2,759
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review

ORCID Icon &

References

  • Adiamo, O. Q., K. Ghafoor, F. Al-Juhaimi, E. E. Babiker, and I. A. Mohamed Ahmed. 2018. Thermosonication process for optimal functional properties in carrot juice containing orange peel and pulp extracts. Food Chemistry 245:79–88. doi: 10.1016/j.foodchem.2017.10.090.
  • Ajila, C. M., S. K. Brar, M. Verma, and U. J. S. Prasada Rao. 2012. Sustainable solutions for agro processing waste management: An overview. In Environmental protection strategies for sustainable development. Strategies for Sustainability, ed. A. Malik and E. Grohmann, 65–109. Dordrecht: Springer. doi: 10.1007/978-94-007-1591-2_3.
  • Ameer, K., H. M. Shahbaz, and J. H. Kwon. 2017. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety 16 (2):295–315. doi: 10.1111/1541-4337.12253.
  • Anal, A. K., S. Jaisanti, and A. Noomhorm. 2014. Enhanced yield of phenolic extracts from banana peels (Musa acuminata Colla AAA) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil. Journal of Food Science and Technology 51 (10):2632–9. doi: 10.1007/s13197-012-0793-x.
  • Andres, A. I., M. J. Petron, J. Delgado-Adamez, M. Lopez, and M. Timon. 2017. Effect of tomato pomace extracts on the shelf-life of modified atmosphere-packaged lamb meat. Journal of Food Processing and Preservation 41 (4):e13018. doi: 10.1111/jfpp.13018.
  • Angiolillo, L., M. A. del Nobile, and A. Conte. 2015. The extraction of bioactive compounds from food residues using microwaves. Current Opinion in Food Science 5:93–8. doi: 10.1016/j.cofs.2015.10.001.
  • Ashraf-Khorassani, M., and L. T. Taylor. 2004. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids. Journal of Agricultural and Food Chemistry 52 (9):2440–4. doi: 10.1021/jf030510n.
  • Azaizeh, H., A. Tafesh, N. Najami, J. Jadoun, F. Halahlih, and H. Riepl. 2011. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary and Alternative Medicine 2011:431021. doi: 10.1155/2011/431021.
  • Azmir, J., I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini, and A. K. M. Omar. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117 (4):426–36. doi: 10.1016/j.jfoodeng.2013.01.014.
  • Balkrishna, A., A. K. Gupta, K. Singh, S. Haldar, and A. Varshney. 2021. Effects of fatty acids in super critical fluid extracted fixed oil from Withania somnifera seeds on Gram-negative Salmonella enterica biofilms. Phytomedicine Plus 1 (4):100047. doi: 10.1016/j.phyplu.2021.100047.
  • Bandar, H., A. Hijazi, H. Rammal, A. Hachem, Z. Saad, and B. Badran. 2013. Techniques for the extraction of bioactive compounds from Lebanese Urtica dioica. American Journal of Phytomedicine and Clinical Therapeutics 1 (6):507–13. www.ajpct.org.
  • Barba, F. J., Z. Zhu, M. Koubaa, A. S. Sant'Ana, and V. Orlien. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology 49:96–109. doi: 10.1016/j.tifs.2016.01.006.
  • Brenes, A., A. Viveros, S. Chamorro, and I. Arija. 2016. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technology 211:1–17. doi: 10.1016/j.anifeedsci.2015.09.016.
  • Bunzel, M. 2012. Potential health benefits of wild rice and wild rice products: Literature review, 1–49. Agricultural Utilization Research Institute.
  • Cabral, C. E., and M. R. S. T. Klein. 2017. Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arquivos Brasileiros de Cardiologia 109 (5):475–82. doi: 10.5935/abc.20170158.
  • Cappa, C., V. Lavelli, and M. Mariotti. 2015. Fruit candies enriched with grape skin powders: Physicochemical properties. LWT - Food Science and Technology 62 (1):569–75. doi: 10.1016/j.lwt.2014.07.039.
  • Cavia-Saiz, M., M. D. Busto, M. C. Pilar-Izquierdo, N. Ortega, M. Perez-Mateos, and P. Muñiz. 2010. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. Journal of the Science of Food and Agriculture 90 (7):1238–44. doi: 10.1002/jsfa.3959.
  • Chakraborty, S., S. Chaudhuri, B. Pahari, J. Taylor, P. K. Sengupta, and B. Sengupta. 2012. A critical study on the interactions of hesperitin with human hemoglobin: Fluorescence spectroscopic and molecular modeling approach. Journal of Luminescence 132 (6):1522–8. doi: 10.1016/j.jlumin.2012.01.021.
  • Chan, C. H., R. Yusoff, G. C. Ngoh, and F. W. L. Kung. 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography. A 1218 (37):6213–25. doi: 10.1016/j.chroma.2011.07.040.
  • Chemat, F., M. A. Vian, and G. Cravotto. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 13 (7):8615–27. doi: 10.3390/ijms13078615.
