800
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Oral fate and stabilization technologies of lactoferrin: a systematic review

, , , , , & show all

References

  • AbdElhamid, A. S., D. G. Zayed, M. W. Helmy, S. M. Ebrahim, M. Bahey-El-Din, E. A. Zein-El-Dein, S. A. El-Gizawy, and A. O. Elzoghby. 2018. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine (London, England) 13 (20):2637–56. doi: 10.2217/nnm-2018-0196.
  • Adlerova, L., A. Bartoskova, and M. Faldyna. 2008. Lactoferrin: A review. Veterinární Medicína 53 (9):457–68. doi: 10.17221/1978-VETMED.
  • Aisen, P., and A. Leibman. 1972. Lactoferrin and transferrin: A comparative study. Biochimica et Biophysica Acta 257 (2):314–23. doi: 10.1016/0005-2795(72)90283-8.
  • Akiyama, Y., K. Oshima, K. Shin, H. Wakabayashi, F. Abe, D. Nadano, and T. Matsuda. 2013. Intracellular retention and subsequent release of bovine milk lactoferrin taken up by human enterocyte-like cell lines, Caco-2, C2BBe1 and HT-29. Bioscience, Biotechnology, and Biochemistry 77 (5):1023–9. doi: 10.1271/bbb.121011.
  • Almehdar, H. A., N. Abd El-Baky, A. A. Alhaider, S. A. Almuhaideb, A. A. Alhaider, R. S. Albiheyri, V. N. Uversky, and E. M. Redwan. 2020. Bacteriostatic and Bactericidal Activities of Camel Lactoferrins Against Salmonella enterica Serovar Typhi. Probiotics and Antimicrobial Proteins 12 (1):18–31. doi: 10.1007/s12602-019-9520-5.
  • Ammons, M. C., and V. Copie. 2013. Mini-review: Lactoferrin: A bioinspired, anti-biofilm therapeutic. Biofouling 29 (4):443–55. doi: 10.1080/08927014.2013.773317.
  • Anderson, B. F., H. M. Baker, E. J. Dodson, E. J. Dodson, G. E. Norris, S. V. Rumball, J. M. Waters, and E. N. Baker. 1987. Structure of human lactoferrin at 3.2-A resolution. Proceedings of the National Academy of Sciences of the United States of America 84 (7):1769–73. doi: 10.1073/pnas.84.7.1769.
  • Anghel, L., A. Radulescu, and R. V. Erhan. 2018. Structural aspects of human lactoferrin in the iron-binding process studied by molecular dynamics and small-angle neutron scattering. European Physical Journal E 41 (9):109.
  • Baker, E. N., and H. M. Baker. 2005. Lactoferrin molecular structure, binding properties and dynamics of lactoferrin. Cellular and Molecular Life Sciences: CMLS 62 (22):2531–9. doi: 10.1007/s00018-005-5368-9.
  • Baker, E. N., and H. M. Baker. 2009. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91 (1):3–10.
  • Baker, H. M., C. J. Baker, C. A. Smith, and E. N. Baker. 2000. Metal substitution in transferrins: Specific binding of cerium(IV) revealed by the crystal structure of cerium-substituted human lactoferrin. Journal of Biological Inorganic Chemistry: JBIC 5 (6):692–8. doi: 10.1007/s007750000157.
  • Bellamy, W., M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase, and M. Tomita. 1992. Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta 1121 (1-2):130–6. doi: 10.1016/0167-4838(92)90346-f.
  • Bertuccini, L., R. Russo, F. Iosi, and F. Superti. 2018. Lactobacilli and lactoferrin: Biotherapeutic effects for vaginal health. Journal of Functional Foods 45:86–94. doi: 10.1016/j.jff.2018.03.033.
  • Bokkhim, H., N. Bansal, L. Grøndahl, and B. Bhandari. 2016. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocolloids 52:231–42. doi: 10.1016/j.foodhyd.2015.07.007.
  • Bourgeois, S., H. Richard, and E. Fattal. 2005. Polymer colon drug delivery systems and their application to peptides, proteins, and nucleic acids. American Journal of Drug Delivery (3):171–204.
  • Broer, S. 2006. Amino acid transport across mammalian intestinal and renal epithelia. Physiological Reviews 88:249–86.
  • Cai, Q. Q., and Z. D. Li. 2013. A review on intestinal lymphatic drug transport. Chinese Pharmaceutical Journal 12:12–7.
  • Cakebread, J. A., M. Callaghan, M. Broadhurst, P. Harris, and T. T. Wheeler. 2017. Free secretory component from bovine milk aggregates enteropathogenic Escherichia coli and inhibits binding to intestinal cells. International Dairy Journal 68:32–7. doi: 10.1016/j.idairyj.2016.12.011.
  • Chaharband, F., G. Kamalinia, F. Atyabi, S. A. Mortazavi, Z. H. Mirzaie, and R. Dinarvand. 2018. Formulation and in vitro evaluation of curcumin-lactoferrin conjugated nanostructures for cancerous cells. Artificial Cells, Nanomedicine, and Biotechnology 46 (3):626–36. doi: 10.1080/21691401.2017.1337020.
  • Chalamaiah, M., W. L. Yu, and J. P. Wu. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry 245:205–22. doi: 10.1016/j.foodchem.2017.10.087.
  • Chatterton, D. E. W., J. T. Rasmussen, C. W. Heegaard, E. S. Sorensen, and T. E. Petersen. 2004. In vitro digestion of novel milk protein ingredients for use in infant formulas: Research on biological functions. Trends in Food Science & Technology 15 (7-8):373–83. doi: 10.1016/j.tifs.2003.12.004.
  • Chen, Y., Z. Q. Zheng, X. Zhu, Y. J. Shi, D. D. Tian, F. J. Zhao, N. Liu, P. S. Huppi, F. A. Troy, and B. Wang. 2015. Lactoferrin promotes early neurodevelopment and cognition in postnatal piglets by upregulating the BDNF signaling pathway and polysialylation. Molecular Neurobiology 52 (1):256–69. doi: 10.1007/s12035-014-8856-9.
