476
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Updating insights into the rehydration of dairy-based powder and the achievement of functionality

ORCID Icon, , & ORCID Icon

References

  • Andersson, I. M., A. Millqvist-Fureby, J. Sommertune, M. Alexander, N. Hellström, M. Glantz, M. Paulsson, and B. Bergenståhl. 2019. Impact of protein surface coverage and layer thickness on rehydration characteristics of milk serum protein/lactose powder particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 561:395–404. doi: 10.1016/j.colsurfa.2018.10.073.
  • Ashokkumar, M., J. Lee, B. Zisu, R. Bhaskarcharya, M. Palmer, and S. Kentish. 2009. Hot topic: Sonication increases the heat stability of whey proteins. Journal of Dairy Science 92 (11):5353–6. doi: 10.3168/jds.2009-2561.
  • Atalar, I., and F. Yazici. 2019. Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology 37 (13):1656–64. doi: 10.1080/07373937.2018.1529038.
  • Augustin, M. A., and P. T. Clarke. 2008. Skim milk powders with enhanced foaming and steam-frothing properties. Dairy Science and Technology 88 (1):149–61. doi: 10.1051/dst:2007012.
  • Babu, K. S., K. Siliveru, J. K. Amamcharla, P. V. Vadlani, and R. P. K. Ambrose. 2018. Influence of protein content and storage temperature on the particle morphology and flowability characteristics of milk protein concentrate powders. Journal of Dairy Science 101 (8):7013–26. doi: 10.3168/jds.2018-14405.
  • Barkouti, A., C. Turchiuli, J. A. Carcel, and E. Dumoulin. 2013. Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science & Technology 93 (4–5):523–35. doi: 10.1007/s13594-013-0132-7.
  • Bock, J. E., G. A. Milliken, and K. A. Schmidt. 2008. Best mixing practices to minimize the particle size in reconstituted nonfat dry milk. Journal of Food Processing and Preservation 32 (1):60–74. doi: 10.1111/j.1745-4549.2007.00164.x.
  • Bot, F., S. V. Crowley, and J. A. O’Mahony. 2020. Solubility enhancement of milk protein isolate by sodium caseinate addition: Comparison between wet- and dry-blending approaches. International Dairy Journal 105:104661. doi: 10.1016/j.idairyj.2020.104661.
  • Burgain, J., R. El Zein, J. Scher, J. Petit, E.-A. Norwood, G. Francius, and C. Gaiani. 2016. Local modifications of whey protein isolate powder surface during high temperature storage. Journal of Food Engineering 178:39–46. doi: 10.1016/j.jfoodeng.2016.01.005.
  • Burgain, J., J. Petit, J. Scher, R. Rasch, B. Bhandari, and C. Gaiani. 2017. Surface chemistry and microscopy of food powders. Progress in Surface Science 92 (4):409–29. doi: 10.1016/j.progsurf.2017.07.002.
  • Burgain, J., J. Scher, J. Petit, G. Francius, and C. Gaiani. 2016. Links between particle surface hardening and rehydration impairment during micellar casein powder storage. Food Hydrocolloids 61:277–85. doi: 10.1016/j.foodhyd.2016.05.021.
  • Burnett, D. J., F. Thielmann, and J. Booth. 2004. Determining the critical relative humidity for moisture-induced phase transitions. International Journal of Pharmaceutics 287 (1–2):123–33. doi: 10.1016/j.ijpharm.2004.09.009.
  • Cadesky, L., M. Walkling-Ribeiro, K. T. Kriner, M. V. Karwe, and C. I. Moraru. 2017. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. Journal of Dairy Science 100 (9):7055–70. doi: 10.3168/jds.2016-12072.
  • Cenini, V. L., L. Gallagher, G. McKerr, N. A. McCarthy, D. J. McSweeney, M. A. E. Auty, and B. M. G. O’Hagan. 2020. A novel approach for dynamic in-situ surface characterisation of milk protein concentrate hydration and reconstitution using an environmental scanning electron microscope. Food Hydrocolloids 108:105881. doi: 10.1016/j.foodhyd.2020.105881.
  • Chandrapala, J., G. J. Martin, S. E. Kentish, and M. Ashokkumar. 2014. Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrasonics Sonochemistry 21 (5):1658–65. doi: 10.1016/j.ultsonch.2014.04.006.
  • Chandrapala, J., G. J. Martin, B. Zisu, S. E. Kentish, and M. Ashokkumar. 2012. The effect of ultrasound on casein micelle integrity. Journal of Dairy Science 95 (12):6882–90. doi: 10.3168/jds.2012-5318.
  • Chen, Q., D. McGillivray, J. Wen, F. Zhong, and S. Y. Quek. 2013. Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. Journal of Food Engineering 117 (4):505–12. doi: 10.1016/j.jfoodeng.2013.01.011.
  • Crowley, S. V., B. Desautel, I. Gazi, A. L. Kelly, T. Huppertz, and J. A. O’Mahony. 2015. Rehydration characteristics of milk protein concentrate powders. Journal of Food Engineering 149:105–13. doi: 10.1016/j.jfoodeng.2014.09.033.
  • Crowley, S. V., A. L. Kelly, and J. A. O’Mahony. 2014. Fortification of reconstituted skim milk powder with different calcium salts: Impact of physicochemical changes on stability to processing. International Journal of Dairy Technology 67 (4):474–82. doi: 10.1111/1471-0307.12150.
  • Crowley, S. V., A. L. Kelly, P. Schuck, R. Jeantet, and J. A. O’Mahony. 2016. Rehydration and solubility characteristics of high-protein dairy powders. In Advanced dairy chemistry, eds. P. L. H. McSweeney, J. A. O’Mahony, 99–131. New York, NY: Springer. doi: 10.1007/978-1-4939-2800-2.4.