  • Chen, A. Y., and Y. C. Chen. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry 138 (4):2099–107. doi: 10.1016/j.foodchem.2012.11.139.
  • Chua, L. S., N. A. Latiff, and M. Mohamad. 2016. Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract. Journal of Applied Research on Medicinal and Aromatic Plants 3 (2):64–70. doi: 10.1016/j.jarmap.2016.01.004.
  • Coman, V., B. E. Teleky, L. Mitrea, G. A. Martău, K. Szabo, L. F. Călinoiu, and D. C. Vodnar. 2020. Chapter Five - Bioactive potential of fruit and vegetable wastes. In Advances in food and nutrition research, ed. Fidel Toldrá, vol. 91, 157–225. Valencia, Spain: Academic Press Inc. doi: 10.1016/bs.afnr.2019.07.001.
  • Cooperstone, J. L., and S. J. Schwartz. 2016. Recent insights into health benefits of carotenoids. In Handbook on natural pigments in food and beverages: Industrial applications for improving food color, ed. Reinhold Carl and Ralf M. Schweiggert, 474–97. Sawston, Cambridge: Woodhead Publishing Series in Food Science, Technology and Nutrition. doi: 10.1016/B978-0-08-100371-8.00020-8.
  • Corrales, M., S. Toepfl, P. Butz, D. Knorr, and B. Tauscher. 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure, or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies 9 (1):85–91. doi: 10.1016/j.ifset.2007.06.002.
  • Costa, C., A. Lucera, V. Marinelli, M. A. del Nobile, and A. Conte. 2018. Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. Journal of Food Science and Technology 55 (10):4174–83. doi: 10.1007/s13197-018-3347-z.
  • da Silva, R. P. F. F., T. A. P. Rocha-Santos, and A. C. Duarte. 2016. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry 76:40–51. doi: 10.1016/j.trac.2015.11.013.
  • Dahmoune, F., L. Boulekbache, K. Moussi, O. Aoun, G. Spigno, and K. Madani. 2013. Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products 50:77–87. doi: 10.1016/j.indcrop.2013.07.013.
  • Davis, E. 2018. Sequential microwave extraction of polysaccharides and phenolic compounds from Vaccinium macrocarpon l. and the effects of in-vitro digestion and fermentation. https://escholarship.mcgill.ca/concern/theses/gh93h187h?locale=en
  • Davis, L., J. Jung, A. Colonna, A. Hasenbeck, V. Gouw, and Y. Zhao. 2018. Quality and consumer acceptance of berry fruit pomace-fortified specialty mustard. Journal of Food Science 83 (7):1921–32. doi: 10.1111/1750-3841.14196.
  • Deng, G.-F., C. Shen, X.-R. Xu, R.-D. Kuang, Y.-J. Guo, L.-S. Zeng, L.-L. Gao, X. Lin, J.-F. Xie, E.-Q. Xia, et al. 2012. Potential of fruit wastes as natural resources of bioactive compounds. International Journal of Molecular Sciences 13 (7):8308–23. doi: 10.3390/ijms13078308.
  • Dong, X., J. Wang, and V. Raghavan. 2021. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Critical Reviews in Food Science and Nutrition 61 (2):196–210. doi: 10.1080/10408398.2020.1722942.
  • Dorta, E., M. G. Lobo, and M. González. 2013. Improving the efficiency of antioxidant extraction from mango peel by using microwave-assisted extraction. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (2):190–9. doi: 10.1007/s11130-013-0350-4.
  • Duarte, A., L. Ângelo, and F. Domingues. 2016. Pomegranate (Punica granatum): A natural approach to combat oxidative stress-related diseases. In Natural bioactive compounds from fruits and vegetables as health promoters part I, ed. L. da Silva and B. Silva, 1st ed., vol. 1, 143. Sharjah, UAE: Bentham Books.
  • Fahey, J. W., A. T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56 (1):5–51. doi: 10.1016/S0031-9422(00)00316-2.
  • FAO. 2011. Global food losses and food waste – Extent, causes and prevention, Food and Agriculture Organization of the United Nations (FAO), Ed., 1st ed. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/mb060e/mb060e00.pdf.
  • FAO. 2019. Moving forward on food loss and waste reduction food and agriculture, 1st ed. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/ca6030en/ca6030en.pdf.
  • Ferreira, M. S. L., M. C. P. Santos, T. M. A. Moro, G. J. Basto, R. M. S. Andrade, and É. C. B. A. Gonçalves. 2015. Formulation and characterization of functional foods based on fruit and vegetable residue flour. Journal of Food Science and Technology 52 (2):822–30. doi: 10.1007/s13197-013-1061-4.
  • Ferreira, S. S., C. P. Passos, S. M. Cardoso, D. F. Wessel, and M. A. Coimbra. 2018. Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chemistry 246:386–93. doi: 10.1016/j.foodchem.2017.11.053.