  • Choe, A., S. K. Ha, I. Choi, N. Choi, and J. H. Sung. 2017. Microfluidic gut-liver chip for reproducing the first pass metabolism. Biomedical Microdevices 19 (1):4. doi: 10.1007/s10544-016-0143-2.
  • Cutone, A., L. Rosa, M. S. Lepanto, M. J. Scotti, F. Berlutti, M. C. B. di Patti, G. Musci, and P. Valenti. 2017. Lactoferrin efficiently counteracts the inflammation-induced changes of the iron homeostasis system in macrophages. Frontiers in Immunology 8:705. doi: 10.3389/fimmu.2017.00705.
  • de Santiago, G. T., M. J. Lobo-Zegers, S. L. Montes-Fonseca, Y. S. Zhang, and M. M. Alvarez. 2018. Gut-microbiota-on-a-chip: An enabling field for physiological research. Microphysiological Systems 2:7.
  • Deb, T., D. Ganguly, S. Sen, P. Giri, P. Dhar, and S. Das. 2018. Modification of the toxicity of an azo compound through complex formation help target bacterial strains. Journal of Chemical Sciences 130 (7):94. doi: 10.1007/s12039-018-1510-8.
  • Deng, H. H., S. T. Yan, Y. Huang, C. Y. Lei, and Z. Nie. 2020. Design strategies for fluorescent proteins/mimics and their applications in biosensing and bioimaging. TrACE - Trends in Analytical Chemistry 122:115755.
  • Dong, H. L., Y. Y. Yang, C. H. Gao, H. H. Sun, H. M. Wang, C. Hong, J. Wang, F. Y. Gong, and X. M. Gao. 2020. Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. Journal for ImmunoTherapy of Cancer 8 (1):e000339. doi: 10.1136/jitc-2019-000339.
  • Ellison, R. T. 1994. The effects of lactoferrin on gram-negative bacteria. Advances in Experimental Medicine and Biology 357:71–90. doi: 10.1007/978-1-4615-2548-6_8.
  • Eriksen, E. K., H. Holm, E. Jense, R. Aaboe, T. G. Devold, M. Jacobsen, and G. E. Vegarud. 2010. Different digestion of caprine whey proteins by human and porcine gastrointestinal enzymes. British Journal of Nutrition 104 (3):374–81. doi: 10.1017/S0007114510000577.
  • Feng, K., C. Li, Y. S. Wei, M. H. Zong, H. Wu, and S. Y. Han. 2019. Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of salmon calcitonin. Journal of Colloid and Interface Science 552:186–95. doi: 10.1016/j.jcis.2019.05.037.
  • Feng, K., R. M. Huang, R. Q. Wu, Y. S. Wei, M. H. Zong, R. J. Linhardt, and H. Wu. 2020. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions. Food Chemistry 310:125977. doi: 10.1016/j.foodchem.2019.125977.
  • Feng, K., Y. S. Wei, T. G. Hu, R. J. Linhardt, M. H. Zong, and H. Wu. 2020. Colon-targeted delivery systems for nutraceuticals: A review of current vehicles, evaluation methods and future prospects. Trends in Food Science & Technology 102:203–22. doi: 10.1016/j.tifs.2020.05.019.
  • Figueroa-Lozano, S., R. L. Valk-Weeber, R. Akkerman, W. Abdulahad, S. S. van Leeuwen, L. Dijkhuizen, and P. de Vos. 2020. Inhibitory Effects of dietary N-glycans from bovine lactoferrin on toll-like receptor 8; comparing efficacy with chloroquine. Frontiers in Immunology 11:790. doi: 10.3389/fimmu.2020.00790.
  • Fornai, M., C. Pellegrini, L. Benvenuti, E. Tirotta, D. Gentile, G. Natale, L. Ryskalin, R. Colucci, E. Piccoli, E. Ghelardi, et al. 2020. Protective effects of the combination Bifidobacterium longum plus lactoferrin against NSAID-induced enteropathy. Nutrition (Burbank, Los Angeles County, Calif.) 70:110583. doi: 10.1016/j.nut.2019.110583.
  • Franco, I., M. D. Perez, C. Conesa, M. Calvo, and L. Sanchez. 2018. Effect of technological treatments on bovine lactoferrin: An overview. Food Research International (Ottawa, Ont.) 106:173–82. doi: 10.1016/j.foodres.2017.12.016.
  • Frontera, L. S., S. Moyano, G. Quassollo, A. Lanfredi-Rangel, A. Ropolo, and M. C. Touz. 2018. Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Scientific Reports 8 (1):18020. doi: 10.1038/s41598-018-36563-1.
  • Furlund, C. B., E. K. Ulleberg, T. G. Devold, R. Flengsrud, M. Jacobsen, C. Sekse, H. Holm, and G. E. Vegarud. 2013. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. Journal of Dairy Science 96 (1):75–88. doi: 10.3168/jds.2012-5946.
  • Gifford, J. L., H. N. Hunter, and H. J. Vogel. 2005. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Sciences: CMLS 62 (22):2588–98. doi: 10.1007/s00018-005-5373-z.
  • Gimona, M., K. Pachler, S. Laner-Plamberger, K. Schallmoser, and E. Rohde. 2017. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. International Journal of Molecular Sciences 18 (6):1190. doi: 10.3390/ijms18061190.
  • Gong, J. H., F. H. Guo, W. H. Cheng, H. Q. Fan, Q. F. Miao, and J. G. Yang. 2020. Preliminary biological evaluation of 123I-labelled anti-CD30-LDM in CD30-positive lymphomas murine models. Artificial Cells, Nanomedicine, and Biotechnology 48 (1):408–14. doi: 10.1080/21691401.2019.1709857.
  • González-Chávez, S. A., S. Arévalo-Gallegos, and Q. Rascón-Cru. 2009. Lactoferrin: Structure, function and applications. International Journal of Antimicrobial Agents 33 (4):301.e1. doi: 10.1016/j.ijantimicag.2008.07.020.
  • Grey, A., T. Banovic, Q. Zhu, M. Watson, K. Callon, K. Palmano, J. Ross, D. Naot, I. R. Reid, and J. Cornish. 2004. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Molecular Endocrinology (Baltimore, Md.) 18 (9):2268–78. doi: 10.1210/me.2003-0456.