  • Crowley, S. V., M. Megemont, I. Gazi, A. L. Kelly, T. Huppertz, and J. A. O’Mahony. 2014. Heat stability of reconstituted milk protein concentrate powders. International Dairy Journal 37 (2):104–10. doi: 10.1016/j.idairyj.2014.03.005.
  • Davenel, A., P. Schuck, F. Mariette, and G. Brulé. 2002. NMR relaxometry as a non-invasive tool to characterize milk powders. Le Lait 82 (4):465–73. doi: 10.1051/lait:2002024.
  • de Kort, E., M. Minor, T. Snoeren, T. van Hooijdonk, and E. van der Linden. 2011. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions. International Dairy Journal 21 (12):907–13. doi: 10.1016/j.idairyj.2011.06.007.
  • Deshpande, V. K., and M. K. Walsh. 2018. Effect of sonication on the viscosity of reconstituted skim milk powder and milk protein concentrate as influenced by solids concentration, temperature and sonication. International Dairy Journal 78:122–9. doi: 10.1016/j.idairyj.2017.11.005.
  • Dollo, G., P. Le Corre, A. Guérin, F. Chevanne, J. L. Burgot, and R. Leverge. 2003. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. European Journal of Pharmaceutical Sciences 19 (4):273–80. doi: 10.1016/S0928-0987(03)00134-9.
  • Drapala, K. P., M. A. E. Auty, D. M. Mulvihill, and J. A. O’Mahony. 2017. Influence of emulsifier type on the spray-drying properties of model infant formula emulsions. Food Hydrocolloids 69:56–66. doi: 10.1016/j.foodhyd.2016.12.024.
  • Duerasch, A., J. Wissel, and T. Henle. 2018. Reassembling of alkali-treated casein micelles by microbial transglutaminase. Journal of Agricultural and Food Chemistry 66 (44):11748–56. doi: 10.1021/acs.jafc.8b04000.
  • Eshpari, H., R. Jimenez-Flores, P. S. Tong, and M. Corredig. 2017. Thermal stability of reconstituted milk protein concentrates: Effect of partial calcium depletion during membrane filtration. Food Research International (Ottawa, Ont.) 102:409–18. doi: 10.1016/j.foodres.2017.07.058.
  • Eshpari, H., P. S. Tong, and M. Corredig. 2016. Changes in particle size, calcium and phosphate solubilization, and microstructure of rehydrated milk protein concentrates, prepared from partially acidified milk. Dairy Science & Technology 96 (3):329–43. doi: 10.1007/s13594-015-0270-1.
  • Fan, F.,. M. Liu, P. Shi, X. Xu, W. Lu, Z. Wang, and M. Du. 2018. Protein cross-linking and the Maillard reaction decrease the solubility of milk protein concentrates. Food Science & Nutrition 6 (5):1196–203. doi: 10.1002/fsn3.657.
  • Fang, Y., C. Selomulya, and X. D. Chen. 2010. Characterization of milk protein concentrate solubility using focused beam reflectance measurement. Dairy Science & Technology 90 (2-3):253–70. doi: 10.1051/dst/2009050.
  • Felix da Silva, D., D. Tziouri, L. Ahrné, N. Bovet, F. H. Larsen, R. Ipsen, and A. B. Hougaard. 2020. Reconstitution behavior of cheese powders: Effects of cheese age and dairy ingredients on wettability, dispersibility and total rehydration. Journal of Food Engineering 270:109763. doi: 10.1016/j.jfoodeng.2019.109763.
  • Fitzpatrick, J. J., J. Salmon, J. Ji, and S. Miao. 2017. Characterisation of the Wetting Behaviour of Poor Wetting Food Powders and the Influence of Temperature and Film Formation. KONA Powder and Particle Journal 34:282–9. doi: 10.14356/kona.2017019.
  • Fitzpatrick, J. J., A. van Lauwe, M. Coursol, A. O’Brien, K. L. Fitzpatrick, J. Ji, and S. Miao. 2016. Investigation of the rehydration behaviour of food powders by comparing the behaviour of twelve powders with different properties. Powder Technology 297:340–8. doi: 10.1016/j.powtec.2016.04.036.
  • Fitzpatrick, J. J., S. Wu, K. Cronin, and S. Miao. 2020. Self-agglomeration in fluidised beds after spray drying. ChemEngineering 4 (2):35. doi: 10.3390/chemengineering4020035.
  • Foerster, M., C. Liu, T. Gengenbach, M. W. Woo, and C. Selomulya. 2017. Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan. Food Hydrocolloids 70:163–80. doi: 10.1016/j.foodhyd.2017.04.005.
  • Forny, L., A. Marabi, and S. Palzer. 2011. Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technology 206 (1–2):72–8. doi: 10.1016/j.powtec.2010.07.022.
  • Fournaise, T., J. Burgain, C. Perroud, J. Scher, C. Gaiani, and J. Petit. 2020. Impact of formulation on reconsitution and flowability of spray-dried milk powders. Powder Technology 372:107–16. doi: 10.1016/j.powtec.2020.05.085.
  • Fyfe, K. N., O. Kravchuk, T. Le, H. C. Deeth, A. V. Nguyen, and B. Bhandari. 2011. Storage induced changes to high protein powders: Influence on surface properties and solubility. Journal of the Science of Food and Agriculture 91 (14):2566–75. doi: 10.1002/jsfa.4461.
  • Gaiani, C., M. Morand, C. Sanchez, E. A. Tehrany, M. Jacquot, P. Schuck, R. Jeantet, and J. Scher. 2010. How surface composition of high milk proteins powders is influenced by spray-drying temperature. Colloids and Surfaces. B, Biointerfaces 75 (1):377–84. doi: 10.1016/j.colsurfb.2009.09.016.