  • Flores, G., S. B. Wu, A. Negrin, and E. J. Kennelly. 2015. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chemistry 170:327–35. doi: 10.1016/j.foodchem.2014.08.076.
  • Fontana, A. R., A. Antoniolli, and R. Bottini. 2013. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry 61 (38):8987–9003. doi: 10.1021/jf402586f.
  • Gachumi, G., A. Poudel, K. M. Wasan, and A. El-Aneed. 2021. Analytical strategies to analyze the oxidation products of phytosterols, and formulation-based approaches to reduce their generation. Pharmaceutics 13 (2):268. doi: 10.3390/pharmaceutics13020268.
  • Galanakis, C. 2020. Glucosinolates: Properties, recovery, and applications, 1st ed., vol. 1. London, United Kingdom: Academic Press. https://books.google.com.mx/books?id=BnyzDwAAQBAJ&pg=PA156&dq=glucosinolates&hl=es&sa=X&ved=2ahUKEwj2mPic7NPsAhVGba0KHUzgCTIQ6AEwAnoECAYQAg#v=onepage&q=glucosinolates&f=false.
  • Garavand, F., and A. Madadlou. 2014. Recovery of phenolic compounds from effluents by a microemulsion liquid membrane (MLM) extractor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 443:303–10. doi: 10.1016/j.colsurfa.2013.11.035.
  • Garavand, F., S. Rahaee, N. Vahedikia, and S. M. Jafari. 2019. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science & Technology 89:26–44. doi: 10.1016/j.tifs.2019.05.005.
  • Garcia-Salas, P., A. Morales-Soto, A. Segura-Carretero, and A. Fernández-Gutiérrez. 2010. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15 (12):8813–26. doi: 10.3390/molecules15128813.
  • Giacometti, J., D. Bursać Kovačević, P. Putnik, D. Gabrić, T. Bilušić, G. Krešić, V. Stulić, F. J. Barba, F. Chemat, G. Barbosa-Cánovas, et al. 2018. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International 113:245–62. doi: 10.1016/j.foodres.2018.06.036.
  • Giroux, H. J., G. de Grandpré, P. Fustier, C. P. Champagne, D. St-Gelais, M. Lacroix, and M. Britten. 2013. Production and characterization of Cheddar-type cheese enriched with green tea extract. Dairy Science & Technology 93 (3):241–54. doi: 10.1007/s13594-013-0119-4.
  • González-Centeno, M. R., F. Comas-Serra, A. Femenia, C. Rosselló, and S. Simal. 2015. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry 22:506–14. doi: 10.1016/j.ultsonch.2014.05.027.
  • Goula, A. M., M. Ververi, A. Adamopoulou, and K. Kaderides. 2017. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry 34:821–30. doi: 10.1016/j.ultsonch.2016.07.022.
  • Grace, M. H., D. M. Ribnicky, P. Kuhn, A. Poulev, S. Logendra, G. G. Yousef, I. Raskin, and M. A. Lila. 2009. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 16 (5):406–15. doi: 10.1016/j.phymed.2009.02.018.
  • Gunes, R., I. Palabiyik, O. S. Toker, N. Konar, and S. Kurultay. 2019. Incorporation of defatted apple seeds in chewing gum system and phloridzin dissolution kinetics. Journal of Food Engineering 255:9–14. doi: 10.1016/j.jfoodeng.2019.03.010.
  • Hamzalioğlu, A., and V. Gökmen. 2016. Interaction between bioactive carbonyl compounds and asparagine and impact on acrylamide. In Acrylamide in food: Analysis, content and potential health effects, ed. Vural Gökmen, 355–76. Cambridge, Massachusetts: Elsevier Inc. doi: 10.1016/B978-0-12-802832-2.00018-8.
  • He, J., and M. Monica Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1 (1):163–87. doi: 10.1146/annurev.food.080708.100754.
  • Hill, G. D. 2003. Plant antinutritional factors. In Encyclopedia of food sciences and nutrition, ed. Benjamin Caballero, 4578–87. Cambridge, Massachusetts: Elsevier Inc. doi: 10.1016/b0-12-227055-x/01318-3.
  • Hiranvarachat, B., and S. Devahastin. 2014. Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. Journal of Food Engineering 126:17–26. doi: 10.1016/j.jfoodeng.2013.10.024.
  • Ho, K. K. H. Y., M. G. Ferruzzi, A. M. Liceaga, and M. F. San Martín-González. 2015. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT - Food Science and Technology 62 (1):160–8. doi: 10.1016/j.lwt.2014.12.061.
  • Husain, S., and S. Ahmad. 2020. Bioactive ingredients in processed foods. In Functional food products and sustainable health, ed. S. Ahmad and N. Al-Shabib, 1–9. Singapore: Springer. doi: 10.1007/978-981-15-4716-4_1.
  • Inoue, T., S. Tsubaki, K. Ogawa, K. Onishi, and J. Azuma. 2010. Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chemistry 123 (2):542–7. doi: 10.1016/j.foodchem.2010.04.051.