  • Grosvenor, A. J., B. J. Haigh, and J. M. Dyer. 2014. Digestion proteomics: Tracking lactoferrin truncation and peptide release during simulated gastric digestion. Food & Function 5 (11):2699–705. doi: 10.1039/c4fo00165f.
  • Groves, M. L. 1960. The isolation of a red protein from milk2. Journal of the American Chemical Society 82 (13):3345–50. doi: 10.1021/ja01498a029.
  • Guan, X. W., and M. E. Morris. 2019. Pharmacokinetics of the monocarboxylate transporter 1 inhibitor AZD3965 in mice: Potential enterohepatic circulation and target-mediated disposition. Pharmaceutical Research 37 (1):5–13. doi: 10.1007/s11095-019-2735-z.
  • Haan, P. D., M. A. Ianovska, K. Mathwig, A. A. G. van Lieshout, V. Triantis, H. Bouwmeester, and E. Verpoorte. 2019. Digestion-on-a-chip: A continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract. Lab on a Chip 19 (9):1599–609. doi: 10.1039/c8lc01080c.
  • Harada, E., Y. Itoh, K. Sitizyo, T. Takeuchi, Y. Araki, and H. Kitagawa. 1999. Characteristic transport of lactoferrin from the intestinal lumen into the bile via the blood in piglets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 124 (3):321–7. doi: 10.1016/S1095-6433(99)00122-1.
  • Hassoun, L. A., and R. K. Sivaman. 2017. A systematic review of lactoferrin use in dermatology. Critical Reviews in Food Science and Nutrition 57 (17):3632–9. doi: 10.1080/10408398.2015.1137859.
  • Haukland, H. H., H. Ulvatne, K. Sandvik, and L. H. Vorland. 2001. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Letters 508 (3):389–93. doi: 10.1016/s0014-5793(01)03100-3.
  • He, Y., L. Y. Cao, and J. L. Yu. 2018. Prophylactic lactoferrin for preventing late-onset sepsis and necrotizing enterocolitis in preterm infants A PRISMA-compliant systematic review and meta-analysis. Medicine 97 (35):e11976. doi: 10.1097/MD.0000000000011976.
  • Hokkanen, K., A. Tirronen, and S. Yl-Herttuala. 2019. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Current Opinion in Lipidology 30 (5):1–7.
  • Huang, H. C., H. Lin, and M. C. Huang. 2019. Lactoferrin promotes hair growth in mice and increases dermal papilla cell proliferation through Erk/Akt and Wnt signaling pathways. Archives of Dermatological Research 311 (5):411–20. doi: 10.1007/s00403-019-01920-1.
  • Hunter, H. N., A. R. Demcoe, H. Jenssen, T. J. Gutteberg, and H. J. Vogel. 2005. Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrobial Agents and Chemotherapy 49 (8):3387–95. doi: 10.1128/AAC.49.8.3387-3395.2005.
  • Ibrahim, Y. H. E. Y., G. Regdon, E. I. Hamedelniel, and T. Sovany. 2020. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences 28 (1):403–16. doi: 10.1007/s40199-019-00316-w.
  • Iglesias-Figueroa, B. F., T. S. Siqueiros-Cendón, D. A. Gutierrez, R. J. Aguilera, E. A. Espinoza-Sanchez, S. Arevalo-Gallegos, A. Varela-Ramirez, and Q. Rascon-Cruz. 2019. Recombinant human lactoferrin induces apoptosis, disruption of F-actin structure and cell cycle arrest with selective cytotoxicity on human triple negative breast cancer cells. Apoptosis: An International Journal on Programmed Cell Death 24 (7-8):562–77. doi: 10.1007/s10495-019-01539-7.
  • Iglesiaa-Figueroa, B. F., E. A. Espinoza-Sanchez, T. S. Siqueiros-Cendon, and Q. Rascon-Cruz. 2019. Lactoferrin as a nutraceutical protein from milk, an overview. International Dairy Journal 89:37–41.
  • Imura, Y., E. Yoshimura, and K. Sato. 2012. Micro total bioassay system for oral drugs: Evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 28 (3):197–9. doi: 10.2116/analsci.28.197.
  • Ishikado, A., H. Imanaka, T. Takeuchi, E. Harada, and T. Makino. 2005. Liposomalization of lactoferrin enhanced it's anti-inflammatory effects via oral administration. Biological & Pharmaceutical Bulletin 28 (9):1717–21. doi: 10.1248/bpb.28.1717.
  • Jegasothy, H., R. Weerakkody, S. Selby-Pham, and L. E. Bennett. 2014. In vitro heme and non-heme iron capture from hemoglobin, myoglobin and ferritin by bovine lactoferrin and implications for suppression of reactive oxygen species in vivo. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 27 (6):1371–82. doi: 10.1007/s10534-014-9798-4.
  • Jiang, R. L., V. Lopez, S. L. Kelleher, and B. Lonnerdal. 2011. Apo- and Holo-lactoferrin are both internalized by lactoferrin receptor via clathrin-mediated endocytosis but differentially affect ERK-signaling and cell proliferation in Caco-2 cells. Journal of Cellular Physiology 226 (11):3022–31. doi: 10.1002/jcp.22650.
  • Jiang, R. L., Y. A. Suzuki, X. G. Du, and B. Lonnerdal. 2017. Lactoferrin and the lactoferrin-sophorolipids-assembly can be internalized by dermal fibroblasts and regulate gene expression. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 95 (1):110–8. doi: 10.1139/bcb-2016-0090.
  • Johanson, B., A. I. Virtanen, R. C. Tweit, and R. M. Dodson. 1960. Isolation of an Iron containing red protein from Human milk. Acta Chemica Scandinavica 14:510–2. doi: 10.3891/acta.chem.scand.14-0510.
  • Jose, A. P., R. Daniel, J. R. Sergio, D. P. Maria, S. Zeynep, R. Pedro, C. Miguel, and S. Lourdes. 2018. Antirotaviral potential of lactoferrin from different origin: Effect of thermal and high pressure treatments. Biometals 31 (3):1–13.