  • Gaiani, C., J. Scher, J. J. Ehrhardt, M. Linder, P. Schuck, S. Desobry, and S. Banon. 2007. Relationships between dairy powder surface composition and wetting properties during storage imporatance of residual lipids. Journal of Agricultural and Food Chemistry 55 (16):6561–7. doi: 10.1021/jf070364b.
  • Gaiani, C., P. Schuck, J. Scher, S. Desobry, and S. Banon. 2007. Dairy powder rehydration: Influence of protein state, incorporation mode, and agglomeration. Journal of Dairy Science 90 (2):570–81. doi: 10.3168/jds.S0022-0302(07)71540-0.
  • Gazi, I., and T. Huppertz. 2015. Influence of protein content and storage conditions on the solubility of caseins and whey proteins in milk protein concentrates. International Dairy Journal 46:22–30. doi: 10.1016/j.idairyj.2014.09.009.
  • Glantz, M., T. G. Devold, G. E. Vegarud, H. Lindmark Mansson, H. Stalhammar, and M. Paulsson. 2010. Importance of casein micelle size and milk composition for milk gelation. Journal of Dairy Science 93 (4):1444–51. doi: 10.3168/jds.2009-2856.
  • Harwalkar, V. R. 1982. Age gelation of sterilized milks. Developments in Dairy Chemistry 1982:229–69.
  • Patel, H., S. Patel, and S. Agarwal. 2014. Milk protein concentrates: Manufacturing and applications, 3–4. Arlington, VA: US. Dairy Export Council.
  • Hauser, M., and J. K. Amamcharla. 2016. Novel methods to study the effect of protein content and dissolution temperature on the solubility of milk protein concentrate: Focused beam reflectance and ultrasonic flaw detector-based methods. Journal of Dairy Science 99 (5):3334–44. doi: 10.3168/jds.2015-10541.
  • Hemar, Y., C. Xu, S. Wu, and M. Ashokkumar. 2020. Size reduction of “reformed casein micelles” by high-power ultrasound and high hydrostatic pressure. Ultrasonics Sonochemistry 63:104929. doi: 10.1016/j.ultsonch.2019.104929.
  • Her, J.-Y., M. S. Kim, and K.-G. Lee. 2015. Preparation of probiotic powder by the spray freeze-drying method. Journal of Food Engineering 150:70–4. doi: 10.1016/j.jfoodeng.2014.10.029.
  • Hernandez Sanchez, M. D. R., M. E. Cuvelier, and C. Turchiuli. 2016. Effect of α-tocopherol on oxidative stability of oil during spray drying and storage of dried emulsions . Food Research International (Ottawa, Ont.) 88 (Pt A):32–41. doi: 10.1016/j.foodres.2016.04.035.
  • Himmetagaoglu, A. B., and Z. Erbay. 2019. Effects of spray drying process conditions on the quality properties of microencapsulated cream powder. International Dairy Journal 88:60–70. doi: 10.1016/j.idairyj.2018.08.004.
  • Hogan, S. A., B. F. McNamee, E. D. O’Riordan, and M. O’Sullivan. 2001. Microencapsulating properties of whey protein concentrate 75. Journal of Food Science 66 (5):675–80. doi: 10.1111/j.1365-2621.2001.tb04620.x.
  • Huppertz, T. 2010. Foaming properties of milk: A review of the influence of composition and processing. International Journal of Dairy Technology 63 (4):477–88. doi: 10.1111/j.1471-0307.2010.00629.x.
  • Huppertz, T., and P. F. Fox. 2006. Effect of NaCl on some physico-chemical properties of concentrated bovine milk. International Dairy Journal 16 (10):1142–8. doi: 10.1016/j.idairyj.2005.09.011.
  • Hussain, R., C. Gaiani, L. Aberkane, J. Ghanbaja, and J. Scher. 2011. Multiscale characterization of casein micelles under NaCl range conditions. Food Biophysics 6 (4):503–11. doi: 10.1007/s11483-011-9232-1.
  • Hussain, R., C. Gaiani, L. Aberkane, and J. Scher. 2011. Characterization of high-milk-protein powders upon rehydration under various salt concentrations. Journal of Dairy Science 94 (1):14–23. doi: 10.3168/jds.2010-3323.
  • IDF. 1979. IDF standard no. 87: Instant dried milk—Determination of the dispersibility and wettability. Brussels, Belgium: International Dairy Federation.
  • Iskalieva, A., B. M. Yimmou, P. R. Gogate, M. Horvath, P. G. Horvath, and L. Csoka. 2012. Cavitation assisted delignification of wheat straw: A review. Ultrasonics Sonochemistry 19 (5):984–93. doi: 10.1016/j.ultsonch.2012.02.007.
  • Jeantet, R., P. Schuck, T. Six, C. Andre, and G. Delaplace. 2010. The influence of stirring speed, temperature and solid concentration on the rehydration time of micellar casein powder. Dairy Science & Technology 90 (2–3):225–36. doi: 10.1051/dst/2009043.
  • Ji, J., K. Cronin, J. Fitzpatrick, P. Maguire, H. Zhang, and S. Miao. 2016. The structural modification and rehydration behaviours of milk protein isolate powders: The effect of granule growth in the high shear granulation process. Journal of Food Engineering 189:1–8. doi: 10.1016/j.jfoodeng.2016.05.018.
  • Ji, J., K. Cronin, J. Fitzpatrick, and S. Miao. 2017. Enhanced wetting behaviours of whey protein isolate powder: The different effects of lecithin addition by fluidised bed agglomeration and coating processes. Food Hydrocolloids 71:94–101. doi: 10.1016/j.foodhyd.2017.05.005.
  • Ji, J.,. J. Fitzpatrick, K. Cronin, A. Crean, and S. Miao. 2016. Assessment of measurement characteristics for rehydration of milk protein based powders. Food Hydrocolloids 54:151–61. doi: 10.1016/j.foodhyd.2015.09.027.