  • Jairath, G., M. K. Chatli, and A. K. Biswas. 2016. Comparative study on in vitro and in vivo evaluation of antioxidant potential of apple peel extract and aloe vera gel. Journal of Food Processing and Preservation 40 (4):607–14. doi: 10.1111/jfpp.12639.
  • Kammerer, D., A. Claus, A. Schieber, and R. Carle. 2005. A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. Journal of Food Science 70 (2):C157–63. doi: 10.1111/j.1365-2621.2005.tb07077.x.
  • Kryževičūtė, N., I. Jaime, A. M. Diez, J. Rovira, and P. R. Venskutonis. 2017. Effect of raspberry pomace extracts isolated by high pressure extraction on the quality and shelf-life of beef burgers. International Journal of Food Science & Technology 52 (8):1852–61. doi: 10.1111/ijfs.13460.
  • Kujala, T. S., J. M. Loponen, K. D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48 (11):5338–42. doi: 10.1021/jf000523q.
  • Kulichová, J., M. Buaong, J. Balík, P. Híc, J. Tříska, and N. Vrchotová. 2018. Juices enriched with phenolic extracts from grapes. Czech Journal of Food Sciences 36 (No. 3):261–7. doi: 10.17221/383/2017-CJFS.
  • Kumar, K., A. N. Yadav, V. Kumar, P. Vyas, and H. S. Dhaliwal. 2017. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing 4 (1):1–14. doi: 10.1186/s40643-017-0148-6.
  • Lacaille-Dubois, M. A., and H. Wagner. 2000. Bioactive saponins from plants: An update. Studies in Natural Products Chemistry 21 (PART B):633–87. doi: 10.1016/S1572-5995(00)80015-0.
  • Lavelli, V., W. L. Kerr, J. García-Lomillo, and M. L. González-SanJosé. 2017. Applications of recovered bioactive compounds in food products. In Handbook of grape processing by-products: Sustainable solutions, ed. Charis M. Galanakis, 233–66. Cambridge, Massachusetts: Elsevier Inc. doi: 10.1016/B978-0-12-809870-7.00010-7.
  • Li, B. B., B. Smith, and M. M. Hossain. 2006. Extraction of phenolics from citrus peels: II. Separation and Purification Technology 48 (2):189–96. doi: 10.1016/j.seppur.2005.07.019.
  • Lianfu, Z., and L. Zelong. 2008. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry 15 (5):731–7. doi: 10.1016/j.ultsonch.2007.12.001.
  • Liazid, A., R. F. Guerrero, E. Cantos, M. Palma, and C. G. Barroso. 2011. Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry 124 (3):1238–43. doi: 10.1016/j.foodchem.2010.07.053.
  • Lin, Y., R. Shi, X. Wang, and H.-M. Shen. 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets 8 (7):634–46. doi: 10.2174/156800908786241050.
  • Lohani, U. C., and K. Muthukumarappan. 2016. Application of the pulsed electric field to release bound phenolics in sorghum flour and apple pomace. Innovative Food Science & Emerging Technologies 35:29–35. doi: 10.1016/j.ifset.2016.03.012.
  • Lu, Z., J. Wang, R. Gao, F. Ye, and G. Zhao. 2019. Sustainable valorisation of tomato pomace: A comprehensive review. Trends in Food Science & Technology 86:172–87. doi: 10.1016/j.tifs.2019.02.020.
  • Luca, S. V., I. Macovei, A. Bujor, A. Miron, K. Skalicka-Woźniak, A. C. Aprotosoaie, and A. Trifan. 2020. Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition 60 (4):626–59. doi: 10.1080/10408398.2018.1546669.
  • Luengo, E., I. Álvarez, and J. Raso. 2014. Improving carotenoid extraction from tomato waste by pulsed electric fields. Frontiers in Nutrition 1:12. doi: 10.3389/fnut.2014.00012.
  • Machado, N., and R. Domínguez-Perles. 2017. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 22 (2):286. doi: 10.3390/molecules22020286.
  • Mahajan, D., Z. F. Bhat, and S. Kumar. 2015. Pomegranate (Punica granatum) rind extract as a novel preservative in cheese. Food Bioscience 12:47–53. doi: 10.1016/j.fbio.2015.07.005.
  • Maier, T., A. Schieber, D. R. Kammerer, and R. Carle. 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry 112 (3):551–559. doi: 10.1016/j.foodchem.2008.06.005.
  • Manna, L., C. A. Bugnone, and M. Banchero. 2015. Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. The Journal of Supercritical Fluids 104:204–211. doi: 10.1016/j.supflu.2015.06.012.
  • Marranzano, M., R. L. Rosa, M. Malaguarnera, R. Palmeri, M. Tessitori, and A. C. Barbera. 2018. Polyphenols: Plant sources and food industry applications. Current Pharmaceutical Design 24 (35):4125–4130. doi: 10.2174/1381612824666181106091303.