  • Kanwar, J. R., G. Mahidhara, and R. K. Kanwar. 2012. Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine (London, England) 7 (10):1521–50. doi: 10.2217/nnm.12.29.
  • Karav, S., J. B. German, C. Rouquie, L. P. Annabelle, and B. Daniela. 2017. Studying Lactoferrin N-Glycosylation. International Journal of Molecular Sciences 18 (4):870. doi: 10.3390/ijms18040870.
  • Khan, A. I., J. Liu, and P. Dutta. 2020. Bayesian inference for parameter estimation in lactoferrin-mediated iron transport across blood-brain barrier. Biochimica et Biophysica Acta. General Subjects 1864 (3):129459. doi: 10.1016/j.bbagen.2019.129459.
  • Mikaeili, F., and I. G. Pelagia. 2018. Super water-repellent cellulose acetate mats. Scientific Reports 8 (1):12472. doi: 10.1038/s41598-018-30693-2.
  • Kieckens, E., J. Rybarczyk, S. A. Barth, C. Menge, E. Cox, and D. Vanrompay. 2017. Effect of lactoferrin on release and bioactivity of Shiga toxins from different Escherichia coli O157:H7 strains. Veterinary Microbiology 202 (S1):29–37. doi: 10.1016/j.vetmic.2016.03.013.
  • Kilic, E., M. V. Novoselova, S. H. Lim, N. A. Pyataev, S. I. Pinyaev, O. A. Kulikov, O. A. Sindeeva, O. A. Mayorova, R. Murney, M. N. Antipina, et al. 2017. Formulation for oral delivery of lactoferrin based on bovine serum albumin and tannic acid multilayer microcapsules. Scientific Reports 7:44159. doi: 10.1038/srep44159.
  • Kim, D. H., V. K. Kothanda, H. W. Kim, K. S. Kim, J. Y. Kim, H. J. Cho, Y. K. Lee, D. E. Lee, and S. R. Hwang. 2019. Noninvasive assessment of exosome pharmacokinetics in vivo: A review. Pharmaceutics 11 (12):649–59. doi: 10.3390/pharmaceutics11120649.
  • Kitagawa, H., Y. Yoshizawa, T. Yokoyama, T. Takeuchi, M. J. R. Talukder, H. Shimizu, K. Ando, and E. Harada. 2003. Persorption of bovine lactoferrin from the intestinal lumen into the systemic circulation via the portal vein and the mesenteric lymphatics in growing pigs. Journal of Veterinary Medical Science 65 (5):567–72. doi: 10.1292/jvms.65.567.
  • Kong, X. Y., M. Yang, J. Guo, and Z. C. Feng. 2020. Effects of bovine lactoferrin on rat intestinal epithelial cells. Journal of Pediatric Gastroenterology & Nutrition 70 (5):645–51. doi: 10.1097/MPG.0000000000002636.
  • Kruzel, M. L., P. Olszewska, B. Pazdrak, A. M. Krupinska, and J. K. Actor. 2020. New insights into the systemic effects of oral lactoferrin: Transcriptome profiling. Biochemistry an Cell Biology 99 (1):47–53. doi: 10.1139/bcb-2020-0069.
  • Kuwata, H., K. Yamauchi, S. Teraguchi, Y. Ushida, Y. Shimokawa, T. Toida, and H. Hayasawa. 2001. Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. The Journal of Nutrition 131 (8):2121–7. doi: 10.1093/jn/131.8.2121.
  • Liang, L.,. Z. J. Wang, G. Ye, X. Y. Tang, Y. Y. Zhang, J. X. Kong, and H. H. Du. 2020. Distribution of lactoferrin is related with dynamics of neutrophils in bacterial infected mice intestine. Molecules 25 (7):1496. doi: 10.3390/molecules25071496.
  • Legrand, D. 2016. Overview of lactoferrin as a natural immune modulator. The Journal of Pediatrics 173:S10–S15. doi: 10.1016/j.jpeds.2016.02.071.
  • Leveugle, B., J. Mazurier, D. Legrand, C. Mazurier, J. Montreuil, and G. Spik. 1993. Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. European Journal of Biochemistry 213 (3):1205–11. doi: 10.1111/j.1432-1033.1993.tb17871.x.
  • Li, H. Y., H. G. Yang, P. Li, Y. Z. Wang, G. X. Huang, L. Xing, J. Q. Wang, and N. Zheng. 2019. Effect of heat treatment on the antitumor activity of lactoferrin in human colon tumor (HT29) model. Journal of Agricultural and Food Chemistry 67 (1):140–7. doi: 10.1021/acs.jafc.8b05131.
  • Ling, C. J., J. Y. Xu, Y. H. Li, X. Tong, H. H. Yang, J. Yang, L. X. Yuan, and L. Q. Qin. 2019. Lactoferrin promotes bile acid metabolism and reduces hepatic cholesterol deposition by inhibiting the farnesoid X receptor (FXR)-mediated enterohepatic axis. Food & Function 10 (11):7299–307. doi: 10.1039/c9fo01616c.
  • Lisiecki, P. 2017. Transferrin and lactoferrin - Human iron sources for enterococci. Polish Journal of Microbiology 66 (4):419–25. doi: 10.5604/01.3001.0010.6495.
  • Liu, W., J. Lu, A. Ye, Q. Q. Xu, M. M. Tian, Y. Y. Kong, F. Q. Wei, and J. Z. Han. 2018. Comparative performances of lactoferrin-loaded liposomes under in vitro adult and infant digestion models. Food Chemistry 258:366–73. doi: 10.1016/j.foodchem.2018.03.070.
  • Liu, L.,. R. L. Jiang, J. X. Liu, and B. Lonnerdal. 2020. The bovine Lactoferrin-Osteopontin complex increases proliferation of human intestinal epithelial cells by activating the PI3K/Akt signaling pathway. Food Chemistry 310:125919. doi: 10.1016/j.foodchem.2019.125919.
  • Liu, Y., M. Perego, Q. Xiao, Y. He, S. Fu, J. He, W. Liu, X. Li, Y. Tang, X. Li, et al. 2019. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. The Journal of Clinical Investigation 129 (10):4261–75. doi: 10.1172/JCI128164.