  • Ji, J. F., K. Cronin, J. Fitzpatrick, M. Fenelon, and S. Miao. 2015. Effects of fluid bed agglomeration on the structure modification and reconstitution behaviour of milk protein isolate powders. Journal of Food Engineering 167:175–82. doi: 10.1016/j.jfoodeng.2015.01.012.
  • Ji, J. F., J. Fitzpatrick, K. Cronin, P. Maguire, H. Z. Zhang, and S. Miao. 2016. Rehydration behaviours of high protein dairy powders: The influence of agglomeration on wettability, dispersibility and solubility. Food Hydrocolloids 58:194–203. doi: 10.1016/j.foodhyd.2016.02.030.
  • Joseph, C., R. Savoire, C. Harscoat-Schiavo, D. Pintori, J. Monteil, C. Faure, and F. Leal-Calderon. 2019. Redispersible dry emulsions stabilized by plant material: Rapeseed press-cake or cocoa powder. Lwt 113:108311. doi: 10.1016/j.lwt.2019.108311.
  • Kamath, S., T. Huppertz, A. V. Houlihan, and H. C. Deeth. 2008. The influence of temperature on the foaming of milk. International Dairy Journal 18 (10–11):994–1002. doi: 10.1016/j.idairyj.2008.05.001.
  • Karam, M. C., C. Gaiani, R. Barbar, C. Hosri, and J. Scher. 2012. Effect of dairy powder rehydration state on gel formation during yogurt process. The Journal of Dairy Research 79 (3):280–6. doi: 10.1017/S0022029912000131.
  • Karam, M. C., C. Gaiani, C. Hosri, R. Hussain, and J. Scher. 2016. Textural properties of acid milk gels: Effects of dairy protein powder rehydration state. Journal of Food Processing and Preservation 40 (3):414–21. doi: 10.1111/jfpp.12618.
  • Karam, M. C., C. Hosri, R. Hussain, R. Barbar, C. Gaiani, and J. Scher. 2017. Effect of whey powder rehydration and dry-denaturation state on acid milk gels characteristics. Journal of Food Processing and Preservation 41 (5):e13200. doi: 10.1111/jfpp.13200.
  • Kelly, G. M., J. A. O’Mahony, A. L. Kelly, and D. J. O’Callaghan. 2014. Physical characteristics of spray-dried dairy powders containing different vegetable oils. Journal of Food Engineering 122:122–9. doi: 10.1016/j.jfoodeng.2013.08.028.
  • Kim, E. H. J., X. D. Chen, and D. Pearce. 2002. Surface characterization of four industrial spray-dried dairy powders in relation to chemical composition, structure and wetting property. Colloids and Surfaces B: Biointerfaces 26 (3):197–212. doi: 10.1016/S0927-7765(01)00334-4.
  • Kim, E. H. J., X. D. Chen, and D. Pearce. 2009a. Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture. Journal of Food Engineering 94 (2):163–8. doi: 10.1016/j.jfoodeng.2008.09.021.
  • Kim, E. H. J., X. D. Chen, and D. Pearce. 2009b. Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. Journal of Food Engineering 94 (2):169–81. doi: 10.1016/j.jfoodeng.2008.10.020.
  • Kondor, A., and S. A. Hogan. 2017. Relationships between surface energy analysis and functional characteristics of dairy powders. Food Chemistry 237:1155–62. doi: 10.1016/j.foodchem.2017.06.036.
  • Krokida, M. K., and Z. B. Maroulis. 1997. Effect of drying method on shrinkage and porosity. Drying Technology 15 (10):2441–58. doi: 10.1080/07373939708917369.
  • Lallbeeharry, P., Y. Tian, N. Fu, W. D. Wu, M. W. Woo, C. Selomulya, and X. D. Chen. 2014. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles. Journal of Dairy Science 97 (9):5303–14. doi: 10.3168/jds.2013-7772.
  • Lam, E., I. McKinnon, S. Marchesseau, D. Otter, P. Zhou, and Y. Hemar. 2018. The effect of transglutaminase on reconstituted skim milks at alkaline pH. Food Hydrocolloids 85:10–20. doi: 10.1016/j.foodhyd.2018.06.047.
  • Law, A. J. R., and J. Leaver. 1998. Effects of acidification and storage of milk on dissociation of bovine casein micelles. Journal of Agricultural and Food Chemistry 46 (12):5008–16. doi: 10.1021/jf980748p.
  • Li, D., E. Chen, H. Chen, H. Zhou, B. Li, and Y. Li. 2018. Impact of whey protein isolates and concentrates on the formation of protein nanoparticles-stabilised Pickering emulsions. International Journal of Food Science & Technology 53 (3):644–53. doi: 10.1111/ijfs.13578.
  • Li, K., M. W. Woo, H. Patel, L. Metzger, and C. Selomulya. 2018. Improvement of rheological and functional properties of milk protein concentrate by hydrodynamic cavitation. Journal of Food Engineering 221:106–13. doi: 10.1016/j.jfoodeng.2017.10.005.
  • Lin, Y., A. L. Kelly, J. A. O’Mahony, and T. P. Guinee. 2018. Effects of milk heat treatment and solvent composition on physicochemical and selected functional characteristics of milk protein concentrate. Journal of Dairy Science 101 (8):6799–813. doi: 10.3168/jds.2017-14300.
  • Liu, Y., and R. Guo. 2008. pH-dependent structures and properties of casein micelles. Biophysical Chemistry 136 (2–3):67–73. doi: 10.1016/j.bpc.2008.03.012.
  • Lo, B., E. Gorczyca, S. Kasapis, and B. Zisu. 2019. Effect of low-frequency ultrasound on the particle size, solubility and surface charge of reconstituted sodium caseinate. Ultrasonics Sonochemistry 58:104525. doi: 10.1016/j.ultsonch.2019.03.016.