  • Mathew, N. S., and P. S. Negi. 2017. Traditional uses, phytochemistry and pharmacology of wild banana (Musa acuminata Colla): A review. Journal of Ethnopharmacology 196:124–140. doi: 10.1016/j.jep.2016.12.009.
  • Md Salim, N. S. 2017. Potential utilization of fruit and vegetable wastes for food through drying or extraction techniques. Novel Techniques in Nutrition & Food Science 1 (2). doi: 10.31031/NTNF.2017.01.000506.
  • Mena-García, A., A. I. Ruiz-Matute, A. C. Soria, and M. L. Sanz. 2019. Green techniques for extraction of bioactive carbohydrates. TrAC Trends in Analytical Chemistry 119:115612. doi: 10.1016/j.trac.2019.07.023.
  • Mushtaq, M., B. Sultana, F. Anwar, A. Adnan, and S. S. H. Rizvi. 2015. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. The Journal of Supercritical Fluids 104:122–131. doi: 10.1016/j.supflu.2015.05.020.
  • Nayak, B., F. Dahmoune, K. Moussi, H. Remini, S. Dairi, O. Aoun, and M. Khodir. 2015. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry 187:507–516. doi: 10.1016/j.foodchem.2015.04.081.
  • Nerome, H., M. Ito, S. Machmudah, Wahyudiono, H. Kanda, and M. Goto. 2015. Extraction of phytochemicals from saffron by supercritical carbon dioxide with water and methanol as entrainer. Journal of Supercritical Fluids 107:377–383. doi: 10.1016/j.supflu.2015.10.007.
  • Nishad, J., T. K. Koley, E. Varghese, and C. Kaur. 2018. Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Research International 106:1026–1036. doi: 10.1016/j.foodres.2018.01.075.
  • Ordóñez-Santos, L. E., J. Martínez-Girón, and A. M. Figueroa-Molano. 2016. Effect of the addition of peach palm (Bactris gasipaes) peel flour on the color and sensory properties of wheat bread. Revista de Ciências Agrárias 39 (3):456–462. doi: 10.19084/RCA16008.
  • Oszmiański, J., A. Wojdyło, and J. Kolniak. 2011. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices. Food Chemistry 127 (2):623–631. doi: 10.1016/j.foodchem.2011.01.056.
  • Padayachee, A., L. Day, K. Howell, and M. J. Gidley. 2017. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition 57 (1):59–81. doi: 10.1080/10408398.2013.850652.
  • Pal, J., C. V. Raju, I. P. Lakshmisha, G. Pandey, R. Raj, and R. R. Singh. (2017). Antioxidant activity of pomegranate peel extract and its effect on storage stability of cooked meat model system of indian mackerel stored at 4 ± 2 °C. https://www.researchgate.net/publication/318920862.
  • Panzella, L., F. Moccia, R. Nasti, S. Marzorati, L. Verotta, and A. Napolitano. 2020. Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers in Nutrition 7:60. doi: 10.3389/fnut.2020.00060.
  • Papoutsis, K., Q. v Vuong, J. B. Golding, J. H. Hasperué, P. Pristijono, M. C. Bowyer, C. J. Scarlett, and C. E. Stathopoulos. 2018. Pretreatment of citrus by-products affects polyphenol recovery: A review. Food Reviews International 34 (8):770–795. doi: 10.1080/87559129.2018.1438471.
  • Parniakov, O., F. J. Barba, N. Grimi, N. Lebovka, and E. Vorobiev. 2014. Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International 65 (PC):337–343. doi: 10.1016/j.foodres.2014.09.015.
  • Pasqualone, A., R. Punzi, A. Trani, C. Summo, V. M. Paradiso, F. Caponio, and G. Gambacorta. 2017. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. International Journal of Food Science & Technology 52 (9):2078–2087. doi: 10.1111/ijfs.13486.
  • Pasquel Reátegui, J. L., A. P. D. F. Machado, G. F. Barbero, C. A. Rezende, and J. Martínez. 2014. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. The Journal of Supercritical Fluids 94:223–233. doi: 10.1016/j.supflu.2014.07.019.
  • Patel, D. K., K. Patel, M. Gadewar, and V. Tahilyani. 2012. Pharmacological and bioanalytical aspects of galangin-a concise report. Asian Pacific Journal of Tropical Biomedicine 2 (1):S449–S455. doi: 10.1016/S2221-1691(12)60205-6.
  • Pathak, P. D., S. A. Mandavgane, and B. D. Kulkarni. 2017. Valorization of pomegranate peels: A biorefinery approach. Waste and Biomass Valorization 8 (4):1127–1137. doi: 10.1007/s12649-016-9668-0.
  • Pereira, R. M. S., B. G.-C. López, S. N. Diniz, A. A. Antunes, D. Moreno Garcia, C. Rocha Oliveira, and M. C. Marcucci. 2017. Quantification of flavonoids in Brazilian orange peels and industrial orange juice processing wastes. Agricultural Sciences 08 (07):631–644. doi: 10.4236/as.2017.87048.