  • Liu, W. L., A. Q. Ye, W. Liu, C. Liu, and H. Singh. 2013. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science 96 (4):2061–70. doi: 10.3168/jds.2012-6072.
  • Liu, F. G., S. H. Zhang, J. Y. Li, D. J. McClements, and X. B. Liu. 2018. Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science & Technology 79:67–77. doi: 10.1016/j.tifs.2018.06.013.
  • Lu, J., J. Francis, R. S. Doster, K. P. Haley, K. M. Craft, R. E. Moore, S. A. Chambers, D. M. Aronoff, K. Osteen, and S. M. Damo. 2020. Lactoferrin: A critical mediator of both host immune response and antimicrobial activity in response to streptococcal infections. ACS Infection Disease 6 (7):1615–23. doi: 10.1021/acsinfecdis.0c00050.
  • Lu, D., D. Zhang, Q. Zhao, X. Y. Lu, and X. B. Shi. 2020. A critical factor for quantifying proteins in unmodified gold nanoparticles-based aptasensing: The effect of pH. Chemosensors 8 (4):98. doi: 10.3390/chemosensors8040098.
  • Lu, Y., H. Ke, Y. Wang, Y. Zhang, H. Li, C. S. Huang, and N. G. Jia. 2020. A ratiometric electrochemiluminescence resonance energy transfer platform based on novel dye BODIPY derivatives for sensitive detection of lactoferrin. Biosensors & Bioelectronics 170:112664. doi: 10.1016/j.bios.2020.112664.
  • Lönnerdal, B., R. Jiang, and X. Du. 2011. Bovine Lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. Journal of Pediatric Gastroenterology and Nutrition 53 (6):606–14. doi: 10.1097/MPG.0b013e318230a419.
  • Mancinelli, R., L. Rosa, A. Cutone, M. S. Lepanto, A. Franchitto, P. Onori, E. Gaudio, and P. Valenti. 2020. Viral hepatitis and iron dysregulation: Molecular pathways and the role of lactoferrin. Molecules 25 (8):1997.
  • Manconi, M.,. S. Mura, M. L. Manca, A. M. Fadda, M. Dolz, M. J. Hernandez, A. Casanovas, and O. Diez-Sales. 2010. Chitosomes as drug delivery systems for C-phycocyanin: Preparation and characterization. International Journal of Pharmaceutics 392 (1-2):92–100. doi: 10.1016/j.ijpharm.2010.03.038.
  • Mari, H., M. Jun, M. Tatsuya, M. Mike, S. Daisuke, S. Akihito, K. Soke, I. Noriko, F. Kazuhito, and K. Miho. 2020. Elevated fecal calprotectin and Lf associated with small intestinal lesions in patients with Behcet disease. Journal of Gastroenterology and Hepatology 35 (8):1340–6. doi: 10.1111/jgh.14995.
  • Mazurier, J., D. Legrand, W. L. Hu, J. Montreuil, and G. Spik. 1989. Expression of human lactotransferrin recptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. European Journal of Biochemistry 179 (2):481–7. doi: 10.1111/j.1432-1033.1989.tb14578.x.
  • Matsuzaki, T., M. Nakamura, T. Nogita, and A. Sato. 2019. Cellular uptake and release of intact lactoferrin and its derivatives in an intestinal enterocyte model of Caco-2 cells. Biological & Pharmaceutical Bulletin 42 (6):989–95. doi: 10.1248/bpb.b19-00011.
  • Mayur, P., and A. Avani. 2011. Recent trends in microbially and/or enzymatically driven colon-specific drug delivery systems. Critical Reviews in Therapeutic Drug Carrier Systems 28:489–552.
  • Mazurier, J., and G. Spik. 1980. Comparative study of the iron-binding properties of human transferrins: I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochimica et Biophysica Acta 629 (2):399–408. doi: 10.1016/0304-4165(80)90112-9.
  • Metz-Boutigue, M. H., J. Jolles, J. Mazurie, F. Schoentgen, D. Legrand, G. Spik, J. Montreuil, and P. Jolles. 1984. Human lactotransferrin: Amino acid sequence and structural comparisons with other transferrins. European Journal of Biochemistry 145 (3):659–76. doi: 10.1111/j.1432-1033.1984.tb08607.x.
  • Mosli, M. H., G. Y. Zou, S. K. Garg, S. G. Feagan, J. K. MacDonald, N. Chande, W. J. Sandborn, and B. G. Feagan. 2015. C-Reactive protein, fecal calprotectin, and stool lactoferrin for detection of endoscopic activity in symptomatic inflammatory bowel disease patients: A systematic review and meta-analysis. The American Journal of Gastroenterology 110 (6):802–19. doi: 10.1038/ajg.2015.120.
  • Mu, L., and G. C. Pang. 2011. Research Progress in Mammalian Small Intestinal Lactoferrin Receptors and Functions. Food Science 32 (23):312–6.
  • Niu, Z. G., S. M. Loveday, V. Barbe, I. Thielen, Y. He, and H. Singh. 2019. Protection of native lactoferrin under gastric conditions through complexation with pectin and chitosan. Food Hydrocolloids 93:120–30. doi: 10.1016/j.foodhyd.2019.02.020.
  • Niu, Z. G., I. Thielen, A. Barnett, S. M. Loveday, and H. Singh. 2019. ε-Polylysine and β-cyclodextrin assembling as delivery systems for gastric protection of proteins and possibility to enhance intestinal permeation. Journal of Colloid and Interface Science 546:312–23. doi: 10.1016/j.jcis.2019.03.006.
  • Nojima, Y., Y. Suzuki, K. Iguchi, T. Shiga, A. Iwata, T. Fujimoto, K. Yoshida, H. Shimizu, T. Takeuchi, and A. Sato. 2008. Development of poly(ethylene glycol) conjugated lactoferrin for oral administration. Bioconjugate Chemistry 19 (11):2253–9. doi: 10.1021/bc800258v.
  • Nojima, Y., Y. Suzuki, K. Yoshida, F. Abe, T. Shiga, T. Takeuchi, A. Sugiyama, H. Shimizu, and A. Sato. 2009. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life. Pharmaceutical Research 26 (9):2125–32. doi: 10.1007/s11095-009-9925-z.