  • Lopes Fialho, T., M. H. Nogueira, A. Moreau, G. Delaplace, P. Schuck, Í. Tuler Perrone, A. F. de Carvalho, and P. P. de Sá Peixoto Júnior. 2019. Sugar type matters in spray drying: Homogeneous distribution in milk powder favors repulsive interactions between proteins. Food Structure 22:100132. doi: 10.1016/j.foostr.2019.100132.
  • Lu, Y., D. J. McMahon, L. E. Metzger, A. Kommineni, and A. H. Vollmer. 2015. Solubilization of rehydrated frozen highly concentrated micellar casein for use in liquid food applications. Journal of Dairy Science 98 (9):5917–30. doi: 10.3168/jds.2015-9482.
  • Maidannyk, V., D. McSweeney, S. A. Hogan, S. Miao, S. Montgomery, M. Auty, and N. A. McCarthy. 2020. Water sorption and hydration in spray-dried milk protein powders: Selected physicochemical properties. Food Chemistry 304:125418. doi: 10.1016/j.foodchem.2019.125418.
  • Manoi, K., and S. S. H. Rizvi. 2009. Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocolloids 23 (7):1837–47. doi: 10.1016/j.foodhyd.2009.02.011.
  • Marella, C., P. Salunke, A. C. Biswas, A. Kommineni, and L. E. Metzger. 2015. Manufacture of modified milk protein concentrate utilizing injection of carbon dioxide. Journal of Dairy Science 98 (6):3577–89. doi: 10.3168/jds.2014-8946.
  • McCarthy, N. A., P. M. Kelly, P. G. Maher, and M. A. Fenelon. 2014. Dissolution of milk protein concentrate (MPC) powders by ultrasonication. Journal of Food Engineering 126:142–8. doi: 10.1016/j.jfoodeng.2013.11.002.
  • McCarthy, N. A., O. Power, H. B. Wijayanti, P. M. Kelly, L. Mao, and M. A. Fenelon. 2017. Effects of calcium chelating agents on the solubility of milk protein concentrate. International Journal of Dairy Technology 70 (3):415–23. doi: 10.1111/1471-0307.12408.
  • Mckenna, A. B. 2000. Effect of processing and storage on the reconstitution properties of whole milk and ultrafiltered skim milk powders. Massey University, Palmerston North.
  • Meena, G. S., A. K. Singh, S. Arora, S. Borad, R. Sharma, and V. K. Gupta. 2017. Physico-chemical, functional and rheological properties of milk protein concentrate 60 as affected by disodium phosphate addition, diafiltration and homogenization. Journal of Food Science and Technology 54 (6):1678–88. doi: 10.1007/s13197-017-2600-1.
  • Meena, G. S., A. K. Singh, V. K. Gupta, S. Borad, S. Arora, and S. K. Tomar. 2018. Effect of pH adjustment, homogenization and diafiltration on physicochemical, reconstitution, functional and rheological properties of medium protein milk protein concentrates (MPC70). Journal of Food Science and Technology 55 (4):1376–86. doi: 10.1007/s13197-018-3052-y.
  • Meena, G. S., A. K. Singh, V. K. Gupta, S. Borad, and P. T. Parmar. 2018. Effect of change in pH of skim milk and ultrafiltered/diafiltered retentates on milk protein concentrate (MPC70) powder properties. Journal of Food Science and Technology 55 (9):3526–37. doi: 10.1007/s13197-018-3278-8.
  • Meena, G. S., A. K. Singh, V. K. Gupta, D. Jayswal, P. T. Parmar, and H. R. Gupta. 2017. Estimating cost for production of soluble milk protein concentrate70 (MPC 70). Indian Journal of Dairy Science 70 (3):342–50.
  • Meletharayil, G. H., H. A. Patel, and T. Huppertz. 2015. Rheological properties and microstructure of high protein acid gels prepared from reconstituted milk protein concentrate powders of different protein contents. International Dairy Journal 47:64–71. doi: 10.1016/j.idairyj.2015.02.005.
  • Millqvist-Fureby, A., U. Elofsson, and B. Bergenståhl. 2001. Surface composition of spray-dried milk protein-stabilised emulsions in relation to preheat treatment of proteins. Colloids and Surfaces B: Biointerfaces 21 (1–3):47–58. doi: 10.1016/S0927-7765(01)00183-7.
  • Mimouni, A., H. C. Deeth, A. K. Whittaker, M. J. Gidley, and B. R. Bhandari. 2009. Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids 23 (7):1958–65. doi: 10.1016/j.foodhyd.2009.01.010.
  • Mimouni, A., H. C. Deeth, A. K. Whittaker, M. J. Gidley, and B. R. Bhandari. 2010. Investigation of the microstructure of milk protein concentrate powders during rehydration: Alterations during storage. Journal of Dairy Science 93 (2):463–72. doi: 10.3168/jds.2009-2369.
  • Morales, R., K. D. Martinez, V. M. Pizones Ruiz-Henestrosa, and A. M. R. Pilosof. 2015. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry 26:48–55. doi: 10.1016/j.ultsonch.2015.01.011.
  • Moughal, K. I., P. A. Munro, and H. Singh. 2000. Suspension stability and size distribution of particles in reconstituted, commercial calcium caseinates. International Dairy Journal 10 (10):683–90. doi: 10.1016/S0958-6946(00)00104-7.
  • Murphy, E. G., N. E. Regost, Y. H. Roos, and M. A. Fenelon. 2020. Powder and reconstituted properties of commercial infant and follow-on formulas. Foods 9 (1):84. doi: 10.3390/foods9010084.