  • Perez-Vizcaino, F., and J. Duarte. 2010. Flavonols and cardiovascular disease. Molecular Aspects of Medicine 31 (6):478–494. doi: 10.1016/j.mam.2010.09.002.
  • Pingret, D., A.-S. Fabiano-Tixier, C. Le Bourvellec, C. M. G. C. Renard, and F. Chemat. 2012. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. Journal of Food Engineering 111 (1):73–81. doi: 10.1016/j.jfoodeng.2012.01.026.
  • Pourzaki, A., H. Mirzaee, and A. Hemmati Kakhki. 2013. Using pulsed electric field for improvement of components extraction of saffron stigma and its pomace. Journal of Food Processing and Preservation 37 (5):1008–1013. doi: 10.1111/j.1745-4549.2012.00749.x.
  • Puri, M., D. Sharma, and C. J. Barrow. 2011. Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology 30 (1):37–44. doi: 10.1016/j.tibtech.2011.06.014.
  • Quiles, A., G. M. Campbell, S. Struck, H. Rohm, and I. Hernando. 2018. Fiber from fruit pomace: A review of applications in cereal-based products. Food Reviews International 34 (2):162–181. doi: 10.1080/87559129.2016.1261299.
  • Rafiq, S., R. Kaul, S. A. Sofi, N. Bashir, F. Nazir, and G. Ahmad Nayik. 2018. Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences 17 (4):351–358. doi: 10.1016/j.jssas.2016.07.006.
  • Rajha, H. N., N. Boussetta, N. Louka, R. G. Maroun, and E. Vorobiev. 2015. Effect of alternative physical pretreatments (pulsed electric field, high voltage electrical discharges and ultrasound) on the dead-end ultrafiltration of vine-shoot extracts. Separation and Purification Technology 146:243–251. doi: 10.1016/j.seppur.2015.03.058.
  • Rezzadori, K., S. Benedetti, and E. R. Amante. 2012. Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing 90 (4):606–614. doi: 10.1016/j.fbp.2012.06.002.
  • Rodriguez-Amaya, D. B. 2015. Carotenes and xanthophylls as antioxidants. In Handbook of antioxidants for food preservation, ed. Fereidoon Shahidi, 17–50. Sawston, Cambridge: Elsevier Inc. doi: 10.1016/B978-1-78242-089-7.00002-6.
  • Rodsamran, P., and R. Sothornvit. 2019. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience 28:66–73. doi: 10.1016/j.fbio.2019.01.017.
  • Rozzi, N. L., R. K. Singh, R. A. Vierling, and B. A. Watkins. 2002. Supercritical fluid extraction of lycopene from tomato processing byproducts. Journal of Agricultural and Food Chemistry 50 (9):2638–2643. doi: 10.1021/jf011001t.
  • Rudra, S. G., J. Nishad, N. Jakhar, and C. Kaur. 2015. Food industry waste: Mine of nutraceuticals. International Journal of Science, Environment and Technology 4 (1):205–229. http://www.ijset.net/journal/536.pdf.
  • Sagar, N. A., S. Pareek, S. Sharma, E. M. Yahia, and M. G. Lobo. 2018. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety 17 (3):512–531. doi: 10.1111/1541-4337.12330.
  • Sagdic, O., I. Ozturk, and O. Kisi. 2012. Modeling antimicrobial effect of different grape pomace and extracts on S. aureus and E. coli in vegetable soup using artificial neural network and fuzzy logic system. Expert Systems with Applications 39 (8):6792–6798. doi: 10.1016/j.eswa.2011.12.047.
  • Şahin, S. 2015. A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean Journal of Chemical Engineering 32 (5):950–957. doi: 10.1007/s11814-014-0293-y.
  • Saini, A., P. S. Panesar, and M. B. Bera. 2019. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing 6 (1):1–12. doi: 10.1186/s40643-019-0261-9.
  • Sandhya, S., K. Khamrui, W. Prasad, and M. C. T. Kumar. 2018. Preparation of pomegranate peel extract powder and evaluation of its effect on functional properties and shelf life of curd. LWT 92:416–421. doi: 10.1016/j.lwt.2018.02.057.
  • Santos, D. I., J. M. A. Saraiva, A. A. Vicente, and M. Moldão-Martins. 2019. Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds, ed. F. J. Barba, J. M. A. Saraiva, G. Cravotto, and J. M. Lorenzo, 23–54. Sawston, Cambridge: Elsevier Inc. doi: 10.1016/B978-0-12-814174-8.00002-0.
  • Schieber, A. 2017. Side streams of plant food processing as a source of valuable compounds: Selected examples. Annual Review of Food Science and Technology 8 (1):97–112. doi: 10.1146/annurev-food-030216-030135.
  • Schieber, A., F. C. Stintzing, and R. Carle. 2001. By-products of plant food processing as a source of functional compounds—Recent developments. Trends in Food Science & Technology 12 (11):401–413. doi: 10.1016/S0924-2244(02)00012-2.