  • Oda, H., A. O. Kolawole, C. Mirabelli, H. Wakabayashi, M. Tanaka, K. Yamauchi, F. Abe, and C. E. Wobus. 2021. Antiviral effects of bovine lactoferrin on human norovirus. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 99 (1):166–72. doi: 10.1139/bcb-2020-0035.
  • Ogawa, K., T. Takeda, M. Yokokawa, J. Yu, A. Makino, Y. Kiyono, K. Shiba, S. Kinuya, and A. Odani. 2018. Comparison of radioiodine- or radiobromine-labeled RGD peptides between direct and indirect labeling methods. Chemical & Pharmaceutical Bulletin 66 (6):651–9. doi: 10.1248/cpb.c18-00081.
  • Ohta, A., M. Ohtuki, T. Takizawa, H. Inaba, T. Adachi, and S. Kimura. 1994. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition 64 (4):316–23.
  • Onishi, H. 2011. Lactoferrin delivery systems: Approaches for its more effective use. Expert Opinion on Drug Delivery 8 (11):1469–79. doi: 10.1517/17425247.2011.615829.
  • Onishi, H., Y. Machida, R. Yoshida, and K. Watanable. 2015. Formulation study of chitosan microparticles loaded with lactoferrin. Molecular and Genetic Medicine 9 (2):1000166.
  • Orsi, N. 2004. The antimicrobial activity of lactoferrin: Current status and perspectives. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 17 (3):189–96. doi: 10.1023/B:BIOM.0000027691.86757.e2.
  • Ostan, N. K. H., R.-H. Yu, D. Ng, C. C.-L. Lai, A. K. Pogoutse, V. Sarpe, M. Hepburn, J. Sheff, S. Raval, D. C. Schriemer, et al. 2017. Lactoferrin binding protein B - a bi-functional bacterial receptor protein. PLOS Pathogens 13 (3):e1006244. doi: 10.1371/journal.ppat.1006244.
  • Ostertag, F., C. M. Schmidt, S. Berensmeier, and J. Hinrichs. 2021. Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins. Food Chemistry 342:128176. doi: 10.1016/j.foodchem.2020.128176.
  • Penco, S., S. Scarfi, M. Giovine, G. Damonte, E. Millo, B. Villaggio, M. Passalacqua, M. Pozzolini, C. Garrè, and U. Benatti. 2001. Identification of an import signal for, and the nuclear localization of, human lactoferrin. Biotechnology and Applied Biochemistry 34 (3):151–9. doi: 10.1042/ba20010038.
  • Prot, J. M., L. Maciel, T. Bricks, F. Merlier, J. Cotton, P. Paullier, F. Y. Bois, and E. Leclerc. 2014. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnology and Bioengineering 111 (10):2027–40. doi: 10.1002/bit.25232.
  • Raei, M., G. Rajabzadeh, S. Zibaei, S. M. Jafari, and A. M. Sani. 2015. Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. International Journal of Biological Macromolecules 79:669–73. doi: 10.1016/j.ijbiomac.2015.05.048.
  • Rai, D., A. S. Adelman, W. H. Zhuang, G. P. Rai, J. Boettcher, and B. Lonnerdal. 2014. Longitudinal changes in lactoferrin concentrations in human milk: A global systematic review. Critical Reviews in Food Science and Nutrition 54 (12):1539–47. doi: 10.1080/10408398.2011.642422.
  • Ramadan, Q., H. Jafarpoorchekab, C. Huang, P. Silacci, S. Carrara, G. Koklü, J. Ghaye, J. Ramsden, C. Ruffert, G. Vergeres, et al. 2013. NutriChip: Nutrition analysis meets microfluidics. Lab on a Chip 13 (2):196–203. doi: 10.1039/c2lc40845g.
  • Rauber, C., M. Awad, R. Koschny, P. Sauer, A. Mehrabi, P. Gath, K. H. Weiss, D. N. Gotthardt, and C. Rupp. 2020. Biliary calprotectin, lactoferrin and dimeric pyruvate kinase after liver transplantation are associated with biliary damage and graft survival in a case-control study. Clinics and Research in Hepatology and Gastroenterology 44 (1):38–48. doi: 10.1016/j.clinre.2019.05.005.
  • Rosa, L., M. S. Lepanto, A. Cutone, R. A. Siciliano, R. Paesano, R. Costi, G. Musci, and P. Valenti. 2020. Influence of oral administration mode on the efficacy of commercial bovine Lactoferrin against iron and inflammatory homeostasis disorders. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 33 (2–3):159–168. doi: 10.1007/s10534-020-00236-2.
  • Samprasit, W., P. Akkaramongkolporn, S. Jaewjira, and P. Opanasopit. 2018. Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. Journal of Drug Delivery Science and Technology 46:312–321. doi: 10.1016/j.jddst.2018.05.029.
  • Semak, I., A. Budzevich, E. Maliushkova, V. Kuzniatsova, N. Popkov, I. Zalutsky, and O. Ivashkevich. 2019. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res 28 (5-6):465–478. doi: 10.1007/s11248-019-00165-y.
  • Senkovich, O., W. J. Cook, S. Mirza, S. K. Hollingshead, I. I. Protasevich, D. E. Briles, and D. Chattopadhyay. 2007. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein A provides insight into microbial defense mechanism. Journal of Molecular Biology 370 (4):701–713. doi: 10.1016/j.jmb.2007.04.075.
  • Sharma, S.,. M. Sinha, S. Kaushik, P. Kaur, and T. P. Singh. 2013. C-Lobe of lactoferrin: The whole story of the half-molecule. Biochemistry Research International 2013:1–8. doi: 10.1155/2013/271641.
  • Sharma, D., S. Shastri, and P. Sharma. 2017. Role of lactoferrin in neonatal care: A systematic review. The Journal of Maternal-Fetal & Neonatal Medicine 30 (16):1920–1932. doi: 10.1080/14767058.2016.1232384.
  • Shim, K. Y., D. Lee, J. Han, N. T. Nguyen, S. Park, and J. H. Sung. 2017. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomedical Microdevices 19 (2):37. doi: 10.1007/s10544-017-0179-y.