  • Nasser, S., P. De Sa Peixoto, A. Moreau, T. Croguennec, F. Bray, C. Rolando, F. J. Tessier, A. Hedoux, and G. Delaplace. 2018. Storage of micellar casein powders with and without lactose: Consequences on color, solubility and chemical modifications. Journal of Agricultural and Food Chemistry 66 (39):10274–82. doi: 10.1021/acs.jafc.7b06147.
  • Nasser, S., A. Hedoux, A. Giuliani, C. Le Floch-Fouere, V. Sante-Lhoutellier, I. de Waele, and G. Delaplace. 2018. Investigation of secondary structure evolution of micellar casein powder upon aging by FTIR and SRCD: Consequences on solubility. Journal of the Science of Food and Agriculture 98 (6):2243–50. doi: 10.1002/jsfa.8711.
  • Nasser, S., R. Jeantet, P. De-Sa-Peixoto, G. Ronse, N. Nuns, F. Pourpoint, J. Burgain, C. Gaiani, A. Hédoux, and G. Delaplace. 2017. Microstructure evolution of micellar casein powder upon ageing: Consequences on rehydration dynamics. Journal of Food Engineering 206:57–66. doi: 10.1016/j.jfoodeng.2017.03.004.
  • Nayak, S. K., S. Arora, J. S. Sindhu, and R. B. Sangwan. 2006. Effect of chemical phosphorylation on solubility of buffalo milk proteins. International Dairy Journal 16 (3):268–73. doi: 10.1016/j.idairyj.2005.03.007.
  • Niro, G. 2005. A 5 a - Wettability. Gladsaxevej, Denmark: GEA Process Engineering A/S.
  • Nishanthi, M., J. Chandrapala, and T. Vasiljevic. 2018. Physical properties of selected spray dried whey protein concentrate powders during storage. Journal of Food Engineering 219:111–20. doi: 10.1016/j.jfoodeng.2017.09.021.
  • O’Sullivan, J. J., E.-A. Norwood, J. A. O’Mahony, and A. L. Kelly. 2019. Atomisation technologies used in spray drying in the dairy industry: A review. Journal of Food Engineering 243:57–69. doi: 10.1016/j.jfoodeng.2018.08.027.
  • Oommen, B. S. 2004. Casein supramolecules: Structure and coagulation properties. Utah State Univ, Logan.
  • Pandalaneni, K., K. Bhanduriya, J. K. Amamcharla, C. Marella, and L. E. Metzger. 2019. Influence of milk protein concentrates with modified calcium content on enteral dairy beverage formulations: Storage stability. Journal of Dairy Science 102 (1):155–63. doi: 10.3168/jds.2018-15239.
  • Paquin, P. 1999. Technological properties of high pressure homogenizers the effect of fat glubules milk proteins and polysaccharides. International Dairy Journal 9 (3–6):329–35. doi: 10.1016/S0958-6946(99)00083-7.
  • Pathania, S., Q. T. Ho, S. A. Hogan, N. McCarthy, and J. T. Tobin. 2018. Applications of hydrodynamic cavitation for instant rehydration of high protein milk powders. Journal of Food Engineering 225:18–25. doi: 10.1016/j.jfoodeng.2018.01.005.
  • Peng, Y., M. Serra, D. S. Horne, and J. A. Lucey. 2009. Effect of fortification with various types of milk proteins on the rheological properties and permeability of nonfat set yogurt. Journal of Food Science 74 (9):C666–673. doi: 10.1111/j.1750-3841.2009.01350.x.
  • Person, M., B. Cuq, A. Duri, C. Le Floch-Fouéré, P. Schuck, and R. Jeantet. 2018. Influence of the drying step in the steam-jet granulation process of dairy powders. Journal of Food Engineering 239:33–9. doi: 10.1016/j.jfoodeng.2018.06.025.
  • Philippe, M., Y. Legraet, and F. Gaucheron. 2005. The effects of different cations on the physicochemical characteristics of casein micelles. Food Chemistry 90 (4):673–83. doi: 10.1016/j.foodchem.2004.06.001.
  • Post, A. E., B. Arnold, J. Weiss, and J. Hinrichs. 2012. Effect of temperature and pH on the solubility of caseins: Environmental influences on the dissociation of α(S)- and β-casein. Journal of Dairy Science 95 (4):1603–16. doi: 10.3168/jds.2011-4641.
  • Power, O. M., M. A. Fenelon, J. A. O’Mahony, and N. A. McCarthy. 2019. Dephosphorylation of caseins in milk protein concentrate alters their interactions with sodium hexametaphosphate. Food Chemistry 271:136–41. doi: 10.1016/j.foodchem.2018.07.086.
  • Power, O. M., V. Maidannyk, D. J. McSweeney, M. A. Fenelon, J. A. O’Mahony, and N. A. McCarthy. 2020. Water sorption and hydration properties of high protein milk powders are influenced by enzymatic crosslinking and calcium chelation. Powder Technology 364:680–8. doi: 10.1016/j.powtec.2020.01.075.
  • Qiu, Y., T. J. Smith, E. A. Foegeding, and M. A. Drake. 2015. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate. Journal of Dairy Science 98 (9):5862–73. doi: 10.3168/jds.2014-9174.
  • Ravindran, S., M. A. K. Williams, R. L. Ward, and G. Gillies. 2018. Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential. Food Hydrocolloids 79:572–8. doi: 10.1016/j.foodhyd.2017.12.003.
  • Ridoutt, B. G., S. R. Williams, S. Baud, S. Fraval, and N. Marks. 2010. Short communication: The water footprint of dairy products: Case study involving skim milk powder. Journal of Dairy Science 93 (11):5114–7. doi: 10.3168/jds.2010-3546.
  • Rogers, S., Y. Fang, S. X. Qi Lin, C. Selomulya, and X. Dong Chen. 2012. A monodisperse spray dryer for milk powder: Modelling the formation of insoluble material. Chemical Engineering Science 71:75–84. doi: 10.1016/j.ces.2011.11.041.