  • Sharma, K. D., S. Karki, N. S. Thakur, and S. Attri. 2012. Chemical composition, functional properties and processing of carrot—A review. Journal of Food Science and Technology 49 (1):22–32. doi: 10.1007/s13197-011-0310-7.
  • Shi, J., J. Yu, J. E. Pohorly, and Y. Kakuda. 2003. Polyphenolics in Grape seeds—Biochemistry and functionality. Journal of Medicinal Food 6 (4):291–299. doi: 10.1089/109662003772519831.
  • Shinwari, K. J., and P. S. Rao. 2018. Thermal-assisted high hydrostatic pressure extraction of nutraceuticals from saffron (Crocus sativus): Process optimization and cytotoxicity evaluation against cancer cells. Innovative Food Science & Emerging Technologies 48:296–303. doi: 10.1016/j.ifset.2018.07.003.
  • Shukla, S., and S. Gupta. 2010. Apigenin: A promising molecule for cancer prevention. Pharmaceutical Research 27 (6):962–978. doi: 10.1007/s11095-010-0089-7.
  • Sieniawska, E., and T. Baj. 2017. Tannins. In Pharmacognosy: Fundamentals, applications and strategy, ed. Simone Badal and Rupika Delgoda, 199–232. London, United Kingdom: Elsevier Inc. doi: 10.1016/B978-0-12-802104-0.00010-X.
  • Silva, G. F. P., E. Pereira, B. Melgar, D. Stojković, M. Sokovic, R. C. Calhelha, C. Pereira, R. M. v Abreu, I. C. F. R. Ferreira, and L. Barros. 2020. Eggplant fruit (Solanum melongena L.) and bio-residues as a source of nutrients, bioactive compounds, and food colorants, using innovative food technologies. Applied Sciences 11 (1):151. doi: 10.3390/app11010151.
  • Smith, R. M. 2003. Before the injection—Modern methods of sample preparation for separation techniques. Journal of Chromatography. A 1000 (1-2):3–27. doi: 10.1016/S0021-9673(03)00511-9.
  • Sójka, M., K. Kołodziejczyk, and J. Milala. 2013. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products 51:77–86. doi: 10.1016/j.indcrop.2013.08.051.
  • Song, Y., H. J. Park, S. N. Kang, S.-H. Jang, S.-J. Lee, Y.-G. Ko, G.-S. Kim, and J.-H. Cho. 2013. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLoS One 8 (7):e69925. doi: 10.1371/journal.pone.0069925.
  • Soquetta, M. B., L. d M. Terra, and C. P. Bastos. 2018. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA - Journal of Food 16 (1):400–412. doi: 10.1080/19476337.2017.1411978.
  • Štambuk, P., D. Tomašković, I. Tomaz, L. Maslov, D. Stupić, and J. Karoglan Kontić. 2016. Application of pectinases for recovery of grape seeds phenolics. 3 Biotech 6 (2):1–12. doi: 10.1007/s13205-016-0537-0.
  • Stoll, T., U. Schweiggert, A. Schieber, and R. Carle. 2003. Process for the recovery of a carotene-rich functional food ingredient from carrot pomace by enzymatic liquefaction. Innovative Food Science & Emerging Technologies 4 (4):415–423. doi: 10.1016/S1466-8564(03)00060-2.
  • Tiwari, B. K. 2015. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry 71:100–109. doi: 10.1016/j.trac.2015.04.013.
  • Trigo, J. P., E. M. C. Alexandre, J. A. Saraiva, and M. E. Pintado. 2020. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition 60 (8):1388–1416. doi: 10.1080/10408398.2019.1572588.
  • Tylewicz, U., M. Nowacka, B. Martín-García, A. Wiktor, and A. M. Gómez Caravaca. 2018. Target sources of polyphenols in different food products and their processing by-products. In Polyphenols: Properties, recovery, and applications, ed. Charis M. Galanakis, 135–75. Sawston, Cambridge: Elsevier Inc. doi: 10.1016/B978-0-12-813572-3.00005-1.
  • Valdez-Morales, M., L. G. Espinosa-Alonso, L. C. Espinoza-Torres, F. Delgado-Vargas, and S. Medina-Godoy. 2014. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. Journal of Agricultural and Food Chemistry 62 (23):5281–5289. doi: 10.1021/jf5012374.
  • van Duynhoven, J., E. E. Vaughan, D. M. Jacobs, R. A. Kemperman, E. J. J. van Velzen, G. Gross, L. C. Roger, S. Possemiers, A. K. Smilde, J. Doré, et al. 2011. Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the United States of America 108 (Supplement_1):4531–4538. doi: 10.1073/pnas.1000098107.
  • Veneziani, G., E. Novelli, S. Esposto, A. Taticchi, and M. Servili. 2017. Applications of recovered bioactive compounds in food products. In Olive mill waste: Recent advances for sustainable management, ed. Charis M. Galanakis, 231–53. Sawston, Cambridge: Elsevier Inc. doi: 10.1016/B978-0-12-805314-0.00011-X.