  • Soave, M., S. J. Briddon, S. J. Hill, and L. A. Stoddart. 2020. Fluorescent ligands: Bringing light to emerging GPCR paradigms. British Journal of Pharmacology 177 (5):978–991. doi: 10.1111/bph.14953.
  • Sorensen, M., and S. P. L. Sorensen. 1941. The proteins in whey. Compte Rendudes Travaux du Laboratoire de Carlsberg Ser. Chim 23:55–99.
  • Stragier, E., and G. Van Assche. 2013. The use of fecal calprotectin and lactoferrin in patients with IBD. Acta Gastro-Enterologica Belgica 76 (3):322–328.
  • Sugiyama, A., A. Sato, and T. Takeuchi. 2009. PEGylated lactoferrin enhanced its hepatoprotective effects on acute liver injury induced by carbon tetrachloride in rats. Food and Chemical Toxicology47 (7):1453–1458. doi: 10.1016/j.fct.2009.03.030.
  • Sullad, A. G., L. S. Manjeshwar, and T. M. Aminabhavi. 2010. Controlled release of theophylline from interpenetrating blend microspheres of poly(vinyl alcohol) and methyl cellulose. Journal of Applied Polymer Science 116:1226–1235.
  • Suzuki, Y. A., K. Shin, and B. Lönnerdal. 2001. Molecular Cloning and Functional Expression of a Human Intestinal Lactoferrin Receptor. Biochemistry 40 (51):15771–15779. doi: 10.1021/bi0155899.
  • Takeuchi, T.,. H. Kitagaw, and E. Harada. 2004. Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats. Experimental Physiology 89 (3):263–270. doi: 10.1113/expphysiol.2003.026633.
  • Talukder, M. J. R., and E. Harada. 2006. Binding characteristics and distribution of lactoferrin receptors in the gut and choroid plexus in newborn calves. Indian Journal of Experimental Biology 44 (10):783–790.
  • Telang, S. 2018. Lactoferrin: A Critical Player in Neonatal Host Defense. Nutrients 10 (9):1228. doi: 10.3390/nu10091228.
  • Thai, J. D., and K. E. Gregory. 2020. Bioactive factors in human breast milk attenuate intestinal inflammation during early life. Nutrients 12 (2):581. doi: 10.3390/nu12020581.
  • Thakral, S., N. K. Thakral, and D. K. Majumdar. 2013. Eudragit®: A technology evaluation. Expert Opinion on Drug Delivery 10 (1):131–49. doi: 10.1517/17425247.2013.736962.
  • Tian, M. M., J. Z. Han, A. Q. Ye, W. L. Liu, X. K. Xu, Y. X. Yao, K. X. Li, Y. Y. Kong, F. Q. Wei, and W. Zhou. 2019. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion. Journal of the Science of Food and Agriculture 99 (6):2677–2684. doi: 10.1002/jsfa.9435.
  • Tonda, A., A. Grosvenor, S. Clerens, and S. Le Feunteun. 2017. In silico modeling of protein hydrolysis by endoproteases: A case study on pepsin digestion of bovine lactoferrin. Food & Function 8 (12):4404–13. doi: 10.1039/c7fo00830a.
  • Tran, P. H. L., W. Duan, B. J. Lee, and T. T. D. Tran. 2019. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. International Journal of Pharmaceutics 569:118614. doi: 10.1016/j.ijpharm.2019.118614.
  • Troost, F. J., J. Steijns, W. H. M. Saris, and R. J. M. Brummer. 2001. Gastric digestion of bovine lactoferrin in vivo in adults. The Journal of Nutrition 131 (8):2101–4. doi: 10.1093/jn/131.8.2101.
  • Ulleberg, E. K., I. Comi, H. Holm, E. B. Herud, M. Jacobsen, and G. E. Vegarud. 2011. Human gastrointestinal juices intended for use in in vitro digestion models. Food Digestion 2 (1–3):52–61. doi: 10.1007/s13228-011-0015-4.
  • Valenti, P., L. Rosa, D. Capobianco, M. S. Lepanto, E. Schiavi, A. Cutone, R. Valenti, P. L. Rosa, D. Capobianco, M. S. Lepant, et al. 2018. Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense. Frontiers in Immunology 9:376. doi: 10.3389/fimmu.2018.00376.
  • Valk-Weeber, R. L., T. Eshuis-de Ruiter, L. Dijkhuizen, and S. S. van Leeuwen. 2020. Dynamic temporal variations in bovine lactoferrin glycan structures. Journal of Agricultural and Food Chemistry 68 (2):549–560. doi: 10.1021/acs.jafc.9b06762.
  • Valk-Weeber, R. L., T. E. Ruiter, L. Dijkhuizen, and S. S. van Leeuwen. 2020. Quantitative analysis of bovine whey glycoproteins using the overall N-linked whey glycoprofile. International Dairy Journal 110:104814. doi: 10.1016/j.idairyj.2020.104814.
  • Vergara, D., O. Lopez, M. Bustamante, and C. Shene. 2020. An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid-based liposomes. Food Chemistry 321:126717. doi: 10.1016/j.foodchem.2020.126717.
  • Villavicencio, A., M. S. Rueda, C. G. Turin, and T. J. Ochoa. 2017. Factors affecting lactoferrin concentration in human milk: How much do we know? Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 95 (1):12–21. doi: 10.1139/bcb-2016-0060.
  • Vorland, L. L. 1999. Lactoferrin: A multifunctional glycoprotein. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 107 (11):971–981. doi: 10.1111/j.1699-0463.1999.tb01499.x.
  • Wang, B., Y. P. Timilsena, E. Blanch, and B. Adhikari. 2017. Mild thermal treatment and in-vitro digestion of three forms of bovine lactoferrin: Effects on functional properties. International Dairy Journal 64:22–30. doi: 10.1016/j.idairyj.2016.09.001.
  • Wang, B., Y. P. Timilsena, E. Blanch, and B. Adhikari. 2019. Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition 9:580–596.
  • Wang, J. K., and X. L. Dong. 2007. Application of protein fluorescence labeling technology. Journal of General Hospital of Air Force 23 (3):160–164.
