooms 13 (4):335–41. doi: 10.1615/intjmedmushr.v13.i4.30.
  • Wu, T., and B. Xu. 2015. Antidiabetic and antioxidant activities of eight medicinal mushroom species from China. International Journal of Medicinal Mushrooms 17 (2):129–40. doi: 10.1615/intjmedmushrooms.v17.i2.40.
  • Wu, Y., M.-H. Choi, J. Li, H. Yang, and H.-J. Shin. 2016. Mushroom cosmetics: The present and future. Cosmetics 3 (3):22. doi: 10.3390/cosmetics3030022.
  • Wu, Z., and Y. Li. 2017. Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget 8 (13):21454–60. doi: 10.18632/oncotarget.15250.
  • Xiaokang, W., N. P. Brunton, J. G. Lyng, S. M. Harrison, S. T. Carpes, and K. Papoutsis. 2020. Volatile and non-volatile compounds of shiitake mushrooms treated with pulsed light after twenty-four hour storage at different conditions. Food Bioscience 36:100619. doi: 10.1016/j.fbio.2020.100619.
  • Yahia, E. M., F. Gutiérrez-Orozco, and M. A. Moreno-Pérez. 2017. Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry 226:14–22. doi: 10.1016/j.foodchem.2017.01.044.
  • Yan, H., X. Che, Q. Lv, L. Zhang, S. Dongol, Y. Wang, H. Sun, and J. Jiang. 2017. Grifolin induces apoptosis and promotes cell cycle arrest in the A2780 human ovarian cancer cell line via inactivation of the ERK1/2 and Akt pathways. Oncology Letters 13 (6):4806–12. doi: 10.3892/ol.2017.6092.
  • Yıldız, S., A. Yılmaz, Z. Can, C. Kılıç, and Ü. Yıldız. 2017. Total phenolic, flavonoid, tannin contents and antioxidant properties of Pleurotus ostreatus and Pleurotus citrinopileatus cultivated on various sawdust. The Journal of Food 42:315–23.
  • Yoon, K. N., N. Alam, K. R. Lee, P. G. Shin, J. C. Cheong, Y. B. Yoo, and T. S. Lee. 2011. Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules (Basel, Switzerland) 16 (3):2334–47. doi: 10.3390/molecules16032334.
  • Zielinski, A. A. F., C. W. I. Haminiuk, and T. Beta. 2016. Multi-response optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC–DAD–Q-TOF–MS/MS. LWT - Food Science and Technology 65:897–907. doi: 10.1016/j.lwt.2015.09.020.
  • Zolghadri, S., A. Bahrami, M. T. Hassan Khan, J. Munoz-Munoz, F. Garcia-Molina, F. Garcia-Canovas, and A. A. Saboury. 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 34 (1):279–309. doi: 10.1080/14756366.2018.1545767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.