  • Rogers, S., W. D. Wu, J. Saunders, and X. D. Chen. 2008. Characteristics of milk powders produced by spray freeze drying. Drying Technology 26 (4):404–12. doi: 10.1080/07373930801929003.
  • Ryan, G., A. B. Nongonierma, J. O’Regan, and R. J. FitzGerald. 2018. Functional properties of bovine milk protein isolate and associated enzymatic hydrolysates. International Dairy Journal 81:113–21. doi: 10.1016/j.idairyj.2018.01.013.
  • Sadat, A., H. Ezzatpanah, and H. Bakhoda. 2017. Solubility and structure of milk powders manufactured with the addition of disodium phosphate and tetrasodium pyrophosphate mixtures. International Journal of Food Properties 20 (11):2645–57. doi: 10.1080/10942912.2016.1247272.
  • Sandra, S., and D. G. Dalgleish. 2005. Effects of ultra-high-pressure homogenization and heating on structural properties of casein micelles in reconstituted skim milk powder. International Dairy Journal 15 (11):1095–104. doi: 10.1016/j.idairyj.2004.11.015.
  • Schmidmeier, C., C. O’Gorman, K. P. Drapala, D. S. Waldron, and J. A. O’Mahony. 2019. Elucidation of factors responsible for formation of white flecks in reconstituted fat filled milk powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects 575:245–55. doi: 10.1016/j.colsurfa.2019.03.034.
  • Schober, C., and J. J. Fitzpatrick. 2005. Effect of vortex formation on powder sinkability for reconstituting milk powders in water to high solids content in a stirred-tank. Journal of Food Engineering 71 (1):1–8. doi: 10.1016/j.jfoodeng.2004.09.027.
  • Schokker, E. P., J. S. Church, J. P. Mata, E. P. Gilbert, A. Puvanenthiran, and P. Udabage. 2011. Reconstitution properties of micellar casein powder: Effects of composition and storage. International Dairy Journal 21 (11):877–86. doi: 10.1016/j.idairyj.2011.05.004.
  • Schuck, P. 2009. Dairy-derived ingredients. Sawston, UK: Woodhead Publishing Limited.
  • Schuck, P., V. Briard, S. Méjean, M. Piot, M. H. Famelart, and J. L. Maubois. 1999. Dehydration by desorption and by spray drying of dairy proteins: influence of the mineral environment. Drying Technology 17 (7–8):1347–57. doi: 10.1080/07373939908917619.
  • Schuck, P., A. Davenel, F. Mariette, V. Briard, S. Mejean, and M. Piot. 2002. Rehydration of casein powders: Effects of added mineral salts and salt addition methods on water transfer. International Dairy Journal 12 (1):51–7. doi: 10.1016/S0958-6946(01)00090-5.
  • Schuck, P., R. Jeantet, B. Bhandari, X. D. Chen, Í. T. Perrone, A. F. de Carvalho, M. Fenelon, and P. Kelly. 2016. Recent advances in spray drying relevant to the dairy industry: A comprehensive critical review. Drying Technology 34 (15):1773–90. doi: 10.1080/07373937.2016.1233114.
  • Seibel, J. R., M. S. Molitor, and J. A. Lucey. 2015. Properties of casein concentrates containing various levels of beta-casein. International Journal of Dairy Technology 68 (1):24–9. doi: 10.1111/1471-0307.12170.
  • Semagoto, H. M., D. Liu, K. Koboyatau, J. Hu, N. Lu, X. Liu, J. M. Regenstein, and P. Zhou. 2014. Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Research International 62:580–8. doi: 10.1016/j.foodres.2014.04.012.
  • Shrestha, A., T. Howes, B. Adhikari, B. Wood, and B. Bhandari. 2007. Effect of protein concentration on the surface composition, water sorption and glass transition temperature of spray-dried skim milk powders. Food Chemistry 104 (4):1436–44. doi: 10.1016/j.foodchem.2007.02.015.
  • Sikand, V., P. S. Tong, S. Roy, L. E. Rodriguez-Saona, and B. A. Murray. 2011. Solubility of commercial milk protein concentrates and milk protein isolates. Journal of Dairy Science 94 (12):6194–202. doi: 10.3168/jds.2011-4477.
  • Sikand, V., P. S. Tong, J. Walker, T. Wang, and L. E. Rodriguez-Saona. 2016. Short communication: Effect of storage temperature on the solubility of milk protein concentrate 80 (MPC80) treated with NaCl or KCl. Journal of Dairy Science 99 (3):1791–5. doi: 10.3168/jds.2015-10158.
  • Sinaga, H., N. Bansal, and B. Bhandari. 2017. Effects of milk pH alteration on casein micelle size and gelation properties of milk. International Journal of Food Properties 20 (1):179–97. doi: 10.1080/10942912.2016.1152480.
  • Singh, H. 2004. Heat stability of milk. International Journal of Dairy Technology 57 (2–3):111–9. doi: 10.1111/j.1471-0307.2004.00143.x.
  • Smialowska, A., L. Matia-Merino, B. Ingham, and A. J. Carr. 2017. Effect of calcium on the aggregation behaviour of caseinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 522:113–23. doi: 10.1016/j.colsurfa.2017.02.074.
  • Szulc, K., and A. Lenart. 2013. Surface modification of dairy powders: Effects of fluid-bed agglomeration and coating. International Dairy Journal 33 (1):55–61. doi: 10.1016/j.idairyj.2013.05.021.
  • Taneja, A., A. Ye, J. R. Jones, R. Archer, and H. Singh. 2013. Behaviour of oil droplets during spray drying of milk-protein-stabilised oil-in-water emulsions. International Dairy Journal 28 (1):15–23. doi: 10.1016/j.idairyj.2012.08.004.