  • Wang, J. X., Y. X. Li, L. Zhao, F. Z. Ren, and H. Y. Guo. 2019. Lactoferrin stimulates the expression of vitamin D receptor in vitamin D deficient mice. Journal of Functional Foods 55:48–56. doi: 10.1016/j.jff.2019.02.012.
  • Wang, M. Y., J. H. Xu, T. L. Han, and L. Tang. 2021. Effects of theaflavins on the structure and function of bovine lactoferrin. Food Chem 338:128048. doi: 10.1016/j.foodchem.2020.128048.
  • Wang, R. Z., J. C. Wang, H. M. Liu, Y. H. Gao, Q. Zhao, S. M. Ling, and S. H. Wang. 2021. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chemistry 338:127820. doi: 10.1016/j.foodchem.2020.127820.
  • Wang, X. J., J. Wang, L. Zhang, and H. L. Liu. 2012. Digestibility of recombinant human lactoferrin in simulated gastric and intestinal fluid in vitro. Journal of Environment and Health 11:992–994.
  • Wang, X. S. 2005. The effects of essential amino acids on human health. Food and Nutrition in China 7:48–49.
  • Weber, R., and V. Umansky. 2019. Fighting infant infections with myeloid-derived suppressor cells. The Journal of Clinical Investigation 129 (10):4080–4082. doi: 10.1172/JCI131649.
  • Wei, L., X. Zhang, J. Wang, Q. Ye, X. Zheng, Q. Peng, Y. Zheng, P. Liu, X. Zhang, Z. Li, et al. 2020. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice. Oncogene 39 (1):122–135., doi: 10.1038/s41388-019-0970-8.
  • Wen, P., K. Feng, H. Yang, X. Huang, M. H. Zong, W. Y. Lou, N. Li, and H. Wu. 2017. Electrospun core-shell structured nanofilm as a novel colon-specific delivery system for protein. Carbohydrate Polymers 169:157–166. doi: 10.1016/j.carbpol.2017.03.082.
  • Wen, Y., P. Wen, T. G. Hu, R. J. Linhardt, M. H. Zong, H. Wu, and Z. Y. Chen. 2020. Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects. International Journal of Biological Macromolecules 149:672–681. doi: 10.1016/j.ijbiomac.2020.01.189.
  • Wisgrill, L., I. Wessely, A. Spittler, E. Förster-Waldl, A. Berger, and K. Sadeghi. 2018. Human lactoferrin attenuates the proinflammatory response of neonatal monocyte-derived macrophages. Clinical and Experimental Immunology 192 (3):315–324. doi: 10.1111/cei.13108.
  • Wu, Q. X., M. Z. Li, and S. J. Yao. 2014. Performances of NaCS-WSC protein drug microcapsules with different degree of substitution of NaCS using sodium polyphosphate as cross-linking agent. Cellulose 21 (3):1897–1908. doi: 10.1007/s10570-014-0209-3.
  • Wu, Q. X., Q. L. Zhang, D. Q. Dong, and S. J. Yao. 2013. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics 455 (1-2):124–131. doi: 10.1016/j.ijpharm.2013.07.048.
  • Xavier, P. L., K. Chaudhari, P. K. Verma, S. K. Pal, and T. Pradeep. 2010. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2 (12):2769–2776. doi: 10.1039/c0nr00377h.
  • Xu, S., F. Wang, Y. C. Wang, R. Y. Wang, K. Hou, C. Tian, Y. T. Ji, Q. Q. Yang, P. Zhao, and Q. Y. Xia. 2019. A silkworm based silk gland bioreactor for high-efficiency production of recombinant human lactoferrin with antibacterial and anti-inflammatory activities. Journal of Biological Engineering 13:61. doi: 10.1186/s13036-019-0186-z.
  • Yao, X. D., C. Bunt, J. Cornish, S. Y. Quek, and J. Y. Wen. 2013a. Oral delivery of lactoferrin: A review. International Journal of Peptide Research and Therapeutics 19 (2):125–134. doi: 10.1007/s10989-012-9326-8.
  • Yao, X. D., C. Bunt, J. Cornish, S. Y. Quek, and J. Y. Wen. 2013b. Improved RP-HPLC method for determination of bovine lactoferrin and its proteolytic degradation in simulated gastrointestinal fluids. Biomedical Chromatography: BMC 27 (2):197–202. doi: 10.1002/bmc.2771.
  • Yao, X. D., C. Bunt, J. Cornish, S. Y. Quek, and J. Y. Wen. 2014. Preparation, optimization and characterization of bovine lactoferrin-loaded liposomes and solid lipid particles modified by hydrophilic polymers using factorial design. Chemical Biology & Drug Design 83 (5):560–575. doi: 10.1111/cbdd.12269.
  • Ye, X. Y., T. Nishimura, and S. Yoshida. 1997. Characterization of the protein and glycan moieties in different forms of bovine lactoferrin. Bioscience, Biotechnology, and Biochemistry 61 (5):782–786. doi: 10.1271/bbb.61.782.
  • Yount, N. Y., M. T. Andres, J. F. Fierro, and M. R. Yeaman. 2007. The γ-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochimica et Biophysica Acta (Bba) - Biomembranes 1768 (11):2862–2872. doi: 10.1016/j.bbamem.2007.07.024.
  • Zhang, J. W., J. Z. Han, A. Q. Ye, W. L. Liu, M. M. Tian, Y. J. Lu, K. R. Wu, J. Liu, and M. P. Lou. 2019. Influence of phospholipids structure on the physicochemical properties and in vitro digestibility of lactoferrin-loaded liposomes. Food Biophysics 14 (3):287–299. doi: 10.1007/s11483-019-09581-3.
  • Zheng, J. P., Y. Z. Xie, F. Li, Y. Zhou, L. Q. Qi, L. B. Liu, and Z. Chen. 2020. Lactoferrin improves cognitive function and attenuates brain senescence in aged mice. Journal of Functional Foods 65:103736. doi: 10.1016/j.jff.2019.103736.
  • Zlatina, K., and S. P. Galuska. 2021. The N-glycans of lactoferrin: More than just asweet decoration. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 99 (1):117–127. doi: 10.1139/bcb-2020-0106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.