  • Vernès, L., M. Vian, and F. Chemat. 2019. Ultrasound and microwave as green tools for solid-liquid extraction. In Liquid-phase extraction, ed. Colin F. Poole, 355–74. London, United Kingdom: Elsevier Inc. doi: 10.1016/B978-0-12-816911-7.00012-8.
  • Vital, A. C. P., N. W. Santos, P. T. Matumoto-Pintro, M. R. da Silva Scapim, and G. S. Madrona. 2018. Ice cream supplemented with grape juice residue as a source of antioxidants. International Journal of Dairy Technology 71 (1):183–189. doi: 10.1111/1471-0307.12412.
  • Vodnar, D. C., L. F. Călinoiu, F. V. Dulf, B. E. Ştefănescu, G. Crişan, and C. Socaciu. 2017. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry 231:131–140. doi: 10.1016/j.foodchem.2017.03.131.
  • Voung, Q. 2017. Utilisation of bioactive compounds from agricultural and food production waste, 1st ed., vol. 1. Florida, USA: CRC Press Taylor and Francis Group. https://books.google.com.mx/books?hl=es&lr=&id=jYU0DwAAQBAJ&oi=fnd&pg=PT7&dq=%22bioactive+compounds+classification%22&ots=XvyrKYO5_Z&sig=vcEsfUKHh-rWv6Vkcdd1XbEWY6c#v=onepage&q=%22bioactive%20compounds%20classification%22&f=false.
  • Vu, H. T., C. J. Scarlett, and Q. v Vuong. 2019. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of Food Science and Technology 56 (3):1360–1370. doi: 10.1007/s13197-019-03610-2.
  • Wadhwa, M., and M. P. S. Bakshi. 2013. Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products (H. P. S. Makkar, Ed., 1st ed.). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/i3273e/i3273e.pdf.
  • Weng, A., M. Thakur, M. F. Melzig, and H. Fuchs. 2011. Chemistry and pharmacology of saponins: Special focus on cytotoxic properties. Botanics: Targets and Therapy 19–29. doi: 10.2147/btat.s17261.
  • Wiesner, M., F. S. Hanschen, R. Maul, S. Neugart, M. Schreiner, and S. Baldermann. 2016. Nutritional quality of plants for food and fodder. In Encyclopedia of applied plant sciences, eds B. Thomas, B. G. Murray, D. J. Murphy, Vol. 1, 285–291. Oxford: Elsevier Inc. doi: 10.1016/B978-0-12-394807-6.00128-3.
  • Williamson, G. 2017. The role of polyphenols in modern nutrition. Nutrition Bulletin 42 (3):226–235. doi: 10.1111/nbu.12278.
  • Wolfe, K. L., and R. H. Liu. 2003. Apple peels as a value-added food ingredient. Journal of Agricultural and Food Chemistry 51 (6):1676–1683. doi: 10.1021/jf025916z.
  • Wu, T., J. Yan, R. Liu, M. F. Marcone, H. A. Aisa, and R. Tsao. 2012. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chemistry 133 (4):1292–1298. doi: 10.1016/j.foodchem.2011.08.002.
  • Yangui, T., A. Dhouib, A. Rhouma, and S. Sayadi. 2009. Potential of hydroxytyrosol-rich composition from olive mill wastewater as a natural disinfectant and its effect on seeds vigour response. Food Chemistry 117 (1):1–8. doi: 10.1016/j.foodchem.2009.03.069.
  • Yu, H. B., L. F. Ding, Z. Wang, and L. X. Shi. 2014. Study on extraction of polyphenol from grape peel microwave-assisted activity. Advanced Materials Research 864–867:520–525. doi: 10.4028/www.scientific.net/AMR.864-867.520.
  • Yu, J., and M. Ahmedna. 2013. Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science & Technology 48 (2):221–237. doi: 10.1111/j.1365-2621.2012.03197.x.
  • Zamanhuri, N. A., N. A. Rahman, and N. F. A. Bakar. 2021. Effect of microwave power and extraction time on crude palm oil quality using microwave-assisted extraction process. International Journal of Renewable Energy Development 10 (3):495–505. doi: 10.14710/ijred.2021.35402.
  • Zhang, Q. W., L. G. Lin, and W. C. Ye. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine 13:20–1. doi: 10.1186/s13020-018-0177-x.
  • Zhao, Y., Y. Wu, and M. Wang. 2014. Bioactive substances of plant origin. In Handbook of food chemistry, ed. P. Cheung, 1–35. Berlin: Springer. doi: 10.1007/978-3-642-41609-5_13-1.
  • Zygler, A., M. Słomińska, and J. Namieśnik. 2012. Soxhlet extraction and new developments such as soxtec. In Comprehensive sampling and sample preparation, ed. Janusz Pawliszyn, vol. 2, 65–82. Oxford, United Kingdom: Elsevier Inc. doi: .10.1016/B978-0-12-381373-2.00037-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.