  • Tercinier, L., A. Ye, S. G. Anema, A. Singh, and H. Singh. 2014. Interactions of casein micelles with calcium phosphate particles. Journal of Agricultural and Food Chemistry 62 (25):5983–92. doi: 10.1021/jf5018143.
  • Tian, Y., N. Fu, W. D. Wu, D. H. Zhu, J. J. Huang, S. Yun, and X. D. Chen. 2014. Effects of co-spray drying of surfactants with high solids milk on milk powder wettability. Food and Bioprocess Technology 7 (11):3121–35. doi: 10.1007/s11947-014-1323-9.
  • Udabage, P., A. Puvanenthiran, J. A. Yoo, C. Versteeg, and M. A. Augustin. 2012. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment. The Journal of Dairy Research 79 (1):76–83. doi: 10.1017/S0022029911000793.
  • Van Hekken, D. L., J. Renye, Jr., A. J. Bucci, and P. M. Tomasula. 2019. Characterization of the physical, microbiological, and chemical properties of sonicated raw bovine milk. Journal of Dairy Science 102 (8):6928–42. doi: 10.3168/jds.2018-15775.
  • Vollenbroek, J., G. A. Hebbink, S. Ziffels, and H. Steckel. 2010. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms. International Journal of Pharmaceutics 395 (1–2):62–70. doi: 10.1016/j.ijpharm.2010.04.035.
  • Vos, B., S. V. Crowley, J. O’Sullivan, R. Evans-Hurson, S. McSweeney, J. Krüse, M. Rizwan Ahmed, D. Fitzpatrick, and J. A. O’Mahony. 2016. New insights into the mechanism of rehydration of milk protein concentrate powders determined by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). Food Hydrocolloids 61:933–45. doi: 10.1016/j.foodhyd.2016.04.031.
  • Wang, H., Y. Wang, D. Yuan, J. Cao, L. Chen, Y. Li, and L. Zhang. 2018. Effect of gelling temperature and calcium chloride concentration on rheological and microstructural properties of acid‐induced gels of milk protein concentrates. Journal of Food Processing and Preservation 42 (10):e13719. doi: 10.1111/jfpp.13719.
  • Wangler, J., H. Teichmann, E. Konstanz, and R. Kohlus. 2019. Experimental investigation and simulation of rehydration dynamics of biopolymer powders. Powder Technology 355:461–73. doi: 10.1016/j.powtec.2019.07.022.
  • Wu, S., J. Fitzpatrick, K. Cronin, V. Maidannyk, and S. Miao. 2020. Effects of spraying surfactants in a fluidised bed on the rehydration behaviour of milk protein isolate powder. Journal of Food Engineering 266:109694. doi: 10.1016/j.jfoodeng.2019.109694.
  • Wu, S., J. Fitzpatrick, K. Cronin, and S. Miao. 2019. The effect of pH on the wetting and dissolution of milk protein isolate powder. Journal of Food Engineering 240:114–9. doi: 10.1016/j.jfoodeng.2018.07.022.
  • Wu, S., J. Fitzpatrick, K. Cronin, and S. Miao. 2020a. Effect of sodium carbonate on the rehydration of milk protein isolate powder. Food Hydrocolloids 99:105305. doi: 10.1016/j.foodhyd.2019.105305.
  • Wu, S., J. Fitzpatrick, K. Cronin, and S. Miao. 2020b. Effects of calcium chelation on the neutralization of milk protein isolate and casein micelle reassembling. Food Chemistry 332:127440. doi: 10.1016/j.foodchem.2020.127440.
  • Wu, S., D. Lin, J. Fitzpatrick, K. Cronin, and S. Miao. 2020. Influence of acidification or alkalization followed by neutralization on dissolution and acid gelation ability of MPI. Food Hydrocolloids 113:106422. doi: 10.1016/j.foodhyd.2020.106422.
  • Wu, S. Z., J. Fitzpatrick, K. Cronin, M. R. Ahmed, D. Fitzpatrick, and S. Miao. 2019. Application of broadband acoustic resonance dissolution spectroscopy (BARDS) to the gas release behaviour during rehydration of milk protein isolate agglomerates. Journal of Food Engineering 253:14–20. doi: 10.1016/j.jfoodeng.2019.02.010.
  • Xu, Y., D. Liu, H. Yang, J. Zhang, X. Liu, J. M. Regenstein, Y. Hemar, and P. Zhou. 2016. Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocolloids 60:59–66. doi: 10.1016/j.foodhyd.2016.03.026.
  • Yang, M., G. D. Zhang, J. T. Yang, D. Sun, P. C. Wen, and W. B. Zhang. 2018. Effect of pH on dissociation of casein micelles in yak skim milk. Journal of Dairy Science 101 (4):2998–3007. doi: 10.3168/jds.2017-13653.
  • Yildirim, N., and S. Genc. 2017. Energy and exergy analysis of a milk powder production system. Energy Conversion and Management 149:698–705. doi: 10.1016/j.enconman.2017.01.064.
  • Zafar, U., V. Vivacqua, G. Calvert, M. Ghadiri, and J. A. S. Cleaver. 2017. A review of bulk powder caking. Powder Technology 313:389–401. doi: 10.1016/j.powtec.2017.02.024.
  • Zisu, B., R. Bhaskaracharya, S. Kentish, and M. Ashokkumar. 2010. Ultrasonic processing of dairy systems in large scale reactors. Ultrasonics Sonochemistry 17 (6):1075–81. doi: 10.1016/j.ultsonch.2009.10.014.
  • Zouari, A., I. Mtibaa, M. Triki, M. Jridi, D. Zidi, H. Attia, and M. A. Ayadi. 2020. Effect of spray‐drying parameters on the solubility and the bulk density of camel milk powder: A response surface methodology approach. International Journal of Dairy Technology 73 (3):616–24. doi: 10.1111/1471-0307.12690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.